APPLICATIONS OF THE ROPER-SUFFRIDGE EXTENSION OPERATOR FOR SOME SUBCLASSES OF STARLIKE MAPPINGS

S. Rahrovi

Department of Mathematics, Faculty of Basic Science, University of Bonab, Bonab, P.O. Box: 5551-761167, Bonab, Iran.

Received August, 8, 2016, Accepted June, 25, 2018

Abstract

Let $S_{\Omega_{n, p_{2}}, \ldots, p_{n}}^{*}(\beta, A, B)$ be some new subclasses of starlike mappings on Rienhardt domain $\Omega_{n, p_{2}, \ldots, p_{n}}$, where $-1 \leq A<B<1$ and $p_{j} \geq 1, j=2, \ldots, n$ be a positive integer. Some different condi-

tions for a_{j} are established such that these classes are preserved under the following modified Roper-Suffridge operator $F(z)=\left(f\left(z_{1}\right)+f^{\prime}\left(z_{1}\right) \sum_{j=2}^{n} a_{j} z_{j}^{p_{j}},\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{2}}} z_{2}, \ldots,\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{n}}} z_{n}\right)$, where f is a normalized locally biholomorphic function on the unit disc U. On the other hand, almost starlike mapping of complex order λ on Rienhardt domain $\Omega_{n, p_{2}, \ldots, p_{n}}$ is defined. A necessary and sufficient condition for a_{j} are established such that under which the above modified Roper-Suffridge operator preserves an almost starlike mapping of complex order λ. These results generalize the modified Roper-Suffridge extension operator from the unit ball to Reinhardt domains. Our result reduce to many well-known results.

1. Introduction and Preliminaries

Let n be a positive integer and \mathbb{C}^{n} denote the space of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ with the Euclidean inner product $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ and Euclidean norm $\|z\|=\langle z, z\rangle^{1 / 2}$, where $z, w \in \mathbb{C}^{n}$. The open ball $\left\{z \in \mathbb{C}^{n}:\|z\|<r\right\}$ is denoted by B_{r}^{n} and the unit ball B_{1}^{n} by B^{n}. The closed ball $\left\{z \in \mathbb{C}^{n}:\|z\| \leq r\right\}$ is denoted by \bar{B}_{r}^{n}, and the unit sphere is denoted by $\partial B^{n}=\left\{z \in \mathbb{C}^{n}:\|z\|=1\right\}$. In the case of one complex variable, B^{1} is denoted by U. For $n \geq 2$, let $\hat{z}=\left(z_{2}, \ldots, z_{n}\right)$ so that $z=\left(z_{1}, \hat{z}\right) \in \mathbb{C}^{n}$.

Let $L\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ denote the space of complex linear mappings from \mathbb{C}^{n} into \mathbb{C}^{m} with the standard operator norm,

$$
\|A\|=\sup \{\|A(z)\|:\|z\|=1\}
$$

and let I_{n} be the identity in $L\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$. Let Ω be a domain in \mathbb{C}^{n} and $H(\Omega)$ be the set of holomorphic mappings from Ω into \mathbb{C}^{n}. A mapping $f \in H(\Omega)$ is called normalized if $f(0)=0$ and $J_{f}(0)=I_{n}$, where $J_{f}(0)$ is the complex Jacobian matrix of f at the origin. A mapping $f \in H(\Omega)$ is said to be locally biholomorphic if $\operatorname{det} J_{f}(z) \neq 0$ for every $z \in \Omega$. Let $L S(\Omega)$ be the set of normalized locally biholomorphic mappings on Ω and let $S(\Omega)$ denote the set of normalized biholomorphic mappings on Ω. In the case of one complex variable, the set $S\left(B^{1}\right)$ is denoted by S and $L S\left(B^{1}\right)$ is denoted by $L S$. A mapping $f \in S(\Omega)$ is called starlike (respectively convex) if its image is a starlike domain with respect to origin (respectively convex domain). The class of starlike (respectively convex) mappings on Ω will be denoted by $S^{*}(\Omega)$ (respectively $K(\Omega)$). In the case of one complex variable $S^{*}\left(B^{1}\right)$ (respectively $K\left(B^{1}\right)$) is denote by S^{*} (respectively K). A normalized mapping $f \in H(\Omega)$ is said to be ε starlike if there exists a positive number $\varepsilon, 0 \leq \varepsilon \leq 1$, such that $f\left(B^{n}\right)$ is starlike with respect to every point in $\varepsilon f\left(B^{n}\right)$.

A domain Ω is called a circular domain if $e^{i \theta} z \in \Omega$ holds for any $z \in \Omega$ and $\theta \in \mathbb{R}$. A domain $\Omega \subset \mathbb{C}^{n}$ is said to be a complete Reinhardt if $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \Omega$ implies that $\left(e^{i \theta_{1}} z_{1}, e^{i \theta_{2}} z_{2}, \ldots, e^{i \theta_{n}} z_{n}\right) \in \Omega$ for all $\theta_{j} \in \mathbb{R}, j=1,2, \ldots, n$. The Minkowski functional $\rho(z)$ of a bounded circular convex domain Ω in \mathbb{C}^{n} is defined as

$$
\rho(z)=\inf \left\{t>0, \frac{z}{t} \in \Omega\right\}, \quad z \in \mathbb{C}^{n} .
$$

[^0]If Ω is a bounded circular convex domain, then Ω is a Banach space in \mathbb{C}^{n} with respect to this norm, and $\Omega=\left\{z \in \mathbb{C}^{n}: \rho(z)<1\right\}$. Also, The Minkowski functional $\rho(z)$ is C^{1} on $\bar{\Omega}$ except for a lower dimensional manifold. Moreover, the Minkowski functional $\rho(z)$ has the following properties of (see [16]):

$$
\begin{align*}
& \frac{\partial \rho}{\partial z}(\lambda z)=\frac{\partial \rho}{\partial z}(z), \quad \lambda \in[0,+\infty), \quad z \in \Omega \backslash\{0\} \\
& \frac{\partial \rho}{\partial z}\left(e^{i \theta} z\right)=e^{-i \theta} \frac{\partial \rho}{\partial z}(z), \quad \theta \in \mathbb{R}, \quad z \in \mathbb{C}^{n} \backslash\{0\} . \tag{1.1}
\end{align*}
$$

