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Abstract. Let S∗Ωn,p2,...,pn
(β,A,B) be some new subclasses of starlike mappings on Rienhardt domain

Ωn,p2,...,pn , where −1 ≤ A < B < 1 and pj ≥ 1, j = 2, . . . , n be a positive integer. Some different condi-

tions for aj are established such that these classes are preserved under the following modified Roper-Suffridge

operator F (z) =

(
f(z1) + f ′(z1)

∑n
j=2 ajz

pj
j , (f ′(z1))

1
p2 z2, . . . , (f ′(z1))

1
pn zn

)
, where f is a normalized lo-

cally biholomorphic function on the unit disc U . On the other hand, almost starlike mapping of complex

order λ on Rienhardt domain Ωn,p2,...,pn is defined. A necessary and sufficient condition for aj are es-

tablished such that under which the above modified Roper-Suffridge operator preserves an almost starlike

mapping of complex order λ. These results generalize the modified Roper-Suffridge extension operator from

the unit ball to Reinhardt domains. Our result reduce to many well-known results.

1. Introduction and Preliminaries

Let n be a positive integer and Cn denote the space of n complex variables z = (z1, . . . , zn)

with the Euclidean inner product 〈z, w〉 =
n∑
j=1

zjwj and Euclidean norm ‖z‖ = 〈z, z〉1/2,

where z, w ∈ Cn. The open ball {z ∈ Cn : ‖z‖ < r} is denoted by Bnr and the unit ball Bn1
by Bn. The closed ball {z ∈ Cn : ‖z‖ ≤ r} is denoted by B̄nr , and the unit sphere is denoted
by ∂Bn = {z ∈ Cn : ‖z‖ = 1}. In the case of one complex variable, B1 is denoted by U .
For n ≥ 2, let ẑ = (z2, . . . , zn) so that z = (z1, ẑ) ∈ Cn.

Let L(Cn,Cm) denote the space of complex linear mappings from Cn into Cm with the
standard operator norm,

‖ A ‖= sup{‖ A(z) ‖:‖ z ‖= 1},
and let In be the identity in L(Cn,Cn). Let Ω be a domain in Cn and H(Ω) be the set of
holomorphic mappings from Ω into Cn. A mapping f ∈ H(Ω) is called normalized if f(0) = 0
and Jf (0) = In, where Jf (0) is the complex Jacobian matrix of f at the origin. A mapping
f ∈ H(Ω) is said to be locally biholomorphic if detJf (z) 6= 0 for every z ∈ Ω. Let LS(Ω)
be the set of normalized locally biholomorphic mappings on Ω and let S(Ω) denote the set
of normalized biholomorphic mappings on Ω. In the case of one complex variable, the set
S(B1) is denoted by S and LS(B1) is denoted by LS. A mapping f ∈ S(Ω) is called starlike
(respectively convex) if its image is a starlike domain with respect to origin (respectively
convex domain). The class of starlike (respectively convex) mappings on Ω will be denoted
by S∗(Ω) (respectively K(Ω)). In the case of one complex variable S∗(B1)(respectively
K(B1)) is denote by S∗ (respectively K). A normalized mapping f ∈ H(Ω) is said to be
ε starlike if there exists a positive number ε, 0 ≤ ε ≤ 1, such that f(Bn) is starlike with
respect to every point in εf(Bn).

A domain Ω is called a circular domain if eiθz ∈ Ω holds for any z ∈ Ω and θ ∈ R.
A domain Ω ⊂ Cn is said to be a complete Reinhardt if (z1, z2, . . . , zn) ∈ Ω implies that
(eiθ1z1, e

iθ2z2, . . . , e
iθnzn) ∈ Ω for all θj ∈ R, j = 1, 2, . . . , n. The Minkowski functional ρ(z)

of a bounded circular convex domain Ω in Cn is defined as

ρ(z) = inf
{
t > 0,

z

t
∈ Ω

}
, z ∈ Cn.

0Keywords and phrases: Roper-Suffridge extension operator, Reinhardt domain, Minkowski functional,
Strongly spirallike mapping, Almost starlike mapping.
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If Ω is a bounded circular convex domain, then Ω is a Banach space in Cn with respect to
this norm, and Ω = {z ∈ Cn : ρ(z) < 1}. Also, The Minkowski functional ρ(z) is C1 on Ω
except for a lower dimensional manifold. Moreover, the Minkowski functional ρ(z) has the
following properties of (see [16]):

∂ρ

∂z
(λz) =

∂ρ

∂z
(z), λ ∈ [0,+∞), z ∈ Ω\{0},

(1.1)

∂ρ

∂z
(eiθz) = e−iθ

∂ρ

∂z
(z), θ ∈ R, z ∈ Cn\{0}.

