APPLICATIONS OF THE ROPER-SUFFRIDGE EXTENSION OPERATOR FOR SOME SUBCLASSES OF STARLIKE MAPPINGS

S. Rahrovi

Department of Mathematics, Faculty of Basic Science, University of Bonab, Bonab, P.O. Box: 5551-761167, Bonab, Iran.

Received August, 8, 2016, Accepted June, 25, 2018

tions for a_j are established such that these classes are preserved under the following modified Roper-Suffridge operator $F(z) = \left(f(z_1) + f'(z_1) \sum_{j=2}^{n} a_j z_j^{p_j}, (f'(z_1))^{\frac{1}{p_2}} z_2, \ldots, (f'(z_1))^{\frac{1}{p_n}} z_n\right)$, where f is a normalized locally biholomorphic function on the unit disc U. On the other hand, almost starlike mapping of complex order λ on Rienhardt domain $\Omega_{n,p_2,\ldots,p_n}$ is defined. A necessary and sufficient condition for a_j are established such that under which the above modified Roper-Suffridge operator preserves an almost starlike mapping of complex order λ . These results generalize the modified Roper-Suffridge extension operator from the unit ball to Reinhardt domains. Our result reduce to many well-known results.

1. INTRODUCTION AND PRELIMINARIES

Let *n* be a positive integer and \mathbb{C}^n denote the space of *n* complex variables $z = (z_1, \ldots, z_n)$ with the Euclidean inner product $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w}_j$ and Euclidean norm $||z|| = \langle z, z \rangle^{1/2}$, where $z, w \in \mathbb{C}^n$. The open ball $\{z \in \mathbb{C}^n : ||z|| < r\}$ is denoted by B_r^n and the unit ball B_1^n by B^n . The closed ball $\{z \in \mathbb{C}^n : ||z|| \le r\}$ is denoted by \overline{B}_r^n , and the unit sphere is denoted by $\partial B^n = \{z \in \mathbb{C}^n : ||z|| = 1\}$. In the case of one complex variable, B^1 is denoted by U. For $n \ge 2$, let $\hat{z} = (z_2, \ldots, z_n)$ so that $z = (z_1, \hat{z}) \in \mathbb{C}^n$.

Let $L(\mathbb{C}^n, \mathbb{C}^m)$ denote the space of complex linear mappings from \mathbb{C}^n into \mathbb{C}^m with the standard operator norm,

 $|| A || = \sup\{|| A(z) || : || z || = 1\},\$

and let I_n be the identity in $L(\mathbb{C}^n, \mathbb{C}^n)$. Let Ω be a domain in \mathbb{C}^n and $H(\Omega)$ be the set of holomorphic mappings from Ω into \mathbb{C}^n . A mapping $f \in H(\Omega)$ is called normalized if f(0) = 0and $J_f(0) = I_n$, where $J_f(0)$ is the complex Jacobian matrix of f at the origin. A mapping $f \in H(\Omega)$ is said to be locally biholomorphic if det $J_f(z) \neq 0$ for every $z \in \Omega$. Let $LS(\Omega)$ be the set of normalized locally biholomorphic mappings on Ω and let $S(\Omega)$ denote the set of normalized biholomorphic mappings on Ω . In the case of one complex variable, the set $S(B^1)$ is denoted by S and $LS(B^1)$ is denoted by LS. A mapping $f \in S(\Omega)$ is called starlike (respectively convex) if its image is a starlike domain with respect to origin (respectively convex domain). The class of starlike (respectively convex) mappings on Ω will be denoted by $S^*(\Omega)$ (respectively $K(\Omega)$). In the case of one complex variable $S^*(B^1)$ (respectively $K(B^1)$) is denote by S^* (respectively K). A normalized mapping $f \in H(\Omega)$ is said to be ε starlike if there exists a positive number ε , $0 \le \varepsilon \le 1$, such that $f(B^n)$ is starlike with respect to every point in $\varepsilon f(B^n)$.

A domain Ω is called a circular domain if $e^{i\theta}z \in \Omega$ holds for any $z \in \Omega$ and $\theta \in \mathbb{R}$. A domain $\Omega \subset \mathbb{C}^n$ is said to be a complete Reinhardt if $(z_1, z_2, \ldots, z_n) \in \Omega$ implies that $(e^{i\theta_1}z_1, e^{i\theta_2}z_2, \ldots, e^{i\theta_n}z_n) \in \Omega$ for all $\theta_j \in \mathbb{R}$, $j = 1, 2, \ldots, n$. The Minkowski functional $\rho(z)$ of a bounded circular convex domain Ω in \mathbb{C}^n is defined as

$$\rho(z) = \inf\left\{t > 0, \frac{z}{t} \in \Omega\right\}, \quad z \in \mathbb{C}^n.$$

⁰Keywords and phrases: Roper-Suffridge extension operator, Reinhardt domain, Minkowski functional, Strongly spirallike mapping, Almost starlike mapping.

If Ω is a bounded circular convex domain, then Ω is a Banach space in \mathbb{C}^n with respect to this norm, and $\Omega = \{z \in \mathbb{C}^n : \rho(z) < 1\}$. Also, The Minkowski functional $\rho(z)$ is C^1 on $\overline{\Omega}$ except for a lower dimensional manifold. Moreover, the Minkowski functional $\rho(z)$ has the following properties of (see [16]):

$$\frac{\partial \rho}{\partial z}(\lambda z) = \frac{\partial \rho}{\partial z}(z), \quad \lambda \in [0, +\infty), \ z \in \Omega \setminus \{0\},$$
(1.1)

$$\frac{\partial \rho}{\partial z}(e^{i\theta}z) = e^{-i\theta}\frac{\partial \rho}{\partial z}(z), \quad \theta \in \mathbb{R}, \ z \in \mathbb{C}^n \setminus \{0\}.$$

Definition 1.1. [31] Suppose that Ω is a bounded convex circular domain which contains the origin in \mathbb{C}^n . Its Minkowski functional $\rho(z)$ is C^1 except for a lower-dimensional manifold. Let f be a normalized locally biholomorphic mapping on Ω . If $\alpha \in (0, 1), \beta \in (\frac{-\pi}{2}, \frac{\pi}{2})$, and

$$\left|e^{-i\beta}\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J_{f}^{-1}(z)f(z) - \left(\frac{\cos\beta}{2\alpha} - i\sin\beta\right)\right| < \frac{\cos\beta}{2\alpha}, \qquad z \in \Omega \setminus \{0\},$$

then f is said to be spirallike mapping of type β and order α on Ω .