Definition 1.1. [31] Suppose that Ω is a bounded convex circular domain which contains the origin in \mathbb{C}^{n}. Its Minkowski functional $\rho(z)$ is C^{1} except for a lower-dimensional manifold. Let f be a normalized locally biholomorphic mapping on Ω. If $\alpha \in(0,1), \beta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, and

$$
\left|e^{-i \beta} \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_{f}^{-1}(z) f(z)-\left(\frac{\cos \beta}{2 \alpha}-i \sin \beta\right)\right|<\frac{\cos \beta}{2 \alpha}, \quad z \in \Omega \backslash\{0\}
$$

then f is said to be spirallike mapping of type β and order α on Ω.
Definition 1.2. [2] Suppose that Ω is a bounded convex circular domain which contains the origin in \mathbb{C}^{n}. Its Minkowski functional $\rho(z)$ is C^{1} except for a lower-dimensional manifold. Let f be a normalized locally biholomorphic mapping on Ω. If $\alpha \in(0,1), \beta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, and

$$
\left|i \tan \beta+(1-i \tan \beta) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_{f}^{-1}(z) f(z)-\frac{1+\alpha^{2}}{1-\alpha^{2}}\right| \leq \frac{2 \alpha}{1-\alpha^{2}}, \quad z \in \Omega \backslash\{0\}
$$

then f is said to be strongly spirallike mapping of type β and order α on Ω.
Wang [27] introduced the following classes of starlike mappings from the unified perspective which contains the above two definitions.
Definition 1.3. [27] Suppose that Ω is a bounded complete circular domain which contains the origin in \mathbb{C}^{n}. Its Minkowski functional $\rho(z)$ is C^{1} except for a lower-dimensional manifold. Let f be a normalized locally biholomorphic mapping on Ω. If $-1 \leq A<B<1$, $\beta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, and

$$
\begin{equation*}
\left|i \tan \beta+(1-i \tan \beta) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_{f}^{-1}(z) f(z)-\frac{1-A B}{1-B^{2}}\right|<\frac{B-A}{1-B^{2}}, \quad z \in \Omega \backslash\{0\} \tag{1.2}
\end{equation*}
$$

then we say that $f \in S_{\Omega}^{*}(\beta, A, B)$.
When $\Omega=U$, the inequality (1.2) becomes

$$
\left|i \tan \beta+(1-i \tan \beta) \frac{f(z)}{z f^{\prime}(z)}-\frac{1-A B}{1-B^{2}}\right| \leq \frac{B-A}{1-B^{2}}, \quad z \in U
$$

Remark 1.4. When $A=-1, B=1-2 \alpha$, Definition 1.3 reduces to Definition 1.1.
When $A=-\alpha, B=\alpha$, Definition 1.3 reduces to Definition 1.2.
The geometric property of (1.2) shows that the image of mapped by the mapping

$$
i \tan \beta+(1-i \tan \beta) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_{f}^{-1}(z) f(z)
$$

is an open disk with diameter end points $\frac{1-A}{1-B}$ and $\frac{1+A}{1+B}$. Hence, when $B \rightarrow 1^{-}$, the image of Ω reduces to the half plan $\left\{z: R e z \geq \frac{1+A}{2}\right\}$.
Definition 1.5. [26] Suppose Ω is a bounded convex circular domain which contains the origin in \mathbb{C}^{n}, and let $A \in L\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$ be such that $\operatorname{Re}\langle A(z), z\rangle>0$. A normalized biholomorphic mapping f on Ω is spirallike with respect to A if $e^{-t A} f(\Omega) \subset \Omega$ for all $t>0$, where

$$
e^{-t A}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} t^{k} A^{k}
$$

Note that any spirallike mapping with respect to a linear operator A such that $\operatorname{Re}\langle A(z), z\rangle>$ 0 for $z \in \mathbb{C}^{n} \backslash\{0\}$ is biholomorphic [26].

Remark 1.6. If $A=e^{-i \beta} I_{n}, \beta \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, in Definition 1.5, we obtain the class of spirallike mappings of type β, studied by Hamada and Kohr [11]. Hence $f \in S^{*}(\Omega)$ if and only if f is spirallike mappings of type zero.

In the following we introduce the almost starlike mapping of complex order λ on Rienhardt domain Ω.

Definition 1.7. Suppose that Ω is a bounded complete circular domain in \mathbb{C}^{n}. Its Minkowski functional $\rho(z)$ is C^{1} except for a lower-dimensional manifold. Let $\lambda \in \mathbb{C}$, with Re $\lambda \leq 0$. A normalized locally biholomorphic mapping $f \in H(\Omega)$ is said to be an almost starlike mapping of complex order λ if

$$
\operatorname{Re}\left((1-\gamma) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z} J_{f}^{-1}(z) f(z)\right)>-\operatorname{Re} \lambda\|z\|^{2}, \quad z \in \Omega \backslash\{0\}
$$

It is easy to see that in the case of one variable, the above inequality reduces to the following

$$
\left.\operatorname{Re}(1-\lambda) \frac{f(z)}{z f^{\prime}(z)}\right)>-\operatorname{Re} \lambda, \quad z \in U
$$

The interest of the study of almost starlikeness of complex order λ arises from the fact that every almost starlike mapping f of complex order λ is also spirallike with respect to the operator $A=(1-\lambda) I_{n}$, and hence f is biholomorphic on Ω (see [1]).

Remark 1.8. If we take $\lambda=i \tan \beta$, in Definition 1.7, where $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we obtain the usual notion of spirallike of type β and when $\lambda=0$, we obtain the usual notion of starlike (see [33]).

In 1995, Roper and Suffridge [25] introduced an extension operator which gives a way of extending a locally biholomorphic function on the unit disc U in \mathbb{C} to a locally biholomorphic mapping of B^{n} into \mathbb{C}^{n}. For fixed $n \geq 2$, the Roper-Suffridge extension operator (see [10] and [25]) is defined as follows

$$
\left[\Phi_{n}(f)\right](z)=\left(f\left(z_{1}\right), \sqrt{f^{\prime}\left(z_{1}\right)} \hat{z}\right), \quad z \in B^{n}
$$

where f is a normalized biholomorphic mapping on the unit disc U in $\mathbb{C}, z=\left(z_{1}, \hat{z}\right)$ belonging to the unit ball B^{n} in \mathbb{C}^{n} and the branch of the power function is chosen so that $\left.\sqrt{f^{\prime}\left(z_{1}\right)}\right|_{z_{1}=0}=1$.