Definition 1.1. [31] Suppose that Ω is a bounded convex circular domain which contains the
origin in Cn. Its Minkowski functional ρ(z) is C1 except for a lower-dimensional manifold.
Let f be a normalized locally biholomorphic mapping on Ω. If α ∈ (0, 1), β ∈ (−π2 , π2 ), and∣∣∣∣e−iβ 2

ρ(z)

∂ρ

∂z
(z)J−1

f (z)f(z)−
(

cosβ

2α
− i sinβ

)∣∣∣∣ < cosβ

2α
, z ∈ Ω\{0},

then f is said to be spirallike mapping of type β and order α on Ω.

Definition 1.2. [2] Suppose that Ω is a bounded convex circular domain which contains the
origin in Cn. Its Minkowski functional ρ(z) is C1 except for a lower-dimensional manifold.
Let f be a normalized locally biholomorphic mapping on Ω. If α ∈ (0, 1), β ∈ (−π2 , π2 ), and∣∣∣∣i tanβ + (1− i tanβ)

2

ρ(z)

∂ρ

∂z
(z)J−1

f (z)f(z)− 1 + α2

1− α2

∣∣∣∣ ≤ 2α

1− α2
, z ∈ Ω\{0}

then f is said to be strongly spirallike mapping of type β and order α on Ω.

Wang [27] introduced the following classes of starlike mappings from the unified perspec-
tive which contains the above two definitions.

Definition 1.3. [27] Suppose that Ω is a bounded complete circular domain which contains
the origin in Cn. Its Minkowski functional ρ(z) is C1 except for a lower-dimensional man-
ifold. Let f be a normalized locally biholomorphic mapping on Ω. If −1 ≤ A < B < 1,
β ∈ (−π2 , π2 ), and∣∣∣∣i tanβ + (1− i tanβ)

2

ρ(z)

∂ρ

∂z
(z)J−1

f (z)f(z)− 1−AB
1−B2

∣∣∣∣ < B −A
1−B2

, z ∈ Ω\{0}, (1.2)

then we say that f ∈ S∗Ω(β,A,B).

When Ω = U , the inequality (1.2) becomes∣∣∣∣i tanβ + (1− i tanβ)
f(z)

zf ′(z)
− 1−AB

1−B2

∣∣∣∣ ≤ B −A
1−B2

, z ∈ U.

Remark 1.4. When A = −1, B = 1− 2α, Definition 1.3 reduces to Definition 1.1.
When A = −α, B = α, Definition 1.3 reduces to Definition 1.2.
The geometric property of (1.2) shows that the image of mapped by the mapping

i tanβ + (1− i tanβ)
2

ρ(z)

∂ρ

∂z
(z)J−1

f (z)f(z)

is an open disk with diameter end points 1−A
1−B and 1+A

1+B . Hence, when B → 1−, the image

of Ω reduces to the half plan {z : Re z ≥ 1+A
2 }.

Definition 1.5. [26] Suppose Ω is a bounded convex circular domain which contains the ori-
gin in Cn, and let A ∈ L(Cn,Cn) be such that Re〈A(z), z〉 > 0. A normalized biholomorphic
mapping f on Ω is spirallike with respect to A if e−tAf(Ω) ⊂ Ω for all t > 0, where

e−tA =
∞∑
k=0

(−1)k

k!
tkAk.
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Note that any spirallike mapping with respect to a linear operatorA such thatRe〈A(z), z〉 >
0 for z ∈ Cn \ {0} is biholomorphic [26].

Remark 1.6. If A = e−iβIn, β ∈ (−π2 , π2 ), , in Definition 1.5, we obtain the class of
spirallike mappings of type β, studied by Hamada and Kohr [11]. Hence f ∈ S∗(Ω) if and
only if f is spirallike mappings of type zero.

In the following we introduce the almost starlike mapping of complex order λ on Rienhardt
domain Ω.

Definition 1.7. Suppose that Ω is a bounded complete circular domain in Cn. Its Minkowski
functional ρ(z) is C1 except for a lower-dimensional manifold. Let λ ∈ C, with Reλ ≤ 0. A
normalized locally biholomorphic mapping f ∈ H(Ω) is said to be an almost starlike mapping
of complex order λ if

Re

(
(1− γ)

2

ρ(z)

∂ρ

∂z
J−1
f (z)f(z)

)
> −Re λ‖z‖2, z ∈ Ω\{0}.