Definition 1.2. [2] Suppose that Ω is a bounded convex circular domain which contains the origin in \mathbb{C}^n . Its Minkowski functional $\rho(z)$ is C^1 except for a lower-dimensional manifold. Let f be a normalized locally biholomorphic mapping on Ω . If $\alpha \in (0, 1), \beta \in (\frac{-\pi}{2}, \frac{\pi}{2})$, and

$$\left|i\tan\beta + (1-i\tan\beta)\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J_{f}^{-1}(z)f(z) - \frac{1+\alpha^{2}}{1-\alpha^{2}}\right| \leq \frac{2\alpha}{1-\alpha^{2}}, \qquad z\in\Omega\backslash\{0\}$$

then f is said to be strongly spirallike mapping of type β and order α on Ω .

Wang [27] introduced the following classes of starlike mappings from the unified perspective which contains the above two definitions.

Definition 1.3. [27] Suppose that Ω is a bounded complete circular domain which contains the origin in \mathbb{C}^n . Its Minkowski functional $\rho(z)$ is C^1 except for a lower-dimensional manifold. Let f be a normalized locally biholomorphic mapping on Ω . If $-1 \leq A < B < 1$, $\beta \in (\frac{-\pi}{2}, \frac{\pi}{2})$, and

$$\left| i \tan \beta + (1 - i \tan \beta) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_f^{-1}(z) f(z) - \frac{1 - AB}{1 - B^2} \right| < \frac{B - A}{1 - B^2}, \qquad z \in \Omega \setminus \{0\}, \quad (1.2)$$

then we say that $f \in S^*_{\Omega}(\beta, A, B)$.

When $\Omega = U$, the inequality (1.2) becomes

$$\left| i \tan \beta + (1 - i \tan \beta) \frac{f(z)}{z f'(z)} - \frac{1 - AB}{1 - B^2} \right| \le \frac{B - A}{1 - B^2}, \qquad z \in U.$$

Remark 1.4. When A = -1, $B = 1 - 2\alpha$, Definition 1.3 reduces to Definition 1.1. When $A = -\alpha$, $B = \alpha$, Definition 1.3 reduces to Definition 1.2.

The geometric property of (1.2) shows that the image of mapped by the mapping

$$i \tan \beta + (1 - i \tan \beta) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_f^{-1}(z) f(z)$$

is an open disk with diameter end points $\frac{1-A}{1-B}$ and $\frac{1+A}{1+B}$. Hence, when $B \to 1^-$, the image of Ω reduces to the half plan $\{z : Re \ z \ge \frac{1+A}{2}\}$.

Definition 1.5. [26] Suppose Ω is a bounded convex circular domain which contains the origin in \mathbb{C}^n , and let $A \in L(\mathbb{C}^n, \mathbb{C}^n)$ be such that $\operatorname{Re}\langle A(z), z \rangle > 0$. A normalized biholomorphic mapping f on Ω is spirallike with respect to A if $e^{-tA}f(\Omega) \subset \Omega$ for all t > 0, where

$$e^{-tA} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} t^k A^k.$$

Note that any spirallike mapping with respect to a linear operator A such that $Re\langle A(z), z \rangle > 0$ for $z \in \mathbb{C}^n \setminus \{0\}$ is biholomorphic [26].

Remark 1.6. If $A = e^{-i\beta}I_n$, $\beta \in (\frac{-\pi}{2}, \frac{\pi}{2})$, *in Definition 1.5, we obtain the class of spirallike mappings of type* β *, studied by Hamada and Kohr* [11]. *Hence* $f \in S^*(\Omega)$ *if and only if* f *is spirallike mappings of type zero.*

In the following we introduce the almost starlike mapping of complex order λ on Rienhardt domain Ω .

Definition 1.7. Suppose that Ω is a bounded complete circular domain in \mathbb{C}^n . Its Minkowski functional $\rho(z)$ is C^1 except for a lower-dimensional manifold. Let $\lambda \in \mathbb{C}$, with $Re\lambda \leq 0$. A normalized locally biholomorphic mapping $f \in H(\Omega)$ is said to be an almost starlike mapping of complex order λ if

$$Re\left((1-\gamma)\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}J_{f}^{-1}(z)f(z)\right) > -Re\ \lambda \|z\|^{2}, \qquad z \in \Omega \setminus \{0\}.$$

It is easy to see that in the case of one variable, the above inequality reduces to the following

$$Re\left(1-\lambda\right)\frac{f(z)}{zf'(z)}$$
 > $-Re\ \lambda$, $z\in U$.

The interest of the study of almost starlikeness of complex order λ arises from the fact that every almost starlike mapping f of complex order λ is also spirallike with respect to the operator $A = (1 - \lambda)I_n$, and hence f is biholomorphic on Ω (see [1]).

Remark 1.8. If we take $\lambda = i \tan \beta$, in Definition 1.7, where $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$, we obtain the usual notion of spirallike of type β and when $\lambda = 0$, we obtain the usual notion of starlike (see [33]).

In 1995, Roper and Suffridge [25] introduced an extension operator which gives a way of extending a locally biholomorphic function on the unit disc U in \mathbb{C} to a locally biholomorphic mapping of B^n into \mathbb{C}^n . For fixed $n \geq 2$, the Roper-Suffridge extension operator (see [10] and [25]) is defined as follows

$$[\Phi_n(f)](z) = (f(z_1), \sqrt{f'(z_1)}\hat{z}), \qquad z \in B^n,$$

where f is a normalized biholomorphic mapping on the unit disc U in \mathbb{C} , $z = (z_1, \hat{z})$ belonging to the unit ball B^n in \mathbb{C}^n and the branch of the power function is chosen so that $\sqrt{f'(z_1)}|_{z_1=0} = 1$.

