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1 Introduction

Let A denote the class of all functions f(z) of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting
of univalent functions. In 1985, Louis de Branges de Bourcia proved the
Bieberbach conjecture, i.e., for a univalent function its nth Taylor coefficient
is bounded by n (see [3]). The bounds for the coefficients of these functions
give information about their geometric properties. The kth root transform
for the function f given in (1.1) is defined as

F (z) :=
[
f(zk)

] 1
k = z +

∞∑
n=1

bkn+1z
kn+1. (1.2)

Now, we introduce the Hankel determinant for the kth root transform for the
function f given in (1.1) for the values q, n, k ∈ N = {1, 2, 3, ...} defined as

[Hq(n)]
1
k =

bkn bkn+1 · · · bk(n+q−2)+1

bkn+1 bk(n+1)+1 · · · bk(n+q−1)+1
...

...
...

...
bk(n+q−2)+1 bk(n+q−1)+1 · · · bk[n+2(q−1)−1]+1

. (1.3)

In particular for k = 1, the above determinant reduces to the Hankel
determinant defined by Pommerenke [10] for the function f given in (1.1)
and this determinant has been investigated by many authors in the literature.
For the values q = 2, n = 1, bk = 1 and q = 2, n = 2, the kth root Hankel
determinant in (1.3) simplifies respectively to

[H2(1)]
1
k =

bk bk+1

bk+1 b2k+1
= b2k+1 − b2k+1

and [H2(2)]
1
k =

b2k b2k+1

b2k+1 b3k+1
= b2kb3k+1 − b22k+1.

For a family T of functions in S, the more general problem of finding sharp
estimates for the functional |a3−µa22| (µ ∈ R or µ ∈ C) is popularly known as

Abstract

The objective of this paper is to obtain best possible upper bounds
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the Fekete-Szegö problem for T . Ali et al. [1] obtained sharp bounds for the
Fekete-Szegö functional denoted by |b2k+1−µb2k+1| associated with the kth root

transform
[
f(zk)

] 1
k for the function given in (1.1), when it belongs to certain

subclasses of S. We refer to [H2(2)]
1
k as the second Hankel determinant for

the kth root transform associated with the function f. For our discussion in
this paper, we consider the kth root Hankel determinant of the function f for
the values q = 3, n = 1 in (1.3), given by

[H3(1)]
1
k =

bk bk+1 b2k+1

bk+1 b2k+1 b3k+1

b2k+1 b3k+1 b4k+1

(bk = 1).

On expanding the determinant and applying the triangle inequality, we ob-
tain

|[H3(1)]
1
k | ≤ |b2k+1||bk+1b3k+1 − b22k+1|+ |b3k+1||bk+1b2k+1 − b3k+1|

+ |b4k+1||b2k+1 − b2k+1|. (1.4)

In section 3, we seek best possible upper bound to the third Hankel de-
terminant given in (1.4) for the kth root transform of the function f , when
it belongs to the subclass denoted by ℜ of S, consisting of bounded turning
functions (also called as bounded turning functions), defined as follows.

Definition 1.1. Let f be given by (1.1). Then f ∈ ℜ, if it satisfies the
condition

Ref ′(z) > 0 ∀z ∈ E.

The subclass ℜ was introduced by Alexander in 1915 and a systematic
study of properties these functions was conducted by MacGregor [8] in 1962,
who indeed referred to numerous earlier investigations involving functions
whose derivative has a positive real part (also called functions whose deriva-
tive has a positive real part).

2 Preliminary Results

Let P denote the class of functions consisting of g, such that

g(z) = 1 +
∞∑
n=1

cnz
n, (2.1)

which are regular (analytic) in the open unit disc E and satisfy Reg(z) > 0
for any z ∈ E. Here g(z) is called a Caratheòdory function [4].
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Lemma 2.1. (([9, 11])) If g ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the
inequality is sharp for the function 1+z

1−z
.