It is easy to see that in the case of one variable, the above inequality reduces to the
following

Re

(
1− λ)

f(z)

zf ′(z)

)
> −Re λ, z ∈ U.

The interest of the study of almost starlikeness of complex order λ arises from the fact that
every almost starlike mapping f of complex order λ is also spirallike with respect to the
operator A = (1− λ)In, and hence f is biholomorphic on Ω (see [1]).

Remark 1.8. If we take λ = i tanβ, in Definition 1.7, where β ∈ (−π2 ,
π
2 ), we obtain the

usual notion of spirallike of type β and when λ = 0, we obtain the usual notion of starlike
(see [33]).

In 1995, Roper and Suffridge [25] introduced an extension operator which gives a way of
extending a locally biholomorphic function on the unit disc U in C to a locally biholomorphic
mapping of Bn into Cn. For fixed n ≥ 2, the Roper-Suffridge extension operator (see [10]
and [25]) is defined as follows

[Φn(f)](z) = (f(z1),
√
f ′(z1)ẑ), z ∈ Bn,

where f is a normalized biholomorphic mapping on the unit disc U in C, z = (z1, ẑ) be-
longing to the unit ball Bn in Cn and the branch of the power function is chosen so that√
f ′(z1)|z1=0 = 1.
The following results illustrate the important and usefulness of the Roper-Suffridge ex-

tension operator
Φn(K) ⊆ K(Bn), Φn(S∗) ⊆ S∗(Bn).

The first was proved by Roper and Suffridge when they introduced their operator [25],
while the second result was given by Graham and Kohr [9]. Until now, it is difficult to
construct the concrete convex mappings, starlike mappings on Bn. By making use of the
Roper-Suffridge extension operator, we may easily give many concrete examples about these
mappings. This is one important reason why people are interested in this extension operator.
A good treatment of further applications of the Roper-Suffridge extension operator can be
found in the recent book by Graham and Kohr [10].

In 2005, Muir [18] modified the Roper- Suffridge extension operator as follows

[Φn,Q(f)](z) =
(
f(z1) + f ′(z1)Q(ẑ),

√
f ′(z1)ẑ

)
, z = (z1, ẑ) ∈ Bn,

where Q(ẑ) is a homogeneous polynomial of degree 2 with respect to ẑ, and f , z1 and ẑ
are defined as above. He proved that this operator preserves starlikeness and convexity if
and only if ‖Q‖ ≤ 1/4 and ‖Q‖ ≤ 1/2, respectively. Also Rahrovi et all [22] proved that
this operator preserves spirallike mapping of type β if and only if ‖Q‖ ≤ 1/4. The modified
operator Φn,Q plays a key role to study the extreme points of convex mappings on Bn

(see [19], [20]). Later, Kohr [12], Muir [17] and Rahrovi et all [23] used the Loewner chain
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to study the modified Roper-Suffridge extension operator. Recently, the modified Roper-
Suffridge extension operator on the unit ball is also studied by Wang and Liu [29] and Feng
and Yu [5].

On the other hand, people also considered the generalized Roper-Suffridge extension
operator on the general Reinhardt domains. For example, Gong and Liu [7], [14] introduced
the definition of ε−starlike mappings and obtained that the operator

[Φn, 1p (f)](z) =
(
f(z1), (f ′(z1))

1
p ẑ
)
,

maps the ε−starlike functions on U to the ε−starlike mappings on the Reinhardt domain

Ωn,p =

{
z ∈ Cn : |z1|2 +

n∑
j=2

|zj |p < 1

}
, where p ≥ 1, and f , z1 and ẑ are defined as above.

When ε = 0 and ε = 1, Φn, 1p maps the starlike function and convex function on U to the

starlike mapping and the convex mapping on Ωn,p, respectively. Furthermore, Gong and
Liu [8] proved that the operator

[Φn, 1
p2
,..., 1

pn
(f)](z) =

(
f(z1), (f ′(z1))

1
p2 z2, . . . , (f

′(z1))
1

pn zn

)
,

maps the ε−starlike functions on U to the ε−starlike mappings on the Reinhardt domain

Ωn,p2,...,pn =

{
z ∈ Cn : |z1|2 +

n∑
j=2

|zj |pj < 1

}
, where pj ≥ 1, and f , z1 and ẑ are defined

as above. Also, Liu and Liu [15] proved that this operator preserves starlikeness of order α
on the domain Ωn,p2,...,pn . On the other hand, Feng and Liu [5] proved that this operator
preserves almost starlikeness of order α on the domain Ωn,p2,...,pn .

