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Abstract: The growing complexity of computational modelling and its applications demands the 

simplicity of mathematical equations and techniques for solving today’s scientific problems and 

challenges. This paper presents a model of iterative computation that deals with design and 

optimization of recursive formulae related to series and summability with real-time function. 
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Introduction 

Computational technique for solving the sequences and series problems along with its 

applications [1-6] plays a vital role in mathematical modelling. In this research article a model of 

iterative computations is constituted for recursive algorithm dealing with series and summability. 

This model can be useful for finding optimized solutions for the problems involving in series and 

summability and its applications [1-6]. 

Model of Iterative Computation 

In today’s technology world it must be understood that the complexity of mathematical 

modelling demands the simplicity of numerical equations and techniques for solving scientific 

problems. In this research article, a model of iterative computations is constituted for recursive 

algorithm related to series and summability with real-time function. They are:  
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Where Vi
p

is a binomial coefficient and its mathematical expressions are given below:
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𝑝!
 (1 ≤ 𝑝 ≤ 𝑛 − 1)&(0 ≤ 𝑖 ≤ 𝑛 − 1). 
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(𝑝 + 1)!
 (1 ≤ 𝑝 ≤ 𝑛 − 1). 

In general, the computational model with limits k to n-1 is built as 
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where  𝑉𝑖−𝑘
𝑝+1 =

(𝑖 − 𝑘 + 1)(𝑖 − 𝑘 + 2) … (𝑖 − 𝑘 + 𝑝)(𝑖 − 𝑘 + 𝑝 + 1)

(𝑝 + 1)!

The initial values of the equations (1) and (2) are 
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The iterative computational method shown-above becomes as a real-time system when x=f(t), 

i.e., function of time.

Conclusion 

In this paper a novel iterative computational method has been introduced that deals with 

computations for design and optimization of the numerical equations related to series and 

summability and real-time function. 
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