The following results illustrate the important and usefulness of the Roper-Suffridge extension operator

$$\Phi_n(K) \subseteq K(B^n), \qquad \Phi_n(S^*) \subseteq S^*(B^n).$$

The first was proved by Roper and Suffridge when they introduced their operator [25], while the second result was given by Graham and Kohr [9]. Until now, it is difficult to construct the concrete convex mappings, starlike mappings on B^n . By making use of the Roper-Suffridge extension operator, we may easily give many concrete examples about these mappings. This is one important reason why people are interested in this extension operator. A good treatment of further applications of the Roper-Suffridge extension operator can be found in the recent book by Graham and Kohr [10].

In 2005, Muir [18] modified the Roper- Suffridge extension operator as follows

$$[\Phi_{n,Q}(f)](z) = \left(f(z_1) + f'(z_1)Q(\hat{z}), \sqrt{f'(z_1)}\hat{z}\right), \qquad z = (z_1, \hat{z}) \in B^n,$$

where $Q(\hat{z})$ is a homogeneous polynomial of degree 2 with respect to \hat{z} , and f, z_1 and \hat{z} are defined as above. He proved that this operator preserves starlikeness and convexity if and only if $||Q|| \leq 1/4$ and $||Q|| \leq 1/2$, respectively. Also Rahrovi et all [22] proved that this operator preserves spirallike mapping of type β if and only if $||Q|| \leq 1/4$. The modified operator $\Phi_{n,Q}$ plays a key role to study the extreme points of convex mappings on B^n (see [19], [20]). Later, Kohr [12], Muir [17] and Rahrovi et all [23] used the Loewner chain to study the modified Roper-Suffridge extension operator. Recently, the modified Roper-Suffridge extension operator on the unit ball is also studied by Wang and Liu [29] and Feng and Yu [5].

On the other hand, people also considered the generalized Roper-Suffridge extension operator on the general Reinhardt domains. For example, Gong and Liu [7], [14] introduced the definition of ε -starlike mappings and obtained that the operator

$$[\Phi_{n,\frac{1}{p}}(f)](z) = \left(f(z_1), (f'(z_1))^{\frac{1}{p}}\hat{z}\right),$$

maps the ε -starlike functions on U to the ε -starlike mappings on the Reinhardt domain $\Omega_{n,p} = \left\{ z \in \mathbb{C}^n : |z_1|^2 + \sum_{j=2}^n |z_j|^p < 1 \right\}$, where $p \ge 1$, and f, z_1 and \hat{z} are defined as above. When $\varepsilon = 0$ and $\varepsilon = 1$, $\Phi_{n,\frac{1}{p}}$ maps the starlike function and convex function on U to the starlike mapping and the convex mapping on $\Omega_{n,p}$, respectively. Furthermore, Gong and Liu [8] proved that the operator

$$[\Phi_{n,\frac{1}{p_2},\ldots,\frac{1}{p_n}}(f)](z) = \left(f(z_1), (f'(z_1))^{\frac{1}{p_2}}z_2,\ldots, (f'(z_1))^{\frac{1}{p_n}}z_n\right),$$

maps the ε -starlike functions on U to the ε -starlike mappings on the Reinhardt domain $\Omega_{n,p_2,\ldots,p_n} = \left\{ z \in \mathbb{C}^n : |z_1|^2 + \sum_{j=2}^n |z_j|^{p_j} < 1 \right\}$, where $p_j \ge 1$, and f, z_1 and \hat{z} are defined as above. Also, Liu and Liu [15] proved that this operator preserves starlikeness of order α on the domain $\Omega_{n,p_2,\ldots,p_n}$. On the other hand, Feng and Liu [5] proved that this operator preserves almost starlikeness of order α on the domain $\Omega_{n,p_2,\ldots,p_n}$.

In contrast to the modified Roper-Suffridge extension operator on the unit ball, it is natural to ask if we can modify the Roper-Suffridge extension operator on the Reinhardt domain.

In 2011, Wang and Gao [28] introduced the following extension operator:

$$F(z) = \left(f(z_1) + f'(z_1) \sum_{j=2}^n a_j z_j^{p_j}, (f'(z_1))^{\frac{1}{p_2}} z_2, \dots, (f'(z_1))^{\frac{1}{p_n}} z_n \right),$$
(1.3)

on the Reinhardt domain $\Omega_{n,p_2,...,p_n}$, where p_j are positive integer and $p_j \geq 1$, the branch are chosen such that $(f'(z_1))^{\frac{1}{p_j}}|_{z_1=0}=1, j=2,...,n$. For $|a_j| \leq \frac{(1-\alpha)}{4}, j=2,...,n$, they proved that this operator preserves almost starlike function of order α and on the Renihardt domain $\Omega_{n,p_2,...,p_n}$. In this paper, we will give some necessary and sufficient conditions for a_j under which the above Roper-Suffridge operator preserves the classes $S^*_{\Omega_{n,p_2,...,p_n}}(\beta, A, B)$. Also, under special condition for $a_j, j=2,...,n$, we will show that f is an almost starlike function of complex order λ on U if and only if F is an almost starlike function of complex order λ on $\Omega_{n,p_1,...,p_n}$.

In order to prove the main results, we need the following lemmas.

Lemma 1.9. [10]. (Schwarz-Pick Lemma) Suppose that $g \in H(U)$ satisfies $g(U) \subset U$, then

$$|g'(\xi)| \le \frac{1 - |g(\xi)|^2}{1 - |\xi|^2},$$

for each $\xi \in U$.

Lemma 1.10. [21]. Let f be a normalized biholomorphic function on U, then

$$\left| (1-|z|^2) \frac{f''(z)}{f'(z)} - 2\bar{z} \right| \le 4, \qquad z \in U.$$

Lemma 1.11. [21]. Let p be a holomorphic function on U. If Rep(z) > 0 and p(0) > 0, then

$$|p'(z)| \le \frac{2Rep(z)}{1-|z|^2}.$$

Lemma 1.12. [32]. If $\rho(z)$ is a Minkowski function of the domain $\Omega_{n,p_2,\ldots,p_n}$, $z \neq 0$, then

$$\frac{\partial \rho}{\partial z_1}(z) = \frac{\bar{z}_1}{\rho(z) \left[2\left|\frac{z_1}{\rho(z)}\right|^2 + \sum_{j=2}^n p_j \left|\frac{z_j}{\rho(z)}\right|^{p_j}\right]},$$
$$\frac{\partial \rho}{\partial z_j}(z) = \frac{p_j \bar{z}_j \left|\frac{z_j}{\rho(z)}\right|^{p_j-2}}{2\rho(z) \left[2\left|\frac{z_1}{\rho(z)}\right|^2 + \sum_{j=2}^n p_j \left|\frac{z_j}{\rho(z)}\right|^{p_j}\right]}, \qquad j = 2, \dots, n$$

2. Main Results

We begin this section with the main results of this paper.