In contrast to the modified Roper-Suffridge extension operator on the unit ball, it is
natural to ask if we can modify the Roper-Suffridge extension operator on the Reinhardt
domain.

In 2011, Wang and Gao [28] introduced the following extension operator:

F (z) =

f(z1) + f ′(z1)
n∑
j=2

ajz
pj
j , (f

′(z1))
1
p2 z2, . . . , (f

′(z1))
1

pn zn

 , (1.3)

on the Reinhardt domain Ωn,p2,...,pn , where pj are positive integer and pj ≥ 1, the branch

are chosen such that (f ′(z1))
1
pj |z1=0= 1, j = 2, . . . , n. For |aj | ≤ (1−α)

4 , j = 2, · · · , n, they
proved that this operator preserves almost starlike function of order α and on the Renihardt
domain Ωn,p2,··· ,pn . In this paper, we will give some necessary and sufficient conditions for aj
under which the above Roper-Suffridge operator preserves the classes S∗Ωn,p2,...,pn

(β,A,B).

Also, under special condition for aj , j = 2, . . . , n, we will show that f is an almost starlike
function of complex order λ on U if and only if F is an almost starlike function of complex
order λ on Ωn,p1,··· ,pn .

In order to prove the main results, we need the following lemmas.

Lemma 1.9. [10]. (Schwarz-Pick Lemma) Suppose that g ∈ H(U) satisfies g(U) ⊂ U , then

|g′(ξ)| ≤ 1− |g(ξ)|2

1− |ξ|2
,

for each ξ ∈ U .

Lemma 1.10. [21]. Let f be a normalized biholomorphic function on U , then∣∣∣∣(1− |z|2)
f ′′(z)

f ′(z)
− 2z̄

∣∣∣∣ ≤ 4, z ∈ U.

Lemma 1.11. [21]. Let p be a holomorphic function on U . If Rep(z) > 0 and p(0) > 0,
then

|p′(z)| ≤ 2Rep(z)

1− |z|2
.
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Lemma 1.12. [32]. If ρ(z) is a Minkowski function of the domain Ωn,p2,...,pn , z 6= 0, then

∂ρ

∂z1
(z) =

z̄1

ρ(z)

[
2
∣∣∣ z1ρ(z) ∣∣∣2 +

n∑
j=2

pj

∣∣∣ zjρ(z)

∣∣∣pj] ,

∂ρ

∂zj
(z) =

pj z̄j

∣∣∣ zjρ(z)

∣∣∣pj−2

2ρ(z)

[
2
∣∣∣ z1ρ(z) ∣∣∣2 +

n∑
j=2

pj

∣∣∣ zjρ(z)

∣∣∣pj] , j = 2, . . . , n.

2. Main Results

We begin this section with the main results of this paper.

Theorem 2.1. Let α ∈ (0, 1) and β ∈ (−π2 ,
π
2 ). Suppose that the operator F (z) is defined

by (1.3). If complex numbers aj satisfy the condition |aj | ≤ (B−A)(1−|B|) cos β
4(1−B2) , j = 2, . . . , n,

then F ∈ S∗Ωn,p2,...,pn
(β,A,B) if and only if f ∈ S∗U (β,A,B) = S∗(β,A,B).

Proof. By the definition 1.3, we only need to prove that the following inequality∣∣∣∣1−B2

B −A

[
i tanβ + (1− i tanβ)

2

ρ(z)

∂ρ

∂z
(z)J−1

F (z)F (z)

]
− 1−AB

B −A

∣∣∣∣ < 1

holds for all z ∈ Ωn,p2,...,pn and z 6= 0 and |aj | ≤ (B−A)(1−|B|) cos β
4(1−B2) . For z = (z1, ẑ) ∈ Bn, we

have two cases
First, if ẑ = 0, then we can get the conclusion easily.
Second, suppose ẑ 6= 0. Obviously, the mapping F is holomorphic at every point z =

(z1, ẑ) ∈ Ωn,p2,...,pn . Let us write z = λu = |λ|eiθu for u ∈ ∂Ωn,p2,...,pn and λ ∈ U\{0}, then
from we have∣∣∣∣1−B2

B −A

[
i tanβ + (1− i tanβ)

2

ρ(z)

∂ρ

∂z
(z)J−1

F (z)F (z)

]
− 1−AB

B −A

∣∣∣∣ < 1

⇔
∣∣∣∣1−B2

B −A

[
i tanβ + (1− i tanβ)