Lemma 2.2. ([5]) The power series for g given in (2.1) converges in the
open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
...

...
...

...
...

c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. They are strictly positive except for
g(z) =

∑m
k=1 ρkg0(exp(itk)z), with

∑m
k=1 ρk = 1, tk real and tk ̸= tj, for

k ̸= j, where g0(z) =
1+z
1−z

; in this case Dn > 0 for n < (m − 1) and Dn
.
= 0

for n ≥ m.

With out loss of generality, we consider that c1 > 0. On using Lemma
2.2, for n = 2 and n = 3 respectively, we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

On expanding the determinant, we get

D2 = [ 8 + 2Re{c21c2} − 2 | c2 |2 − 4 | c1 |2 ] ≥ 0,

Applying the fundamental principles of complex numbers, the above expres-
sion is equivalent to

2c2 = c21 + y(4− c21), for some complex value y with |y| ≤ 1. (2.2)

and D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21)+ c1(2c2 − c21)
2| ≤ 2(4− c21)

2 − 2|(2c2 − c21)|2. (2.3)

Simplifying the relations (2.2) and (2.3), we obtain

4c3 = {c31 + 2c1(4 − c21)y − c1(4 − c21)y
2 + 2(4 − c21)(1 − |y|2)ζ}, (2.4)

for some complex values y and ζ with |y| ≤ 1 and |ζ| ≤ 1 respectively.

To obtain our results, we refer to the classical method devised by Libera
and Zlotkiewicz [9], which has been used widely.
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3 Main Results

Theorem 3.1. If f ∈ ℜ and F is the kth root transformation of f given by
(1.2) then

|bk+1b3k+1 − b22k+1| ≤
4

9k2

and the inequality is sharp.

Proof. For f ∈ ℜ, by virtue of Definition 1.1, we have

f ′(z) = g(z) ∀z ∈ E. (3.1)

Using the series representations for f ′ and g in (3.1), we get

an+1 =
cn

n+ 1
∀n ∈ N. (3.2)

For a function f given by (1.1), a computation shows that

[
f(zk)

] 1
k =

[
zk +

∞∑
n=2

anz
nk

] 1
k

=
[
z +

1

k
a2z

k+1 +
{1

k
a3 +

1− k

2k2
a22

}
z2k+1

+
{1

k
a4 +

1− k

k2
a2a3 +

(1− k)(1− 2k)

6k3
a32

}
z3k+1

+
{1

k
a5 +

1− k

k2
(a23 + 2a2a4) +

(1− k)(1− 2k)

2k3
a32a3

+
(1− k)(1− 2k)(1− 3k)

24k4
a42

}
z4k+1 + · · ·

]
. (3.3)

From the equations (1.2) and (3.3), we obtain

bk+1 =
1

k
a2 ; b2k+1 =

1

k
a3 +

1− k

2k2
a22 ;

b3k+1 =
1

k
a4 +

1− k

k2
a2a3 +

(1− k)(1− 2k)

6k3
a32;

b4k+1 =

[
1

k
a5 +

1− k

2k2
(a23 + 2a2a4) +

(1− k)(1− 2k)

2k3
a22a3

+
(1− k)(1− 2k)(1− 3k)

24k4
a42

]
. (3.4)
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Simplifying the expressions (3.2) and (3.4), we get

bk+1 =
c1
2k

; b2k+1 =
c2
3k

+
(1− k)

8k2
c21 ;

b3k+1 =
c3
4k

+
(1− k)

6k2
c1c2 +

(1− k)(1− 2k)

48k3
c31.

b4k+1 =
c4
5k

+
(1− k)c22
18k2

+
(1− k)c1c3

8k2
+

(1− k)(1− 2k)

24k3
c21c2

+
(1− k)(1− 2k)(1− 3k)

384k4
c41. (3.5)