The following results illustrate the important and usefulness of the Roper-Suffridge extension operator

$$
\Phi_{n}(K) \subseteq K\left(B^{n}\right), \quad \Phi_{n}\left(S^{*}\right) \subseteq S^{*}\left(B^{n}\right)
$$

The first was proved by Roper and Suffridge when they introduced their operator [25], while the second result was given by Graham and Kohr [9]. Until now, it is difficult to construct the concrete convex mappings, starlike mappings on B^{n}. By making use of the Roper-Suffridge extension operator, we may easily give many concrete examples about these mappings. This is one important reason why people are interested in this extension operator. A good treatment of further applications of the Roper-Suffridge extension operator can be found in the recent book by Graham and Kohr [10].

In 2005, Muir [18] modified the Roper- Suffridge extension operator as follows

$$
\left[\Phi_{n, Q}(f)\right](z)=\left(f\left(z_{1}\right)+f^{\prime}\left(z_{1}\right) Q(\hat{z}), \sqrt{f^{\prime}\left(z_{1}\right)} \hat{z}\right), \quad z=\left(z_{1}, \hat{z}\right) \in B^{n}
$$

where $Q(\hat{z})$ is a homogeneous polynomial of degree 2 with respect to \hat{z}, and f, z_{1} and \hat{z} are defined as above. He proved that this operator preserves starlikeness and convexity if and only if $\|Q\| \leq 1 / 4$ and $\|Q\| \leq 1 / 2$, respectively. Also Rahrovi et all [22] proved that this operator preserves spirallike mapping of type β if and only if $\|Q\| \leq 1 / 4$. The modified operator $\Phi_{n, Q}$ plays a key role to study the extreme points of convex mappings on B^{n} (see [19], [20]). Later, Kohr [12], Muir [17] and Rahrovi et all [23] used the Loewner chain
to study the modified Roper-Suffridge extension operator. Recently, the modified RoperSuffridge extension operator on the unit ball is also studied by Wang and Liu [29] and Feng and $\mathrm{Yu}[5]$.

On the other hand, people also considered the generalized Roper-Suffridge extension operator on the general Reinhardt domains. For example, Gong and Liu [7], [14] introduced the definition of ε-starlike mappings and obtained that the operator

$$
\left[\Phi_{n, \frac{1}{p}}(f)\right](z)=\left(f\left(z_{1}\right),\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p}} \hat{z}\right)
$$

maps the ε-starlike functions on U to the ε-starlike mappings on the Reinhardt domain $\Omega_{n, p}=\left\{z \in \mathbb{C}^{n}:\left|z_{1}\right|^{2}+\sum_{j=2}^{n}\left|z_{j}\right|^{p}<1\right\}$, where $p \geq 1$, and f, z_{1} and \hat{z} are defined as above. When $\varepsilon=0$ and $\varepsilon=1, \Phi_{n, \frac{1}{p}}$ maps the starlike function and convex function on U to the starlike mapping and the convex mapping on $\Omega_{n, p}$, respectively. Furthermore, Gong and Liu [8] proved that the operator

$$
\left[\Phi_{n, \frac{1}{p_{2}}, \ldots, \frac{1}{p_{n}}}(f)\right](z)=\left(f\left(z_{1}\right),\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{2}}} z_{2}, \ldots,\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{n}}} z_{n}\right),
$$

maps the ε-starlike functions on U to the ε-starlike mappings on the Reinhardt domain $\Omega_{n, p_{2}, \ldots, p_{n}}=\left\{z \in \mathbb{C}^{n}:\left|z_{1}\right|^{2}+\sum_{j=2}^{n}\left|z_{j}\right|^{p_{j}}<1\right\}$, where $p_{j} \geq 1$, and f, z_{1} and \hat{z} are defined as above. Also, Liu and Liu [15] proved that this operator preserves starlikeness of order α on the domain $\Omega_{n, p_{2}, \ldots, p_{n}}$. On the other hand, Feng and Liu [5] proved that this operator preserves almost starlikeness of order α on the domain $\Omega_{n, p_{2}, \ldots, p_{n}}$.

In contrast to the modified Roper-Suffridge extension operator on the unit ball, it is natural to ask if we can modify the Roper-Suffridge extension operator on the Reinhardt domain.

In 2011, Wang and Gao [28] introduced the following extension operator:

$$
\begin{equation*}
F(z)=\left(f\left(z_{1}\right)+f^{\prime}\left(z_{1}\right) \sum_{j=2}^{n} a_{j} z_{j}^{p_{j}},\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{2}}} z_{2}, \ldots,\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{n}}} z_{n}\right) \tag{1.3}
\end{equation*}
$$

on the Reinhardt domain $\Omega_{n, p_{2}, \ldots, p_{n}}$, where p_{j} are positive integer and $p_{j} \geq 1$, the branch are chosen such that $\left.\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{j}}}\right|_{z_{1}=0}=1, j=2, \ldots, n$. For $\left|a_{j}\right| \leq \frac{(1-\alpha)}{4}, j=2, \cdots, n$, they proved that this operator preserves almost starlike function of order α and on the Renihardt domain $\Omega_{n, p_{2}, \cdots, p_{n}}$. In this paper, we will give some necessary and sufficient conditions for a_{j} under which the above Roper-Suffridge operator preserves the classes $S_{\Omega_{n, p_{2}, \ldots, p_{n}}^{*}}^{*}(\beta, A, B)$. Also, under special condition for $a_{j}, j=2, \ldots, n$, we will show that f is an almost starlike function of complex order λ on U if and only if F is an almost starlike function of complex order λ on $\Omega_{n, p_{1}, \cdots, p_{n}}$.

In order to prove the main results, we need the following lemmas.
Lemma 1.9. [10]. (Schwarz-Pick Lemma) Suppose that $g \in H(U)$ satisfies $g(U) \subset U$, then

$$
\left|g^{\prime}(\xi)\right| \leq \frac{1-|g(\xi)|^{2}}{1-|\xi|^{2}}
$$

for each $\xi \in U$.
Lemma 1.10. [21]. Let f be a normalized biholomorphic function on U, then

$$
\left|\left(1-|z|^{2}\right) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-2 \bar{z}\right| \leq 4, \quad z \in U
$$