2

ρ(|λ|eiθu)

∂ρ

∂z
(|λ|eiθu)J−1

F (|λ|eiθu)F (|λ|eiθu)

]
− 1−AB

B −A

∣∣∣∣ < 1

⇔
∣∣∣∣1−B2

B −A

[
i tanβ + (1− i tanβ)

2

|λ|
e−iθ∂ρ

∂z
(u)J−1

F (|λ|eiθu)F (|λ|eiθu)

]
− 1−AB

B −A

∣∣∣∣ < 1

⇔
∣∣∣∣1−B2

B −A

[
i tanβ + (1− i tanβ)

2

λ

∂ρ

∂z
(u)J−1

F (λu)F (λu)

]
− 1−AB

B −A

∣∣∣∣ < 1.

The expression

1−B2

B −A

[
i tanβ + (1− i tanβ)

2

λ

∂ρ

∂z
(u)J−1

F (λu)F (λu)

]
− 1−AB

B −A

is holomorphic with respect to λ. Thus, the maximum modules principle for holomorphic
functions yield that it attains its maximum on |λ| = 1. Therefor we need only to prove for
all z = (z1, ẑ) ∈ ∂Ωn,p2,...,pn such that ẑ 6= 0. Hence, ρ(z) = 1, and it is suffice to show that∣∣∣∣1−B2

B −A

[
i tanβ + (1− i tanβ)

2∂ρ

∂z
(z)J−1

F (z)F (z)

]
− 1−AB

B −A

∣∣∣∣ < 1,

holds for z ∈ ∂Ωn,p2,...,pn and ẑ 6= 0.
Since

F (z) =

f(z1) + f ′(z1)
n∑
j=2

ajz
pj
j , (f

′(z1))
1
p2 z2, . . . , (f

′(z1))
1

pn zn

 ,
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we have

JF (z) =


f ′(z1) + f ′′(z1)

n∑
j=2

ajz
pj
j a2p2f

′(z1)zp2−1
2 · · · anpnf

′(z1)zpn−1
n

a2 (f ′(z1))1/p2 · · · 0
...

...
. . .

...
an 0 · · · (f ′(z1))1/pn

 ,

where

aj =
1

pj
(f ′(z1))(1/pj)−1f ′′(z1)zj , j = 2, . . . , n

Suppose that J−1
F (z)F (z) = A = (x1, x2, . . . , xn), some simple computation shows that

x1 =
f(z1)

f ′(z1)
−

n∑
j=2

aj(pj − 1)z
pj
j ,

xj =

(
1− f(z1)f ′′(z1)

pj(f ′(z1))2
+

f ′′(z1)

pjf ′(z1)

n∑
k=2

ak(pk − 1)zpkk

)
zj , j = 2, . . . , n.

Therefore we get

∂ρ(z)

∂z
J−1
F (z)F (z) =

f(z1)

z1f ′(z1)

∂ρ(z)

∂z1
z1 −

n∑
j=2

aj(pj − 1)z
pj
j

∂ρ(z)

∂z1

+

n∑
j=2

(
1− f(z1)f ′′(z1)

pj(f ′(z1))2
+

f ′′(z1)

pjf ′(z1)

n∑
k=2

ak(pk − 1)zpkk

)
∂ρ(z)

∂zj
zj . (2.1)

Now, from Lemma 1.12, we obtain

∂ρ

∂z1
(z) =

z̄1

ρ(z)

[
2|z1/ρ(z)|2 +

n∑
j=2

pj |zj/ρ(z)|pj
] =

z̄1

2|z1|2 +
n∑
j=2

pj |zj |pj
,

∂ρ

∂zj
(z) =

pj z̄j |zj/ρ(z)|pj−2

2ρ(z)

[
2|z1/ρ(z)|2 +

n∑
j=2

pj |zj/ρ(z)|pj
] =

pj z̄j |zj |pj−2

2

[
2|z1|2 +

n∑
j=2

pj |zj |pj
] . (2.2)

In terms of (2.1) and (2.2), we obtain

1−B2

B −A

[
i tanβ + (1− i tanβ)

2∂ρ

∂z
(z)J−1

F (z)F (z)

]
− 1−AB

B −A
=

G(z)

2|z1|2 +
n∑
j=2

pj |zj |pj
,

(2.3)
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where

G(z) =
1−B2

B −A

[
i tanβ

(
2|z1|2 +

n∑
j=2

pj |zj |pj
)

+ (1− i tanβ)

[
2|z1|2

f(z1)

z1f ′(z1)