Upon using the values of bk+1, b2k+1 and b3k+1 from (3.5), we obtain

|bk+1b3k+1 − b22k+1| =
1

576k4

∣∣(72c1c3 − 64c22)k
2 + 3(k2 − 1)c41

∣∣. (3.6)

Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from
Lemma 2.2, on the right-hand side of the expression (3.6), we have

∣∣(72c1c3−64c22)k
2+3(k2−1)c41

∣∣ = ∣∣∣∣[72c1 × 1

4

{
c31 + 2c1(4− c21)y − c1(4− c21)y

2

+2(4− c21)(1− |y|2)ζ
}
− 64× 1

4

{
c21 + y(4− c21)

}2]
k2 + 3(k2 − 1)c41

∣∣∣∣ .
Applying the triangle inequality and the fact |ζ| < 1, which simplifies to∣∣(72c1c3 − 64c22)k

2 + 3(k2 − 1)c41
∣∣ ≤ ∣∣(5k2 − 3)c41 + 36k2c1(4− c21)

+4k2c21(4− c21)|y|+ 2(c1 + 2)(c1 + 16)k2(4− c21)|y|2
∣∣ . (3.7)

By choosing c1 = c ∈ [0, 2], noting that (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b),
where a, b ≥ 0, applying the triangle inequality and replacing |y| by µ on the
right-hand side of (3.7), we obtain∣∣(72c1c3−64c22)k

2+3(k2−1)c41
∣∣ ≤ [(

5k2−3)c4+36k2c(4−c2)+4k2c2(4−c2)µ

+ 2(c− 2)(c− 16)k2(4− c2)µ2
]
= F (c, µ), for 0 ≤ µ = |y| ≤ 1. (3.8)

Where F (c, µ) =
[
(5k2 − 3)c4 + 36k2c(4− c2) + 4k2c2(4− c2)µ

+ 2(c− 2)(c− 16)k2(4− c2)µ2]. (3.9)

Next, we need to find the maximum value of the function F (c, µ) on the
closed region [0, 2] × [0, 1]. Let us suppose that there exists a maximum
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value at any point in the interior of the closed region [0, 2] × [0, 1]. From
(3.9), on differentiating F (c, µ) partially with respect to µ, we get

∂F

∂µ
= 4k2

{
c2 + (c− 2)(c− 16)µ

}
(4− c2). (3.10)

For 0 < µ < 1, for fixed c with 0 < c < 2 and for k ∈ N, from (3.10), we
observe that ∂F

∂µ
> 0. Therefore, F (c, µ) becomes an increasing function of µ

and hence it cannot have a maximum value at any point in the interior of
the closed region [0, 2]× [0, 1]. The maximum value of F (c, µ) occurs on the
boundary i.e., when µ = 1. Therefore, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (3.11)

On replacing µ by 1 in (3.9), we get

G(c) = −(k2 + 3)c4 − 40k2c2 + 256k2, (3.12)

G′(c) = −4(k2 + 3)c3 − 80k2c. (3.13)

From the expression (3.13), we observe that G′(c) ≤ 0 for all values of c
in the interval [0, 2] and for each k ∈ N. Therefore, G(c) is a monotonically
decreasing function of c in the interval [0, 2] and hence it attains the maximum
value at c = 0 only. From (3.12), the maximum value G(c) at c = 0 is given
by

max
0≤c≤2

G(0) = 256k2. (3.14)

From the expressions (3.8) and ( 3.14), we get∣∣(72c1c3 − 64c22)k
2 + 3(k2 − 1)c41

∣∣ ≤ 256k2. (3.15)

Simplifying the relations (3.6) and (3.15), we obtain

|bk+1b3k+1 − b22k+1| ≤
4

9k2
. (3.16)

By choosing c1 = c = 0 and selecting y = 1 in (2.2) and (2.4), we find that
c2 = 2 and c3 = 0. Substituting the values c1 = c3 = 0, c2 = 2 in (3.3) then
the obtained values in (3.16), we see that equality is attained, which shows
that our result is sharp. For the values c1 = c3 = 0, and c2 = 2, from (2.1),
we derive

g(z) = 1 + 2z2 + 2z4 − .... =
1 + z2

1− z2
. (3.17)

Therefore, in this case the extremal function is

f ′(z) =
1 + z2

1− z2
.