Lemma 1.11. [21]. Let p be a holomorphic function on U. If $\operatorname{Rep}(z)>0$ and $p(0)>0$, then

$$
\left|p^{\prime}(z)\right| \leq \frac{2 \operatorname{Rep}(z)}{1-|z|^{2}}
$$

Lemma 1.12. [32]. If $\rho(z)$ is a Minkowski function of the domain $\Omega_{n, p_{2}, \ldots, p_{n}}, z \neq 0$, then

$$
\begin{gathered}
\frac{\partial \rho}{\partial z_{1}}(z)=\frac{\bar{z}_{1}}{\rho(z)\left[2\left|\frac{z_{1}}{\rho(z)}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|\frac{z_{j}}{\rho(z)}\right|^{p_{j}}\right]} \\
\frac{\partial \rho}{\partial z_{j}}(z)=\frac{p_{j} \bar{z}_{j}\left|\frac{z_{j}}{\rho(z)}\right|^{p_{j}-2}}{2 \rho(z)\left[2\left|\frac{z_{1}}{\rho(z)}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|\frac{z_{j}}{\rho(z)}\right|^{p_{j}}\right]}, \quad j=2, \ldots, n .
\end{gathered}
$$

2. Main Results

We begin this section with the main results of this paper.
Theorem 2.1. Let $\alpha \in(0,1)$ and $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Suppose that the operator $F(z)$ is defined by (1.3). If complex numbers a_{j} satisfy the condition $\left|a_{j}\right| \leq \frac{(B-A)(1-|B|) \cos \beta}{4\left(1-B^{2}\right)}, j=2, \ldots, n$, then $F \in S_{\Omega_{n, p_{2}, \ldots, p_{n}}^{*}}^{*}(\beta, A, B)$ if and only if $f \in S_{U}^{*}(\beta, A, B)=S^{*}(\beta, A, B)$.
Proof. By the definition 1.3, we only need to prove that the following inequality

$$
\left|\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)\right]-\frac{1-A B}{B-A}\right|<1
$$

holds for all $z \in \Omega_{n, p_{2}, \ldots, p_{n}}$ and $z \neq 0$ and $\left|a_{j}\right| \leq \frac{(B-A)(1-|B|) \cos \beta}{4\left(1-B^{2}\right)}$. For $z=\left(z_{1}, \hat{z}\right) \in B^{n}$, we have two cases

First, if $\hat{z}=0$, then we can get the conclusion easily.
Second, suppose $\hat{z} \neq 0$. Obviously, the mapping F is holomorphic at every point $z=$ $\left(z_{1}, \hat{z}\right) \in \bar{\Omega}_{n, p_{2}, \ldots, p_{n}}$. Let us write $z=\lambda u=|\lambda| e^{i \theta} u$ for $u \in \partial \Omega_{n, p_{2}, \ldots, p_{n}}$ and $\lambda \in \bar{U} \backslash\{0\}$, then from we have

$$
\begin{aligned}
& \left|\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)\right]-\frac{1-A B}{B-A}\right|<1 \\
\Leftrightarrow & \left|\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2}{\rho\left(|\lambda| e^{i \theta} u\right)} \frac{\partial \rho}{\partial z}\left(|\lambda| e^{i \theta} u\right) J_{F}^{-1}\left(|\lambda| e^{i \theta} u\right) F\left(|\lambda| e^{i \theta} u\right)\right]-\frac{1-A B}{B-A}\right|<1 \\
\Leftrightarrow & \left|\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2}{|\lambda|} \frac{e^{-i \theta} \partial \rho}{\partial z}(u) J_{F}^{-1}\left(|\lambda| e^{i \theta} u\right) F\left(|\lambda| e^{i \theta} u\right)\right]-\frac{1-A B}{B-A}\right|<1 \\
\Leftrightarrow & \left|\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2}{\lambda} \frac{\partial \rho}{\partial z}(u) J_{F}^{-1}(\lambda u) F(\lambda u)\right]-\frac{1-A B}{B-A}\right|<1 .
\end{aligned}
$$

The expression

$$
\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2}{\lambda} \frac{\partial \rho}{\partial z}(u) J_{F}^{-1}(\lambda u) F(\lambda u)\right]-\frac{1-A B}{B-A}
$$

is holomorphic with respect to λ. Thus, the maximum modules principle for holomorphic functions yield that it attains its maximum on $|\lambda|=1$. Therefor we need only to prove for all $z=\left(z_{1}, \hat{z}\right) \in \partial \Omega_{n, p_{2}, \ldots, p_{n}}$ such that $\hat{z} \neq 0$. Hence, $\rho(z)=1$, and it is suffice to show that

$$
\left|\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2 \partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)\right]-\frac{1-A B}{B-A}\right|<1
$$

holds for $z \in \partial \Omega_{n, p_{2}, \ldots, p_{n}}$ and $\hat{z} \neq 0$.
Since

$$
F(z)=\left(f\left(z_{1}\right)+f^{\prime}\left(z_{1}\right) \sum_{j=2}^{n} a_{j} z_{j}^{p_{j}},\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{2}}} z_{2}, \ldots,\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{n}}} z_{n}\right)
$$

we have

$$
J_{F}(z)=\left[\begin{array}{cccc}
f^{\prime}\left(z_{1}\right)+f^{\prime \prime}\left(z_{1}\right) \sum_{j=2}^{n} a_{j} z_{j}^{p_{j}} & a_{2} p_{2} f^{\prime}\left(z_{1}\right) z_{2}^{p_{2}-1} & \cdots & a_{n} p_{n} f^{\prime}\left(z_{1}\right) z_{n}^{p_{n}-1} \\
a_{2} & \left(f^{\prime}\left(z_{1}\right)\right)^{1 / p_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & 0 & \cdots & \left(f^{\prime}\left(z_{1}\right)\right)^{1 / p_{n}}
\end{array}\right]
$$

where

$$
a_{j}=\frac{1}{p_{j}}\left(f^{\prime}\left(z_{1}\right)\right)^{\left(1 / p_{j}\right)-1} f^{\prime \prime}\left(z_{1}\right) z_{j}, \quad j=2, \ldots, n
$$

Suppose that $J_{F}^{-1}(z) F(z)=A=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, some simple computation shows that

$$
\begin{gathered}
x_{1}=\frac{f\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}-\sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}, \\
x_{j}=\left(1-\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{p_{j}\left(f^{\prime}\left(z_{1}\right)\right)^{2}}+\frac{f^{\prime \prime}\left(z_{1}\right)}{p_{j} f^{\prime}\left(z_{1}\right)} \sum_{k=2}^{n} a_{k}\left(p_{k}-1\right) z_{k}^{p_{k}}\right) z_{j}, \quad j=2, \ldots, n .
\end{gathered}
$$