+
n∑
j=2

pj |zj |pj
(

1− f(z1)f ′′(z1)

pj(f ′(z1))2

)
+

n∑
j=2

aj(pj − 1)z
pj
j

(
f ′′(z1)

f ′(z1)
(1− |z1|2)− 2z̄1

)]]

− 1−AB
B −A

2|z1|2 +
n∑
j=2

pj |zj |pj


= 2|z1|2
[

1−B2

B −A
i tanβ +

1−B2

B −A
(1− i tanβ)

f(z1)

z1f ′(z1)
− 1−AB

B −A

]
+

1−B2

B −A
(1− i tanβ)

n∑
j=2

aj(pj − 1)z
pj
j

(
f ′′(z1)

f ′(z1)
(1− |z1|2)− 2z̄1

)
(2.4)

+
n∑
j=2

pj |zj |pj
[

1−B2

B −A
(1− i tanβ)

(
1− f(z1)f ′′(z1)

pj(f ′(z1))2

)
+

1−B2

B −A
i tanβ − 1−AB

B −A

]

Let

h(z1) =
1−B2

B −A
i tanβ +

1−B2

B −A
(1− i tanβ)

f(z1)

z1f ′(z1)
− 1−AB

B −A
. (2.5)

Notice that h ∈∈ S∗Ωn,p2,...,pn
(β,A,B), hence |h(z1)| < 1. By Schwarz-Pick Lemma, we can

obtain that

|h′(z1)| ≤ 1− |h(z1)|2

1− |z1|2

On the other hand, by some calculations, we can get

f(z1)f ′′(z1)

f ′(z1)2
=
B(A−B)− (B −A)h(z1)− (B −A)z1h

′(z1)

(1−B2)(1− i tanβ)
. (2.6)

Substituting (2.5) and (2.6) into (2.4), we get

G(z) = 2|z1|2h(z1) +
1−B2

B −A
(1− i tanβ)

n∑
j=2

aj(pj − 1)z
pj
j

(
f ′′(z1)

f ′(z1)
(1− |z1|2)− 2z̄1

)

+
n∑
j=2

pj |zj |pj
[

1−B2

B −A
(1− i tanβ)

− 1−B2

B −A
(1− i tanβ)

1

pj

B(A−B)− (B −A)h(z1)− (B −A)z1h(z1)

(1−B2)(1− i tanβ)

+
1−B2

B −A
i tanβ − 1−AB

B −A

]
= 2|z1|2h(z1) +

1−B2

B −A
(1− i tanβ)

n∑
j=2

aj(pj − 1)z
pj
j

(
f ′′(z1)

f ′(z1)
(1− |z1|2)− 2z̄1

)

+ h(z1)

n∑
j=2

|zj |pj + z1h
′(z1)

n∑
j=2

|zj |pj +

n∑
j=2

pj

(
1−B2

B −A
+
B

pj
− 1−B2

B −A

)
|zj |pj
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By Lemma 1.9 and 1.10, we can get that

|G(z)| ≤ (1 + |z1|2)|h(z1)|+
n∑
j=2

|B|(pj − 1)|zj |pj + |z1|
1− |h(z1)|2

1− |z1|2
(1− |z1|2)

+
4

cosβ

1−B2

B −A

n∑
j=2

|aj |(pj − 1)|zj |pj

= (1 + |z1|2)|h(z1)|+ |z1|(1− |h(z1)|2) +
n∑
j=2

(
|B|+ 4

cosβ

1−B2

B −A
|aj |
)

(pj − 1)|zj |pj

≤ (1 + |z1|2)(|h(z1)| − 1) + (1 + |z1|2) + 2|z1|(1− |h(z1)|)

+
n∑
j=2

(
|B|+ 4

cosβ

1−B2

B −A
|aj |
)

(pj − 1)|zj |pj

= (1 + |z1|2) + (1− |z1|)2(|h(z1)| − 1) +
n∑
j=2

(
|B|+ 4

cosβ

1−B2

B −A
|aj |
)

(pj − 1)|zj |pj

Therefore, when |aj | ≤ (B−A)(1−|B|) cos β
4(1−B2) , j = 2, . . . , n, we have

|G(z)| ≤ 1 + |z1|2 +
n∑
j=2

(pj − 1)|zj |pj = 2|z1|2 +
n∑
j=2

pj |zj |pj (2.7)

In the terms of (2.3) and (2.7), we obtain∣∣∣∣1−B2

B −A

[
i tanβ + (1− i tanβ)

2

ρ(z)

∂ρ

∂z
(z)J−1

F (z)F (z)

]
− 1−AB

B −A

∣∣∣∣ < 1

Hence F (z) ∈ S∗Ωn,p2,...,pn
(β,A,B).