Theorem 2.1. Let $\alpha \in (0,1)$ and $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Suppose that the operator F(z) is defined by (1.3). If complex numbers a_j satisfy the condition $|a_j| \leq \frac{(B-A)(1-|B|)\cos\beta}{4(1-B^2)}$, j = 2, ..., n, then $F \in S^*_{\Omega_{n,p_2,...,p_n}}(\beta, A, B)$ if and only if $f \in S^*_U(\beta, A, B) = S^*(\beta, A, B)$.

Proof. By the definition 1.3, we only need to prove that the following inequality

$$\left|\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J_F^{-1}(z)F(z)\right] - \frac{1-AB}{B-A}\right| < 1$$

holds for all $z \in \Omega_{n,p_2,\ldots,p_n}$ and $z \neq 0$ and $|a_j| \leq \frac{(B-A)(1-|B|)\cos\beta}{4(1-B^2)}$. For $z = (z_1, \hat{z}) \in B^n$, we have two cases

First, if $\hat{z} = 0$, then we can get the conclusion easily.

Second, suppose $\hat{z} \neq 0$. Obviously, the mapping F is holomorphic at every point $z = (z_1, \hat{z}) \in \overline{\Omega}_{n, p_2, \dots, p_n}$. Let us write $z = \lambda u = |\lambda| e^{i\theta} u$ for $u \in \partial \Omega_{n, p_2, \dots, p_n}$ and $\lambda \in \overline{U} \setminus \{0\}$, then from we have

$$\begin{split} & \left|\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J_F^{-1}(z)F(z)\right] - \frac{1-AB}{B-A}\right| < 1\\ \Leftrightarrow \left|\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{2}{\rho(|\lambda|e^{i\theta}u)}\frac{\partial\rho}{\partial z}(|\lambda|e^{i\theta}u)J_F^{-1}(|\lambda|e^{i\theta}u)F(|\lambda|e^{i\theta}u)\right] - \frac{1-AB}{B-A}\right| < 1\\ \Leftrightarrow \left|\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{2}{|\lambda|}\frac{e^{-i\theta}\partial\rho}{\partial z}(u)J_F^{-1}(|\lambda|e^{i\theta}u)F(|\lambda|e^{i\theta}u)\right] - \frac{1-AB}{B-A}\right| < 1\\ \Leftrightarrow \left|\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{2}{\lambda}\frac{\partial\rho}{\partial z}(u)J_F^{-1}(\lambda u)F(\lambda u)\right] - \frac{1-AB}{B-A}\right| < 1 \end{split}$$

The expression

$$\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{2}{\lambda}\frac{\partial\rho}{\partial z}(u)J_F^{-1}(\lambda u)F(\lambda u)\right] - \frac{1-AB}{B-A}$$

is holomorphic with respect to λ . Thus, the maximum modules principle for holomorphic functions yield that it attains its maximum on $|\lambda| = 1$. Therefor we need only to prove for all $z = (z_1, \hat{z}) \in \partial \Omega_{n, p_2, \dots, p_n}$ such that $\hat{z} \neq 0$. Hence, $\rho(z) = 1$, and it is suffice to show that

$$\left|\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{2\partial\rho}{\partial z}(z)J_F^{-1}(z)F(z)\right] - \frac{1-AB}{B-A}\right| < 1,$$

holds for $z \in \partial \Omega_{n,p_2,...,p_n}$ and $\hat{z} \neq 0$. Since

$$F(z) = \left(f(z_1) + f'(z_1) \sum_{j=2}^n a_j z_j^{p_j}, (f'(z_1))^{\frac{1}{p_2}} z_2, \dots, (f'(z_1))^{\frac{1}{p_n}} z_n \right),$$

we have

$$J_F(z) = \begin{bmatrix} f'(z_1) + f''(z_1) \sum_{j=2}^n a_j z_j^{p_j} & a_2 p_2 f'(z_1) z_2^{p_2 - 1} & \cdots & a_n p_n f'(z_1) z_n^{p_n - 1} \\ a_2 & (f'(z_1))^{1/p_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & (f'(z_1))^{1/p_n} \end{bmatrix},$$

where

$$a_j = \frac{1}{p_j} (f'(z_1))^{(1/p_j)-1} f''(z_1) z_j, \qquad j = 2, \dots, n$$

Suppose that $J_F^{-1}(z)F(z) = A = (x_1, x_2, \dots, x_n)$, some simple computation shows that

$$x_1 = \frac{f(z_1)}{f'(z_1)} - \sum_{j=2}^n a_j (p_j - 1) z_j^{p_j},$$

$$x_j = \left(1 - \frac{f(z_1)f''(z_1)}{p_j(f'(z_1))^2} + \frac{f''(z_1)}{p_jf'(z_1)}\sum_{k=2}^n a_k(p_k - 1)z_k^{p_k}\right)z_j, \qquad j = 2, \dots, n.$$

Therefore we get

$$\frac{\partial \rho(z)}{\partial z} J_F^{-1}(z) F(z) = \frac{f(z_1)}{z_1 f'(z_1)} \frac{\partial \rho(z)}{\partial z_1} z_1 - \sum_{j=2}^n a_j (p_j - 1) z_j^{p_j} \frac{\partial \rho(z)}{\partial z_1} + \sum_{j=2}^n \left(1 - \frac{f(z_1) f''(z_1)}{p_j (f'(z_1))^2} + \frac{f''(z_1)}{p_j f'(z_1)} \sum_{k=2}^n a_k (p_k - 1) z_k^{p_k} \right) \frac{\partial \rho(z)}{\partial z_j} z_j.$$
(2.1)