Therefore we get

$$
\begin{align*}
& \frac{\partial \rho(z)}{\partial z} J_{F}^{-1}(z) F(z)=\frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)} \frac{\partial \rho(z)}{\partial z_{1}} z_{1}-\sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}} \frac{\partial \rho(z)}{\partial z_{1}} \\
& +\sum_{j=2}^{n}\left(1-\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{p_{j}\left(f^{\prime}\left(z_{1}\right)\right)^{2}}+\frac{f^{\prime \prime}\left(z_{1}\right)}{p_{j} f^{\prime}\left(z_{1}\right)} \sum_{k=2}^{n} a_{k}\left(p_{k}-1\right) z_{k}^{p_{k}}\right) \frac{\partial \rho(z)}{\partial z_{j}} z_{j} . \tag{2.1}
\end{align*}
$$

Now, from Lemma 1.12, we obtain

$$
\begin{gather*}
\frac{\partial \rho}{\partial z_{1}}(z)=\frac{\bar{z}_{1}}{\rho(z)\left[2\left|z_{1} / \rho(z)\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j} / \rho(z)\right|^{p_{j}}\right]}=\frac{\bar{z}_{1}}{2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}}, \\
\frac{\partial \rho}{\partial z_{j}}(z)=\frac{p_{j} \bar{z}_{j}\left|z_{j} / \rho(z)\right|^{p_{j}-2}}{2 \rho(z)\left[2\left|z_{1} / \rho(z)\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j} / \rho(z)\right|^{p_{j}}\right]}=\frac{p_{j} \bar{z}_{j}\left|z_{j}\right|^{p_{j}-2}}{2\left[2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\right]} . \tag{2.2}
\end{gather*}
$$

In terms of (2.1) and (2.2), we obtain

$$
\begin{equation*}
\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2 \partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)\right]-\frac{1-A B}{B-A}=\frac{G(z)}{2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& G(z)= \frac{1-}{B-A}\left[i \tan \beta\left(2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\right)+(1-i \tan \beta)\left[2\left|z_{1}\right|^{2} \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}\right.\right. \\
&\left.\left.+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\left(1-\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{p_{j}\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right)+\sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}\left(\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\left(1-\left|z_{1}\right|^{2}\right)-2 \bar{z}_{1}\right)\right]\right] \\
&-\frac{1-A B}{B-A}\left(2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\right) \\
&=2\left|z_{1}\right|^{2}\left[\frac{1-B^{2}}{B-A} i \tan \beta+\frac{1-B^{2}}{B-A}(1-i \tan \beta) \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}-\frac{1-A B}{B-A}\right] \\
&+\frac{1-B^{2}}{B-A}(1-i \tan \beta) \sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}\left(\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\left(1-\left|z_{1}\right|^{2}\right)-2 \bar{z}_{1}\right) \\
&+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\left[\frac{1-B^{2}}{B-A}(1-i \tan \beta)\left(1-\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{p_{j}\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right)+\frac{1-B^{2}}{B-A} i \tan \beta-\frac{1-A B}{B-A}\right]
\end{aligned}
$$

Let

$$
\begin{equation*}
h\left(z_{1}\right)=\frac{1-B^{2}}{B-A} i \tan \beta+\frac{1-B^{2}}{B-A}(1-i \tan \beta) \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}-\frac{1-A B}{B-A} . \tag{2.5}
\end{equation*}
$$

Notice that $h \in \in S_{\Omega_{n, p_{2}, \ldots, p_{n}}^{*}}^{*}(\beta, A, B)$, hence $\left|h\left(z_{1}\right)\right|<1$. By Schwarz-Pick Lemma, we can obtain that

$$
\left|h^{\prime}\left(z_{1}\right)\right| \leq \frac{1-\left|h\left(z_{1}\right)\right|^{2}}{1-\left|z_{1}\right|^{2}}
$$

On the other hand, by some calculations, we can get

$$
\begin{equation*}
\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)^{2}}=\frac{B(A-B)-(B-A) h\left(z_{1}\right)-(B-A) z_{1} h^{\prime}\left(z_{1}\right)}{\left(1-B^{2}\right)(1-i \tan \beta)} . \tag{2.6}
\end{equation*}
$$

Substituting (2.5) and (2.6) into (2.4), we get

$$
\begin{aligned}
& G(z)= 2\left|z_{1}\right|^{2} h\left(z_{1}\right)+\frac{1-B^{2}}{B-A}(1-i \tan \beta) \sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}\left(\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\left(1-\left|z_{1}\right|^{2}\right)-2 \bar{z}_{1}\right) \\
&+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\left[\frac{1-B^{2}}{B-A}(1-i \tan \beta)\right. \\
&-\frac{1-B^{2}}{B-A}(1-i \tan \beta) \frac{1}{p_{j}} \frac{B(A-B)-(B-A) h\left(z_{1}\right)-(B-A) z_{1} h\left(z_{1}\right)}{\left(1-B^{2}\right)(1-i \tan \beta)} \\
&\left.+\frac{1-B^{2}}{B-A} i \tan \beta-\frac{1-A B}{B-A}\right] \\
&=2\left|z_{1}\right|^{2} h\left(z_{1}\right)+\frac{1-B^{2}}{B-A}(1-i \tan \beta) \sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}\left(\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\left(1-\left|z_{1}\right|^{2}\right)-2 \bar{z}_{1}\right) \\
&+h\left(z_{1}\right) \sum_{j=2}^{n}\left|z_{j}\right|^{p_{j}}+z_{1} h^{\prime}\left(z_{1}\right) \sum_{j=2}^{n}\left|z_{j}\right|^{p_{j}}+\sum_{j=2}^{n} p_{j}\left(\frac{1-B^{2}}{B-A}+\frac{B}{p_{j}}-\frac{1-B^{2}}{B-A}\right)\left|z_{j}\right|^{p_{j}}
\end{aligned}
$$