Conversely, if

F (z) =

f(z1) + f ′(z1)
n∑
j=2

ajz
pj
j , (f

′(z1))
1
p2 z2, . . . , (f

′(z1))
1

pn zn

 ∈ S∗Ωn,p2,...,pn
(β,A,B),

then we prove that f ∈ S∗(β,A,B). In fact ẑ = (z1, 0, . . . , 0) ∈ Ωn,p2,...,pn with z1 6= 0, from
(2.1) and (2.2), we have∣∣∣∣1−B2

B −A

[
i tanβ + (1− i tanβ)

f(z1)

z1f ′(z1)

]
− 1−AB

B −A

∣∣∣∣ < 1

for z1 ∈ U . This completes the proof. �

In particular, if we take A = −1 and B = 1 − 2α, in Theorem 2.4, then we can obtain
the following corollary.

Corollary 2.2. Let α ∈ (0, 1) and β ∈ (−π2 ,
π
2 ). Suppose that the operator F (z) is defined

by (1.3). If complex numbers aj satisfy the condition |aj | ≤ 1−|1−2α| cos β
8α , j = 2, . . . , n, then

F is a spirallike mapping of type β and order α on the domain Ωn,p2,...,pn if and only if f
is a spirallike mapping of type β and order α on U .

if we take A = −α and B = α, in Theorem 2.4, then we can obtain the following corollary.

Corollary 2.3. [24]. Let α ∈ (0, 1) and β ∈ (−π2 ,
π
2 ). Suppose that the operator F (z) is

defined by (1.3). If complex numbers aj satisfy the condition |aj | ≤ α
1+α cosβ, j = 2, . . . , n,

then F is a strongly spirallike mapping of type β and order α on the domain Ωn,p2,...,pn if
and only if f is a strongly spirallike mapping of type β and order α on U .

Theorem 2.4. Let λ ∈ C with Re λ ≤ 0. Suppose that the operator F (z) is defined by
(1.3). If the complex numbers aj satisfies the condition |aj | ≤ 1

4|1−λ| , j = 2, 3, . . . , n, then F

is an almost starlike function of complex order λ on Ωn,p2,...,pn if and only if f is an almost
starlike function of complex order λ on U .
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Proof. By the definition of almost starlike mapping of complex order λ, we need to prove
that the following inequality

Re

{
(1− λ)

2

ρ(z)

∂ρ

∂z
(z)J−1

F (z)F (z)

}
≥ −Re λ. (2.8)

Similar to the theorem 2.4 we need only to prove that (2.8) holds for ρ(z) = 1 and ẑ 6= 0,
according to the minimum modulus theorem for analytic functions. So, it is suffice to show
that

Re

{
(1− λ)

2∂ρ

∂z
(z)J−1

F (z)F (z)

}
≥ −Re λ, z ∈ ∂Ωn,p2,...,pn , ẑ 6= 0.

In terms of (2.1) and (2.2), we obtain

(1− λ)
2∂ρ

∂z
(z)J−1

F (z)F (z) +Re λ =
G(z)

2|z1|2 +
n∑
j=2

pj |z1|pj
,

where

G(z) = 2(1− λ)z̄1

 f(z1)

f ′(z1)
−

n∑
j=2

aj(pj − 1)z
pj
j

+Re λ

2|z1|2 +
n∑
j=2

pj |z1|pj


+ (1− λ)

n∑
j=2

pj |zj |pj
(

1− f(z1)f ′′(z1)

pj(f ′(z1))2
+

f ′′(z1)

pjf ′(z1)

n∑
k=2

ak(pk − 1)zpkk

)

= 2(1− λ)|z1|2
f(z1)

z1f ′(z1)
+ (1− λ)

n∑
j=2

pj |zj |pj
(

1− f(z1)f ′′(z1)

pj(f ′(z1))2

)

+ (1− λ)
n∑
j=2

aj(pj − 1)zpkk

(
f ′′(z1)

f ′(z1)

n∑
k=2

|zk|pk − 2z̄1

)

+Re λ

2|z1|2 +
n∑
j=2

pj |zj |pj
 .