Now, from Lemma 1.12, we obtain

$$\frac{\partial \rho}{\partial z_1}(z) = \frac{\bar{z}_1}{\rho(z) \left[2|z_1/\rho(z)|^2 + \sum_{j=2}^n p_j|z_j/\rho(z)|^{p_j} \right]} = \frac{\bar{z}_1}{2|z_1|^2 + \sum_{j=2}^n p_j|z_j|^{p_j}},$$

$$\frac{\partial \rho}{\partial z_j}(z) = \frac{p_j \bar{z}_j |z_j/\rho(z)|^{p_j-2}}{2\rho(z) \left[2|z_1/\rho(z)|^2 + \sum_{j=2}^n p_j|z_j/\rho(z)|^{p_j} \right]} = \frac{p_j \bar{z}_j |z_j|^{p_j-2}}{2 \left[2|z_1|^2 + \sum_{j=2}^n p_j|z_j|^{p_j} \right]}.$$
 (2.2)

In terms of (2.1) and (2.2), we obtain

$$\frac{1-B^2}{B-A} \left[i \tan\beta + (1-i \tan\beta) \frac{2\partial\rho}{\partial z}(z) J_F^{-1}(z) F(z) \right] - \frac{1-AB}{B-A} = \frac{G(z)}{2|z_1|^2 + \sum_{j=2}^n p_j|z_j|^{p_j}},$$
(2.3)

where

$$\begin{split} G(z) &= \frac{1-B^2}{B-A} \bigg[i \tan \beta \bigg(2|z_1|^2 + \sum_{j=2}^n p_j|z_j|^{p_j} \bigg) + (1-i \tan \beta) \bigg[2|z_1|^2 \frac{f(z_1)}{z_1 f'(z_1)} \\ &+ \sum_{j=2}^n p_j|z_j|^{p_j} \bigg(1 - \frac{f(z_1)f''(z_1)}{p_j (f'(z_1))^2} \bigg) + \sum_{j=2}^n a_j (p_j - 1) z_j^{p_j} \bigg(\frac{f''(z_1)}{f'(z_1)} (1 - |z_1|^2) - 2\bar{z}_1 \bigg) \bigg] \bigg] \\ &- \frac{1-AB}{B-A} \bigg(2|z_1|^2 + \sum_{j=2}^n p_j|z_j|^{p_j} \bigg) \\ &= 2|z_1|^2 \bigg[\frac{1-B^2}{B-A} i \tan \beta + \frac{1-B^2}{B-A} (1 - i \tan \beta) \frac{f(z_1)}{z_1 f'(z_1)} - \frac{1-AB}{B-A} \bigg] \\ &+ \frac{1-B^2}{B-A} (1 - i \tan \beta) \sum_{j=2}^n a_j (p_j - 1) z_j^{p_j} \bigg(\frac{f''(z_1)}{f'(z_1)} (1 - |z_1|^2) - 2\bar{z}_1 \bigg) \end{split}$$
(2.4)
 $&+ \sum_{j=2}^n p_j |z_j|^{p_j} \bigg[\frac{1-B^2}{B-A} (1 - i \tan \beta) \bigg(1 - \frac{f(z_1)f''(z_1)}{p_j (f'(z_1))^2} \bigg) + \frac{1-B^2}{B-A} i \tan \beta - \frac{1-AB}{B-A} \bigg] \end{split}$

Let

$$h(z_1) = \frac{1 - B^2}{B - A} i \tan\beta + \frac{1 - B^2}{B - A} (1 - i \tan\beta) \frac{f(z_1)}{z_1 f'(z_1)} - \frac{1 - AB}{B - A}.$$
 (2.5)

Notice that $h \in S^*_{\Omega_{n,p_2,...,p_n}}(\beta, A, B)$, hence $|h(z_1)| < 1$. By Schwarz-Pick Lemma, we can obtain that

$$|h'(z_1)| \le \frac{1 - |h(z_1)|^2}{1 - |z_1|^2}$$

On the other hand, by some calculations, we can get

$$\frac{f(z_1)f''(z_1)}{f'(z_1)^2} = \frac{B(A-B) - (B-A)h(z_1) - (B-A)z_1h'(z_1)}{(1-B^2)(1-i\tan\beta)}.$$
(2.6)

Substituting (2.5) and (2.6) into (2.4), we get

$$\begin{split} G(z) &= 2|z_1|^2 h(z_1) + \frac{1-B^2}{B-A} (1-i\tan\beta) \sum_{j=2}^n a_j (p_j-1) z_j^{p_j} \left(\frac{f''(z_1)}{f'(z_1)} (1-|z_1|^2) - 2\bar{z}_1 \right) \\ &+ \sum_{j=2}^n p_j |z_j|^{p_j} \left[\frac{1-B^2}{B-A} (1-i\tan\beta) - \frac{1-B^2}{B-A} (1-i\tan\beta) - \frac{1-B^2}{B-A} (1-i\tan\beta) \frac{1-B^2}{B-A} (1-i\tan\beta) \frac{1-B^2}{B-A} (1-i\tan\beta) - \frac{1-AB}{B-A} \right] \\ &+ \frac{1-B^2}{B-A} i\tan\beta - \frac{1-AB}{B-A} \\ &= 2|z_1|^2 h(z_1) + \frac{1-B^2}{B-A} (1-i\tan\beta) \sum_{j=2}^n a_j (p_j-1) z_j^{p_j} \left(\frac{f''(z_1)}{f'(z_1)} (1-|z_1|^2) - 2\bar{z}_1 \right) \\ &+ h(z_1) \sum_{j=2}^n |z_j|^{p_j} + z_1 h'(z_1) \sum_{j=2}^n |z_j|^{p_j} + \sum_{j=2}^n p_j \left(\frac{1-B^2}{B-A} + \frac{B}{p_j} - \frac{1-B^2}{B-A} \right) |z_j|^{p_j} \end{split}$$