By Lemma 1.9 and 1.10, we can get that

$$
\begin{aligned}
|G(z)| \leq & \left(1+\left|z_{1}\right|^{2}\right)\left|h\left(z_{1}\right)\right|+\sum_{j=2}^{n}|B|\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}}+\left|z_{1}\right| \frac{1-\left|h\left(z_{1}\right)\right|^{2}}{1-\left|z_{1}\right|^{2}}\left(1-\left|z_{1}\right|^{2}\right) \\
& +\frac{4}{\cos \beta} \frac{1-B^{2}}{B-A} \sum_{j=2}^{n}\left|a_{j}\right|\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}} \\
= & \left(1+\left|z_{1}\right|^{2}\right)\left|h\left(z_{1}\right)\right|+\left|z_{1}\right|\left(1-\left|h\left(z_{1}\right)\right|^{2}\right)+\sum_{j=2}^{n}\left(|B|+\frac{4}{\cos \beta} \frac{1-B^{2}}{B-A}\left|a_{j}\right|\right)\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}} \\
\leq & \left(1+\left|z_{1}\right|^{2}\right)\left(\left|h\left(z_{1}\right)\right|-1\right)+\left(1+\left|z_{1}\right|^{2}\right)+2\left|z_{1}\right|\left(1-\left|h\left(z_{1}\right)\right|\right) \\
& +\sum_{j=2}^{n}\left(|B|+\frac{4}{\cos \beta} \frac{1-B^{2}}{B-A}\left|a_{j}\right|\right)\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}} \\
= & \left(1+\left|z_{1}\right|^{2}\right)+\left(1-\left|z_{1}\right|\right)^{2}\left(\left|h\left(z_{1}\right)\right|-1\right)+\sum_{j=2}^{n}\left(|B|+\frac{4}{\cos \beta} \frac{1-B^{2}}{B-A}\left|a_{j}\right|\right)\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}}
\end{aligned}
$$

Therefore, when $\left|a_{j}\right| \leq \frac{(B-A)(1-|B|) \cos \beta}{4\left(1-B^{2}\right)}, j=2, \ldots, n$, we have

$$
\begin{equation*}
|G(z)| \leq 1+\left|z_{1}\right|^{2}+\sum_{j=2}^{n}\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}}=2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}} \tag{2.7}
\end{equation*}
$$

In the terms of (2.3) and (2.7), we obtain

$$
\left|\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)\right]-\frac{1-A B}{B-A}\right|<1
$$

Hence $F(z) \in S_{\Omega_{n, p_{2}, \ldots, p_{n}}^{*}}^{*}(\beta, A, B)$.
Conversely, if

$$
F(z)=\left(f\left(z_{1}\right)+f^{\prime}\left(z_{1}\right) \sum_{j=2}^{n} a_{j} z_{j}^{p_{j}},\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{2}}} z_{2}, \ldots,\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{n}}} z_{n}\right) \in S_{\Omega_{n, p_{2}, \ldots, p_{n}}^{*}}(\beta, A, B)
$$

then we prove that $f \in S^{*}(\beta, A, B)$. In fact $\hat{z}=\left(z_{1}, 0, \ldots, 0\right) \in \Omega_{n, p_{2}, \ldots, p_{n}}$ with $z_{1} \neq 0$, from (2.1) and (2.2), we have

$$
\left|\frac{1-B^{2}}{B-A}\left[i \tan \beta+(1-i \tan \beta) \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}\right]-\frac{1-A B}{B-A}\right|<1
$$

for $z_{1} \in U$. This completes the proof.
In particular, if we take $A=-1$ and $B=1-2 \alpha$, in Theorem 2.4, then we can obtain the following corollary.

Corollary 2.2. Let $\alpha \in(0,1)$ and $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Suppose that the operator $F(z)$ is defined by (1.3). If complex numbers a_{j} satisfy the condition $\left|a_{j}\right| \leq \frac{1-|1-2 \alpha| \cos \beta}{8 \alpha}, j=2, \ldots, n$, then F is a spirallike mapping of type β and order α on the domain $\Omega_{n, p_{2}, \ldots, p_{n}}$ if and only if f is a spirallike mapping of type β and order α on U.
if we take $A=-\alpha$ and $B=\alpha$, in Theorem 2.4, then we can obtain the following corollary.
Corollary 2.3. [24]. Let $\alpha \in(0,1)$ and $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Suppose that the operator $F(z)$ is defined by (1.3). If complex numbers a_{j} satisfy the condition $\left|a_{j}\right| \leq \frac{\alpha}{1+\alpha} \cos \beta, j=2, \ldots, n$, then F is a strongly spirallike mapping of type β and order α on the domain $\Omega_{n, p_{2}, \ldots, p_{n}}$ if and only if f is a strongly spirallike mapping of type β and order α on U.
Theorem 2.4. Let $\lambda \in \mathbb{C}$ with Re $\lambda \leq 0$. Suppose that the operator $F(z)$ is defined by (1.3). If the complex numbers a_{j} satisfies the condition $\left|a_{j}\right| \leq \frac{1}{4|1-\lambda|}, j=2,3, \ldots, n$, then F is an almost starlike function of complex order λ on $\Omega_{n, p_{2}, \ldots, p_{n}}$ if and only if f is an almost starlike function of complex order λ on U.

Proof. By the definition of almost starlike mapping of complex order λ, we need to prove that the following inequality

$$
\begin{equation*}
R e\left\{(1-\lambda) \frac{2}{\rho(z)} \frac{\partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)\right\} \geq-\operatorname{Re} \lambda \tag{2.8}
\end{equation*}
$$

Similar to the theorem 2.4 we need only to prove that (2.8) holds for $\rho(z)=1$ and $\hat{z} \neq 0$, according to the minimum modulus theorem for analytic functions. So, it is suffice to show that

$$
\operatorname{Re}\left\{(1-\lambda) \frac{2 \partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)\right\} \geq-\operatorname{Re} \lambda, \quad z \in \partial \Omega_{n, p_{2}, \ldots, p_{n}}, \hat{z} \neq 0
$$

In terms of (2.1) and (2.2), we obtain

$$
(1-\lambda) \frac{2 \partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)+\operatorname{Re} \lambda=\frac{G(z)}{2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{1}\right|^{p_{j}}}
$$

where

$$
\begin{aligned}
G(z)= & 2(1-\lambda) \bar{z}_{1}\left(\frac{f\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}-\sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}\right)+\operatorname{Re} \lambda\left(2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{1}\right|^{p_{j}}\right) \\
& +(1-\lambda) \sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\left(1-\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{p_{j}\left(f^{\prime}\left(z_{1}\right)\right)^{2}}+\frac{f^{\prime \prime}\left(z_{1}\right)}{p_{j} f^{\prime}\left(z_{1}\right)} \sum_{k=2}^{n} a_{k}\left(p_{k}-1\right) z_{k}^{p_{k}}\right) \\
= & 2(1-\lambda)\left|z_{1}\right|^{2} \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}+(1-\lambda) \sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\left(1-\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{p_{j}\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right) \\
& +(1-\lambda) \sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{k}^{p_{k}}\left(\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)} \sum_{k=2}^{n}\left|z_{k}\right|^{p_{k}}-2 \bar{z}_{1}\right) \\
& +\operatorname{Re} \lambda\left(2\left|z_{1}\right|^{2}+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\right) .
\end{aligned}
$$