By making use of the equality |z1|2 +
n∑
j=2

|zj |pj = 1, then we get

G(z) = 2|z1|2
(

(1− λ)
f(z1)

z1f ′(z1)
+Re λ

)
+

n∑
j=2

pj |zj |pj
[
(1− λ)

(
1− f(z1)f ′′(z1)

pj(f ′(z1))2

)
+Re λ

]

+ (1− λ)
n∑
j=2

aj(pj − 1)z
pj
j

[
f ′′(z1)

f ′(z1)
(1− |z1|2)− 2z̄1

]
. (2.9)

Let

p(z1) = (1− λ)
f(z1)

z1f ′(z1)
+Re λ, (2.10)

then

(1− λ)
f ′′(z1)f(z1)

(f ′(z1))2
= 1− λ+Re λ− p(z1)− z1p

′(z1). (2.11)

In addition, we know that then p ∈ H(U) . Notice that f is an almost starlike function of
complex order λ on the unit disk U , and Re p(z1) > 0 for z1 ∈ U , then by Lemma 1.9 we
can obtain

|p′(z1)| ≤ 2Re p(z1)

1− |z1|2
.
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Substituting (2.10) and (2.11) into (2.9), we get

G(z) = p(z1)

2|z1|2 +
n∑
j=2

|zj |pj
+ (Re λ+ 1− λ)

n∑
j=2

(pj − 1)|zj |pj

+ z1p
′(z1)

n∑
j=2

|zj |pj + (1− λ)
n∑
j=2

aj(pj − 1)z
pj
j

(
f ′′(z1)

f ′(z1)
(1− |z1|2)− 2z̄1

)

= (1 + |z1|2)p(z1) + (1− |z1|2)z1p
′(z1) +

(
1− iIm λ

) n∑
j=2

(pj − 1)|zj |pj

+ (1− λ)
n∑
j=2

aj(pj − 1)z
pj
j

(
f ′′(z1)

f ′(z1)
(1− |z1|2)− 2z̄1

)
Hence

Re G(z) ≥ (1 + |z1|2)Re p(z1)− |1− λ|
n∑
j=2

|aj |(pj − 1)|zj |pj
∣∣∣∣f ′′(z1)

f ′(z1)
(1− |z1|2)− 2z̄1

∣∣∣∣
− (1− |z1|2)|z1p

′(z1)|+
n∑
j=2

(pj − 1)|zj |pj

By Lemma 1.11 and 1.10, we can get that

Re G(z) ≥ (1 + |z1|2)Re p(z1)− (1− |z1|2)
2|z1|Re p(z1)

1− |z1|2
+

n∑
j=2

(pj − 1)|zj |pj

− 4|1− λ|
n∑
j=2

|aj |(pj − 1)|zj |pj

= (1− |z1|)2Re p(z1) +

n∑
j=2

(pj − 1)
(
1− 4|aj ||1− λ|)|zj |pj .

Therefore, when |aj | ≤
1

4|1− λ|
, j = 2, . . . , n, we have

Re

{
(1− λ)

2∂ρ

∂z
(z)J−1

F (z)F (z) + λ

}
≥ 0.

Hence F is an almost starlike mapping on Ωn,p2,...,pn .

Conversely, if F (z) =

(
f(z1) + f ′(z1)

n∑
j=2

ajz
pj
j , (f

′(z1))
1
p2 z2, . . . , (f

′(z1))
1

pn zn

)
is an al-

most starlike mapping on Ωn,p2,...,pn , then we prove that f is an almost starlike mapping on
U . In fact z = (z1, 0, . . . , 0) ∈ Ωn,p2,...,pn with z1 6= 0, from (2.1) and (2.2), we have

Re

{
(1− λ)

f(z1)

z1f ′(z1)
+ λ

}
=

2

ρ(z)
Re

{
(1− λ)

∂ρ

∂z
(z)J−1

F (z)F (z) + λ

}
≥ 0,

for z1 ∈ U . This completes the proof. �

Taking λ = i tanβ in Theorem 2.4, we arrive the following corollary.

Corollary 2.5. Let |aj | ≤ cos β
4 and F (z) is defined by (1.3). Then f is a spirallike function

of type β on the unit disk U if and only if F (z) is a spirallike function of type β on Ωn,p2,...,pn .
The result has been obtained by Rahrovi [24].

Set λ = 0 in Theorem 2.4, then we get the following result due to Wang and Gao [28]:

Corollary 2.6. Let |aj | ≤ 1
4 and F (z) is defined by (1.3). Then f is a starlike function on

the unit disk U if and only if F (z) is a a starlike mapping on Ωn,p2,...,pn .
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Remark 2.7. When a2 = a3 = . . . = an = 0, The result of corollary 2.6 has been obtained
by Liu and Liu [15].
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