By Lemma 1.9 and 1.10, we can get that

$$\begin{split} |G(z)| &\leq (1+|z_1|^2)|h(z_1)| + \sum_{j=2}^n |B|(p_j-1)|z_j|^{p_j} + |z_1|\frac{1-|h(z_1)|^2}{1-|z_1|^2}(1-|z_1|^2) \\ &\quad + \frac{4}{\cos\beta}\frac{1-B^2}{B-A}\sum_{j=2}^n |a_j|(p_j-1)|z_j|^{p_j} \\ &= (1+|z_1|^2)|h(z_1)| + |z_1|(1-|h(z_1)|^2) + \sum_{j=2}^n \left(|B| + \frac{4}{\cos\beta}\frac{1-B^2}{B-A}|a_j|\right)(p_j-1)|z_j|^{p_j} \\ &\leq (1+|z_1|^2)(|h(z_1)|-1) + (1+|z_1|^2) + 2|z_1|(1-|h(z_1)|) \\ &\quad + \sum_{j=2}^n \left(|B| + \frac{4}{\cos\beta}\frac{1-B^2}{B-A}|a_j|\right)(p_j-1)|z_j|^{p_j} \\ &= (1+|z_1|^2) + (1-|z_1|)^2(|h(z_1)|-1) + \sum_{j=2}^n \left(|B| + \frac{4}{\cos\beta}\frac{1-B^2}{B-A}|a_j|\right)(p_j-1)|z_j|^{p_j} \end{split}$$

Therefore, when $|a_j| \leq \frac{(B-A)(1-|B|)\cos\beta}{4(1-B^2)}$, $j = 2, \ldots, n$, we have

$$|G(z)| \le 1 + |z_1|^2 + \sum_{j=2}^n (p_j - 1)|z_j|^{p_j} = 2|z_1|^2 + \sum_{j=2}^n p_j|z_j|^{p_j}$$
(2.7)

In the terms of (2.3) and (2.7), we obtain

$$\left|\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J_F^{-1}(z)F(z)\right] - \frac{1-AB}{B-A}\right| < 1$$

$$z) \in S_{+}^{*} \qquad (\beta \mid A \mid B)$$

Hence $F(z) \in S^*_{\Omega_{n,p_2,\ldots,p_n}}(\beta, A, B)$.

Conversely, if

$$F(z) = \left(f(z_1) + f'(z_1) \sum_{j=2}^n a_j z_j^{p_j}, (f'(z_1))^{\frac{1}{p_2}} z_2, \dots, (f'(z_1))^{\frac{1}{p_n}} z_n \right) \in S^*_{\Omega_{n,p_2,\dots,p_n}}(\beta, A, B),$$

then we prove that $f \in S^*(\beta, A, B)$. In fact $\hat{z} = (z_1, 0, \dots, 0) \in \Omega_{n, p_2, \dots, p_n}$ with $z_1 \neq 0$, from (2.1) and (2.2), we have

$$\left|\frac{1-B^2}{B-A}\left[i\tan\beta + (1-i\tan\beta)\frac{f(z_1)}{z_1f'(z_1)}\right] - \frac{1-AB}{B-A}\right| < 1$$
 completes the proof.

for $z_1 \in U$. This completes the proof.

In particular, if we take A = -1 and $B = 1 - 2\alpha$, in Theorem 2.4, then we can obtain the following corollary.

Corollary 2.2. Let $\alpha \in (0,1)$ and $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Suppose that the operator F(z) is defined by (1.3). If complex numbers a_j satisfy the condition $|a_j| \leq \frac{1-|1-2\alpha|\cos\beta}{8\alpha}$, j = 2, ..., n, then F is a spirallike mapping of type β and order α on the domain $\Omega_{n,p_2,...,p_n}$ if and only if fis a spirallike mapping of type β and order α on U.

if we take $A = -\alpha$ and $B = \alpha$, in Theorem 2.4, then we can obtain the following corollary.

Corollary 2.3. [24]. Let $\alpha \in (0,1)$ and $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Suppose that the operator F(z) is defined by (1.3). If complex numbers a_j satisfy the condition $|a_j| \leq \frac{\alpha}{1+\alpha} \cos \beta$, j = 2, ..., n, then F is a strongly spirallike mapping of type β and order α on the domain $\Omega_{n,p_2,...,p_n}$ if and only if f is a strongly spirallike mapping of type β and order α on U.

Theorem 2.4. Let $\lambda \in \mathbb{C}$ with Re $\lambda \leq 0$. Suppose that the operator F(z) is defined by (1.3). If the complex numbers a_j satisfies the condition $|a_j| \leq \frac{1}{4|1-\lambda|}, j = 2, 3, ..., n$, then F is an almost starlike function of complex order λ on $\Omega_{n,p_2,...,p_n}$ if and only if f is an almost starlike function of complex order λ on U.

Tamsui Oxford Journal of Informational and Mathematical Sciences 32(1) (2018) Aletheia University

Proof. By the definition of almost starlike mapping of complex order λ , we need to prove that the following inequality

$$Re\left\{(1-\lambda)\frac{2}{\rho(z)}\frac{\partial\rho}{\partial z}(z)J_{F}^{-1}(z)F(z)\right\} \ge -Re\ \lambda.$$
(2.8)

Similar to the theorem 2.4 we need only to prove that (2.8) holds for $\rho(z) = 1$ and $\hat{z} \neq 0$, according to the minimum modulus theorem for analytic functions. So, it is suffice to show that

$$Re\left\{(1-\lambda)\frac{2\partial\rho}{\partial z}(z)J_F^{-1}(z)F(z)\right\} \ge -Re\ \lambda, \qquad z\in\partial\Omega_{n,p_2,\dots,p_n},\ \hat{z}\neq 0.$$

In terms of (2.1) and (2.2), we obtain

$$(1-\lambda)\frac{2\partial\rho}{\partial z}(z)J_F^{-1}(z)F(z) + Re\ \lambda = \frac{G(z)}{2|z_1|^2 + \sum_{j=2}^n p_j|z_1|^{p_j}},$$

where

$$\begin{split} G(z) &= 2(1-\lambda)\bar{z}_1 \left(\frac{f(z_1)}{f'(z_1)} - \sum_{j=2}^n a_j(p_j-1)z_j^{p_j} \right) + Re \ \lambda \left(2|z_1|^2 + \sum_{j=2}^n p_j|z_1|^{p_j} \right) \\ &+ (1-\lambda)\sum_{j=2}^n p_j|z_j|^{p_j} \left(1 - \frac{f(z_1)f''(z_1)}{p_j(f'(z_1))^2} + \frac{f''(z_1)}{p_jf'(z_1)} \sum_{k=2}^n a_k(p_k-1)z_k^{p_k} \right) \\ &= 2(1-\lambda)|z_1|^2 \frac{f(z_1)}{z_1f'(z_1)} + (1-\lambda)\sum_{j=2}^n p_j|z_j|^{p_j} \left(1 - \frac{f(z_1)f''(z_1)}{p_j(f'(z_1))^2} \right) \\ &+ (1-\lambda)\sum_{j=2}^n a_j(p_j-1)z_k^{p_k} \left(\frac{f''(z_1)}{f'(z_1)} \sum_{k=2}^n |z_k|^{p_k} - 2\bar{z}_1 \right) \\ &+ Re \ \lambda \left(2|z_1|^2 + \sum_{j=2}^n p_j|z_j|^{p_j} \right). \end{split}$$