By making use of the equality $\left|z_{1}\right|^{2}+\sum_{j=2}^{n}\left|z_{j}\right|^{p_{j}}=1$, then we get

$$
\begin{align*}
& G(z)=2\left|z_{1}\right|^{2}\left((1-\lambda) \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}+\operatorname{Re} \lambda\right) \\
&+\sum_{j=2}^{n} p_{j}\left|z_{j}\right|^{p_{j}}\left[(1-\lambda)\left(1-\frac{f\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)}{p_{j}\left(f^{\prime}\left(z_{1}\right)\right)^{2}}\right)+\operatorname{Re} \lambda\right] \\
&+(1-\lambda) \sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}\left[\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\left(1-\left|z_{1}\right|^{2}\right)-2 \bar{z}_{1}\right] . \tag{2.9}
\end{align*}
$$

Let

$$
\begin{equation*}
p\left(z_{1}\right)=(1-\lambda) \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}+R e \lambda \tag{2.10}
\end{equation*}
$$

then

$$
\begin{equation*}
(1-\lambda) \frac{f^{\prime \prime}\left(z_{1}\right) f\left(z_{1}\right)}{\left(f^{\prime}\left(z_{1}\right)\right)^{2}}=1-\lambda+\operatorname{Re} \lambda-p\left(z_{1}\right)-z_{1} p^{\prime}\left(z_{1}\right) \tag{2.11}
\end{equation*}
$$

In addition, we know that then $p \in H(U)$. Notice that f is an almost starlike function of complex order λ on the unit disk U, and $\operatorname{Re} p\left(z_{1}\right)>0$ for $z_{1} \in U$, then by Lemma 1.9 we can obtain

$$
\left|p^{\prime}\left(z_{1}\right)\right| \leq \frac{2 \operatorname{Re} p\left(z_{1}\right)}{1-\left|z_{1}\right|^{2}}
$$

Substituting (2.10) and (2.11) into (2.9), we get

$$
\begin{aligned}
G(z)= & p\left(z_{1}\right)\left(2\left|z_{1}\right|^{2}+\sum_{j=2}^{n}\left|z_{j}\right|^{p_{j}}\right)+(\operatorname{Re} \lambda+1-\lambda) \sum_{j=2}^{n}\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}} \\
& +z_{1} p^{\prime}\left(z_{1}\right) \sum_{j=2}^{n}\left|z_{j}\right|^{p_{j}}+(1-\lambda) \sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}\left(\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\left(1-\left|z_{1}\right|^{2}\right)-2 \bar{z}_{1}\right) \\
= & \left(1+\left|z_{1}\right|^{2}\right) p\left(z_{1}\right)+\left(1-\left|z_{1}\right|^{2}\right) z_{1} p^{\prime}\left(z_{1}\right)+(1-i I m \lambda) \sum_{j=2}^{n}\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}} \\
& +(1-\lambda) \sum_{j=2}^{n} a_{j}\left(p_{j}-1\right) z_{j}^{p_{j}}\left(\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\left(1-\left|z_{1}\right|^{2}\right)-2 \bar{z}_{1}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Re} G(z) \geq(1 & \left.+\left|z_{1}\right|^{2}\right) \operatorname{Re} p\left(z_{1}\right)-|1-\lambda| \sum_{j=2}^{n}\left|a_{j}\right|\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}}\left|\frac{f^{\prime \prime}\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)}\left(1-\left|z_{1}\right|^{2}\right)-2 \bar{z}_{1}\right| \\
& -\left(1-\left|z_{1}\right|^{2}\right)\left|z_{1} p^{\prime}\left(z_{1}\right)\right|+\sum_{j=2}^{n}\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}}
\end{aligned}
$$

By Lemma 1.11 and 1.10, we can get that

$$
\begin{aligned}
\operatorname{Re} G(z) \geq & \left(1+\left|z_{1}\right|^{2}\right) \operatorname{Re} p\left(z_{1}\right)-\left(1-\left|z_{1}\right|^{2}\right) \frac{2\left|z_{1}\right| \operatorname{Re} p\left(z_{1}\right)}{1-\left|z_{1}\right|^{2}}+\sum_{j=2}^{n}\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}} \\
& \quad-4|1-\lambda| \sum_{j=2}^{n}\left|a_{j}\right|\left(p_{j}-1\right)\left|z_{j}\right|^{p_{j}} \\
= & \left(1-\left|z_{1}\right|\right)^{2} \operatorname{Re} p\left(z_{1}\right)+\sum_{j=2}^{n}\left(p_{j}-1\right)\left(1-4\left|a_{j}\right||1-\lambda|\right)\left|z_{j}\right|^{p_{j}}
\end{aligned}
$$

Therefore, when $\left|a_{j}\right| \leq \frac{1}{4|1-\lambda|}, j=2, \ldots, n$, we have

$$
R e\left\{(1-\lambda) \frac{2 \partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)+\lambda\right\} \geq 0
$$

Hence F is an almost starlike mapping on $\Omega_{n, p_{2}, \ldots, p_{n}}$.
Conversely, if $F(z)=\left(f\left(z_{1}\right)+f^{\prime}\left(z_{1}\right) \sum_{j=2}^{n} a_{j} z_{j}^{p_{j}},\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{2}}} z_{2}, \ldots,\left(f^{\prime}\left(z_{1}\right)\right)^{\frac{1}{p_{n}}} z_{n}\right)$ is an almost starlike mapping on $\Omega_{n, p_{2}, \ldots, p_{n}}$, then we prove that f is an almost starlike mapping on U. In fact $z=\left(z_{1}, 0, \ldots, 0\right) \in \Omega_{n, p_{2}, \ldots, p_{n}}$ with $z_{1} \neq 0$, from (2.1) and (2.2), we have

$$
\operatorname{Re}\left\{(1-\lambda) \frac{f\left(z_{1}\right)}{z_{1} f^{\prime}\left(z_{1}\right)}+\lambda\right\}=\frac{2}{\rho(z)} \operatorname{Re}\left\{(1-\lambda) \frac{\partial \rho}{\partial z}(z) J_{F}^{-1}(z) F(z)+\lambda\right\} \geq 0
$$

for $z_{1} \in U$. This completes the proof.
Taking $\lambda=i \tan \beta$ in Theorem 2.4, we arrive the following corollary.
Corollary 2.5. Let $\left|a_{j}\right| \leq \frac{\cos \beta}{4}$ and $F(z)$ is defined by (1.3). Then f is a spirallike function of type β on the unit disk U if and only if $F(z)$ is a spirallike function of type β on $\Omega_{n, p_{2}, \ldots, p_{n}}$. The result has been obtained by Rahrovi [24].