By making use of the equality $|z_1|^2 + \sum_{j=2}^n |z_j|^{p_j} = 1$, then we get

$$G(z) = 2|z_1|^2 \left((1-\lambda) \frac{f(z_1)}{z_1 f'(z_1)} + Re \ \lambda \right) + \sum_{j=2}^n p_j |z_j|^{p_j} \left[(1-\lambda) \left(1 - \frac{f(z_1) f''(z_1)}{p_j (f'(z_1))^2} \right) + Re \ \lambda \right] + (1-\lambda) \sum_{j=2}^n a_j (p_j - 1) z_j^{p_j} \left[\frac{f''(z_1)}{f'(z_1)} (1 - |z_1|^2) - 2\bar{z}_1 \right].$$
(2.9)

Let

$$p(z_1) = (1 - \lambda) \frac{f(z_1)}{z_1 f'(z_1)} + Re \ \lambda, \tag{2.10}$$

then

$$(1-\lambda)\frac{f''(z_1)f(z_1)}{(f'(z_1))^2} = 1-\lambda + Re\ \lambda - p(z_1) - z_1p'(z_1).$$
(2.11)

In addition, we know that then $p \in H(U)$. Notice that f is an almost starlike function of complex order λ on the unit disk U, and $\operatorname{Re} p(z_1) > 0$ for $z_1 \in U$, then by Lemma 1.9 we can obtain

$$|p'(z_1)| \le \frac{2Re \ p(z_1)}{1 - |z_1|^2}.$$

Substituting (2.10) and (2.11) into (2.9), we get

$$\begin{aligned} G(z) &= p(z_1) \left(2|z_1|^2 + \sum_{j=2}^n |z_j|^{p_j} \right) + (Re \ \lambda + 1 - \lambda) \sum_{j=2}^n (p_j - 1)|z_j|^{p_j} \\ &+ z_1 p'(z_1) \sum_{j=2}^n |z_j|^{p_j} + (1 - \lambda) \sum_{j=2}^n a_j (p_j - 1) z_j^{p_j} \left(\frac{f''(z_1)}{f'(z_1)} (1 - |z_1|^2) - 2\bar{z}_1 \right) \\ &= (1 + |z_1|^2) p(z_1) + (1 - |z_1|^2) z_1 p'(z_1) + (1 - iIm \ \lambda) \sum_{j=2}^n (p_j - 1)|z_j|^{p_j} \\ &+ (1 - \lambda) \sum_{j=2}^n a_j (p_j - 1) z_j^{p_j} \left(\frac{f''(z_1)}{f'(z_1)} (1 - |z_1|^2) - 2\bar{z}_1 \right) \end{aligned}$$

Hence

$$Re \ G(z) \ge (1+|z_1|^2)Re \ p(z_1) - |1-\lambda| \sum_{j=2}^n |a_j|(p_j-1)|z_j|^{p_j} \left| \frac{f''(z_1)}{f'(z_1)}(1-|z_1|^2) - 2\bar{z}_1 \right| - (1-|z_1|^2)|z_1p'(z_1)| + \sum_{j=2}^n (p_j-1)|z_j|^{p_j}$$

By Lemma 1.11 and 1.10, we can get that

$$Re \ G(z) \ge (1+|z_1|^2)Re \ p(z_1) - (1-|z_1|^2)\frac{2|z_1|Re \ p(z_1)}{1-|z_1|^2} + \sum_{j=2}^n (p_j-1)|z_j|^{p_j}$$
$$-4|1-\lambda|\sum_{j=2}^n |a_j|(p_j-1)|z_j|^{p_j}$$
$$= (1-|z_1|)^2Re \ p(z_1) + \sum_{j=2}^n (p_j-1)(1-4|a_j||1-\lambda|)|z_j|^{p_j}.$$

Therefore, when $|a_j| \leq \frac{1}{4|1-\lambda|}, \ j = 2, \dots, n$, we have

$$Re\left\{(1-\lambda)\frac{2\partial\rho}{\partial z}(z)J_F^{-1}(z)F(z)+\lambda\right\}\geq 0.$$

Hence F is an almost starlike mapping on $\Omega_{n,p_2,\ldots,p_n}$.

Conversely, if
$$F(z) = \left(f(z_1) + f'(z_1)\sum_{j=2}^n a_j z_j^{p_j}, (f'(z_1))^{\frac{1}{p_2}} z_2, \dots, (f'(z_1))^{\frac{1}{p_n}} z_n\right)$$
 is an al-
est starlike mapping on Ω , then we prove that f is an almost starlike mapping on

most starlike mapping on $\Omega_{n,p_2,\ldots,p_n}$, then we prove that f is an almost starlike mapping on U. In fact $z = (z_1, 0, \ldots, 0) \in \Omega_{n,p_2,\ldots,p_n}$ with $z_1 \neq 0$, from (2.1) and (2.2), we have

$$Re\left\{(1-\lambda)\frac{f(z_1)}{z_1f'(z_1)} + \lambda\right\} = \frac{2}{\rho(z)}Re\left\{(1-\lambda)\frac{\partial\rho}{\partial z}(z)J_F^{-1}(z)F(z) + \lambda\right\} \ge 0,$$

for $z_1 \in U$. This completes the proof.

Taking $\lambda = i \tan \beta$ in Theorem 2.4, we arrive the following corollary.

Corollary 2.5. Let $|a_j| \leq \frac{\cos \beta}{4}$ and F(z) is defined by (1.3). Then f is a spirallike function of type β on the unit disk U if and only if F(z) is a spirallike function of type β on $\Omega_{n,p_2,...,p_n}$. The result has been obtained by Rahrovi [24].

Set $\lambda = 0$ in Theorem 2.4, then we get the following result due to Wang and Gao [28]:

Corollary 2.6. Let $|a_j| \leq \frac{1}{4}$ and F(z) is defined by (1.3). Then f is a starlike function on the unit disk U if and only if F(z) is a starlike mapping on $\Omega_{n,p_2,\ldots,p_n}$.

Remark 2.7. When $a_2 = a_3 = \ldots = a_n = 0$, The result of corollary 2.6 has been obtained by Liu and Liu [15].

References

- C.M. Bălăeți and V.O. Nechita, Loewner chains and almost starlike mappings of complex order U, Carpathian J.Math. 26(2)(2010), 146-157.
- [2] S. X. FENG, T. S. LIU AND G. B. REN, The growth and covering theorems for several mappings on the unit ball in complex Banach spaces, Chin. Ann. Math., 28A(2)(2007), 215-230.
- [3] S. X. FENG AND K. P. LU, The growth theorem for almost starlike of order mappings on bounded starlike circular domains, Chin. Quart. J. Math., 15(2)(2000), 50-56.
- [4] S. X. FENG AND L. YU, The generalized Roper-Suffridge extension operator, Acta Math. Sci. Ser. B, 28(1)(2008), 63-80.
- S. X. FENG AND T. S. LIU, Modified Roper-Suffridge operator for some holomorphic mappings, Front. Math. Chin., 6(3)(2011), 411-426.
- [6] S. GONG, Convex and starlike mappings in several complex variables, New York, Kluwer Academic Publishers, (1998).
- [7] S. GONG AND T. S. LIU, On the Roper-Suffridge extension operator, J. Anal. Math., 88(2002), 397-404.
 [8] S. GONG AND T. S. LIU, The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl.,
- 284(2)(2003), 425-434.
 C. Charles and C. Kourn, *Heineland mannings consisted with the Barra Sufficience entersion and the second second*
- [9] I. GRAHAM AND G. KOHR, Univalent mappings associated with the Roper-Suffridge extension operator, J. Anal. Math., 81(2000), 331-342.
- [10] I. GRAHAM AND G. KOHR, Geometric function theory in one and higher dimensions, Marcel Dekker, New York, (2003).
- [11] H. HAMADA AND G. KOHR, Subordination chains and the growth theorem of spirallike mappings, Mathematica (Cluj), 42 (2000), 153-161.
- [12] G. KOHR, Loewner chains and a modification of the Roper-Suffridge extension operator, Mathematica (Cluj), 48(1)(2006), 41-48.
- [13] H. LIU, Class of starlike mappings, Its Extensions and Subclass in Several Complex Variables, Doctoral Thesis, University of Science and Technology of China, (1999).
- [14] T. S. LIU AND S. GONG, The family of starlike mappings. I, Chin. Annal. Math. Ser. A., 23(3)(2002), 273-282.
- [15] X. S. LIU AND T. S. LIU, The generalized Roper-Suffridge extension operator on a Reinhardt domain and the unit ball in a complex Hilbert space, Chin. Annal. Math. Ser. A., 26(5)(2005), 721-730.
- [16] T. S. LIU AND G. B. REN, The growth theorem for starlike mappings on bounded starlike circular domains, Chin. Annal. Math. Ser. B., 19(4)(1998), 401-408.
- [17] J. R. MUIR, A class of the Loewner chain preserving extention operators, Comput. Meth. func. Theo., 5(1)(2005), 237-251.
- [18] J. R. MUIR, A Modification of the Roper-Suffridge extension operator, J. Math. Anal. Appl., 337(2) (2008), 862-879.
- [19] J. R. MUIR AND T. J. SUFFRIDGE, Extreme points for convex mappings of B^n , J. Anal. Math., 98(2)(2006), 169-182.
- [20] J. R. MUIR AND T. J. SUFFRIDGE, A generalization of half-plane mappings to the ball in \mathbb{C}^n , Trans. Amer. Math. Sco., **359(4)**(2007), 1485-1498.
- [21] C. POMMERENKE, Univalent functions, Vandenhoek and Ruprecht, Göttingen, Germmany, (1975).
- [22] S. RAHROVI, A. EBADIAN AND S. SHAMS, G-Loewner chains and parabolic starlike mappings in several complex variables, General Math., 20(2-3)(2012). 59-73.
- [23] S. RAHROVI, A. EBADIAN AND S. SHAMS, Applications of the Roper-Suffridge Extension Operator to the Spirallike mappings of type β, Acta Uni. Apul., 37(2014), 171-183.
- [24] S. RAHROVI, The generalized Roper-Suffridge extension operator for some subclasses on Rienhardt domains, Submitted.
- [25] K. A. ROPER AND T. J. SUFFRIDGE, Convex mappings on the unit ball \mathbb{C}^n , J. Anal. Math., **65**(1995), 333-347.
- [26] T. J. Suffridge, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, *Lecture Notes in Math. 599, Springer-Verlag, New York*, (1976), 146-159.
- [27] J. WANG, Modified Roper-Suffridge for some subclasses of starlike mappings on Reinhardt domains, Act. Math. Sci., 33(6)(2013), 1627-1638.
- [28] J. WANG AND C. GAO, A new Roper-Suffridge extension operator on a Reinhardt domain, Abst. Appl. Anal., (2011), 1-14.
- [29] J. F. WANG AND T. S. LIU, A modified Roper-Suffridge extension operator for some holomorphic mappings, Chin. Annal. Math. Ser. A., 31(4)(2010), 487-496.
- [30] Y. C ZHU AND M. S. LIU, The generalized Roper-Suffridge extension operator on bounded complete Reinhardt domains, Sci. Chin. Ser. A., 50(12)(2007), 1781-17942.
- [31] Y. C ZHU AND M. S. LIU, The generalized Roper-Suffridge extension operator on a Reinhardt domain D_p, Taiwanese J. Math., 14(2)(2010), 359-372.

- [32] W. J. ZHANG AND T. S. LIU, On decomposition theorem of normalized biholomorphic convex mappings in Reinhardt domains, Sci. Chin., 46(1)(2003), 94-106.
- [33] Q. H. Xu and T. S. Liu, Loewner chains and a subclass of biholomorphic mappings, J. Math. Anal. Appl., 334(2007), 1096-1105.