Set $\lambda=0$ in Theorem 2.4, then we get the following result due to Wang and Gao [28]:
Corollary 2.6. Let $\left|a_{j}\right| \leq \frac{1}{4}$ and $F(z)$ is defined by (1.3). Then f is a starlike function on the unit disk U if and only if $F(z)$ is a a starlike mapping on $\Omega_{n, p_{2}, \ldots, p_{n}}$.

Remark 2.7. When $a_{2}=a_{3}=\ldots=a_{n}=0$, The result of corollary 2.6 has been obtained by Liu and Liu [15].

References

[1] C.M. Bălǎeţi and V.O. Nechita, Loewner chains and almost starlike mappings of complex order U, Carpathian J.Math. 26(2)(2010), 146-157.
[2] S. X. Feng, T. S. Liu and G. B. Ren, The growth and covering theorems for several mappings on the unit ball in complex Banach spaces, Chin. Ann. Math., 28A(2)(2007), 215-230.
[3] S. X. Feng and K. P. Lu, The growth theorem for almost starlike of order mappings on bounded starlike circular domains, Chin. Quart. J. Math., 15(2)(2000), 50-56.
[4] S. X. Feng and L. Yu, The generalized Roper-Suffridge extension operator, Acta Math. Sci. Ser. B, 28(1)(2008), 63-80.
[5] S. X. Feng and T. S. Liu, Modified Roper-Suffridge operator for some holomorphic mappings, Front. Math. Chin., 6(3)(2011), 411-426.
[6] S. Gong, Convex and starlike mappings in several complex variables, New York, Kluwer Academic Publishers, (1998).
[7] S. Gong and T. S. Liu, On the Roper-Suffridge extension operator, J. Anal. Math., 88(2002), 397-404.
[8] S. Gong and T. S. Liu, The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 284(2)(2003), 425-434.
[9] I. Graham and G. Kohr, Univalent mappings associated with the Roper-Suffridge extension operator, J. Anal. Math., 81(2000), 331-342.
[10] I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, Marcel Dekker, New York, (2003).
[11] H. Hamada and G. Kohr, Subordination chains and the growth theorem of spirallike mappings, Mathematica (Cluj), 42 (2000), 153-161.
[12] G. Kohr, Loewner chains and a modification of the Roper-Suffridge extension operator, Mathematica (Cluj), 48(1)(2006), 41-48.
[13] H. Liu, Class of starlike mappings, Its Extensions and Subclass in Several Complex Variables, Doctoral Thesis, University of Science and Technology of China, (1999).
[14] T. S. Liu and S. Gong, The family of starlike mappings. I, Chin. Annal. Math. Ser. A., 23(3)(2002), 273-282.
[15] X. S. Liu and T. S. Liu, The generalized Roper-Suffridge extension operator on a Reinhardt domain and the unit ball in a complex Hilbert space, Chin. Annal. Math. Ser. A., 26(5)(2005), 721-730.
[16] T. S. Liu and G. B. Ren, The growth theorem for starlike mappings on bounded starlike circular domains, Chin. Annal. Math. Ser. B., 19(4)(1998), 401-408.
[17] J. R. Muir, A class of the Loewner chain preserving extention operators, Comput. Meth. func. Theo., 5(1)(2005), 237-251.
[18] J. R. Muir, A Modification of the Roper-Suffridge extension operator, J. Math. Anal. Appl., 337(2) (2008), 862-879.
[19] J. R. Muir and T. J. Suffridge, Extreme points for convex mappings of B^{n}, J. Anal. Math., 98(2)(2006), 169-182.
[20] J. R. Muir and T. J. Suffridge, A generalization of half-plane mappings to the ball in \mathbb{C}^{n}, Trans. Amer. Math. Sco., 359(4)(2007), 1485-1498.
[21] C. Pommerenke, Univalent functions, Vandenhoek and Ruprecht, Göttingen, Germmany, (1975).
[22] S. Rahrovi, A. Ebadian and S. Shams, G-Loewner chains and parabolic starlike mappings in several complex variables, General Math., 20(2-3)(2012). 59-73.
[23] S. Rahrovi, A. Ebadian and S. Shams, Applications of the Roper-Suffridge Extension Operator to the Spirallike mappings of type β, Acta Uni. Apul., 37(2014), 171-183.
[24] S. Rahrovi, The generalized Roper-Suffridge extension operator for some subclasses on Rienhardt domains, Submitted.
[25] K. A. Roper and T. J. Suffridge, Convex mappings on the unit ball \mathbb{C}^{n}, J. Anal. Math., 65(1995), 333-347.
[26] T. J. Suffridge, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes in Math. 599, Springer-Verlag, New York, (1976), 146-159.
[27] J. Wang, Modified Roper-Suffridge for some subclasses of starlike mappings on Reinhardt domains, Act. Math. Sci., 33(6)(2013), 1627-1638.
[28] J. Wang and C. Gao, A new Roper-Suffridge extension operator on a Reinhardt domain, Abst. Appl. Anal.,(2011), 1-14.
[29] J. F. Wang and T. S. Liu, A modified Roper-Suffridge extension operator for some holomorphic mappings, Chin. Annal. Math. Ser. A., 31(4)(2010), 487-496.
[30] Y. C Zhu and M. S. Liu, The generalized Roper-Suffridge extension operator on bounded complete Reinhardt domains, Sci. Chin. Ser. A., 50(12)(2007), 1781-17942.
[31] Y. C Zhu and M. S. Liu, The generalized Roper-Suffridge extension operator on a Reinhardt domain D_{p}, Taiwanese J. Math., 14(2)(2010), 359-372.
[32] W. J. Zhang and T. S. Liu, On decomposition theorem of normalized biholomorphic convex mappings in Reinhardt domains, Sci. Chin., 46(1)(2003), 94-106.
[33] Q. H. Xu and T. S. Liu, Loewner chains and a subclass of biholomorphic mappings, J. Math. Anal. Appl., 334(2007), 1096-1105.

[^0]: ${ }^{0}$ Keywords and phrases: Roper-Suffridge extension operator, Reinhardt domain, Minkowski functional, Strongly spirallike mapping, Almost starlike mapping.