This completes the proof of our Theorem 3.1.
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Remarks 3.2. By choosing k = 1 in (3.16), the result coincides with that
of Janteng et al. [6].

The following Theorem is a straight forward verification on applying The-
orem 3.1.

Theorem 3.3. If f ∈ ℜ and F is the kth root transformation of f given by
(1.2) then

|b2k+1 − b2k+1| ≤
2

3k
,

the inequality is sharp for the values c1 = c = 0, c2 = 2 and y = 1

Theorem 3.4. If f ∈ ℜ and F is the kth root transformation of f given by
(1.2) then

|bk+1b2k+1 − b3k+1| ≤
1

2k
.

Proof. Applying the same procedure as we did in Theorem 3.1, we arrive at

|bk+1b2k+1 − b3k+1| =
1

48k3

∣∣∣− 6k2c3 + 4k2c1c2 − (1− k)(2− k)c31

∣∣∣. (3.18)

Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from
Lemma 2.2 on the right-hand side of the expression (3.18), after simplifying,
we get

48k3|bk+1b2k+1 − b3k+1| ≤
∣∣(3k − 2)c31 − 6k2(4− c21)ζ − 2k2c1(4− c21)|y|

−3k2(c1 + 2)(4− c21)|y|2ζ
∣∣ . (3.19)

Using the fact |ζ| < 1 and applying the triangle inequality, we have

48k3|bk+1b2k+1 − b3k+1| ≤
∣∣(3k − 2)c31 + 6k2(4− c21) + 2k2c1(4− c21)|y|

+3k2(c1 + 2)(4− c21)|y|2
∣∣ . (3.20)

Since c1 = c ∈ [0, 2], noting that c1 + a ≥ c1 − a, where a ≥ 0 and replacing
|y| by µ on the right-hand side of the above inequality, we obtain

48k3|bk+1b2k+1 − b3k+1| ≤
[
(3k − 2)c3 + 6k2(4− c2) + 2k2c(4− c2)µ

+3k2(c− 2)(4− c2)µ2
]

= F (c, µ) , 0 ≤ µ = |y| ≤ 1 and 0 ≤ c ≤ 2, (3.21)

where F (c, µ) =
[
(3k − 2)c3 + 6k2(4− c2) + 2k2c(4− c2)µ

+3k2(c− 2)(4− c2)µ2
]
. (3.22)
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Now, we maximize the function F (c, µ) on the closed region [0, 2] × [0, 1].
Differentiating F (c, µ) given in (3.22) partially with respect to µ and c
respectively, we obtain

∂F

∂µ
= 2k2c(4− c2) + 6k2(4c− c3 − 8 + 2c2)µ. (3.23)

and
∂F

∂c
= 3(3k−2)c2−12k2c+8k2µ−6k2c2µ+3k2(4−3c2+4c)µ2. (3.24)

For the extreme values of F (c, µ), consider

∂F

∂µ
= 0 and

∂F

∂c
= 0. (3.25)

In view of (3.25), on solving the equations in (3.23) and (3.24), we obtain
the only critical point for the function F (c, µ) which lies in the closed region
[0, 2]× [0, 1] is (0, 0). At the point (0, 0), we observe that

∂2F

∂µ2
= −48k2 < 0;

∂2F

∂c2
= −12k2 < 0;

∂2F

∂c∂µ
= 8k2

and
[(∂2F

∂µ2

)(
∂2F

∂c2

)
−

(
∂2F

∂c∂µ

)2 ]
= 512k4 > 0, with k ∈ N.

Therefore, the function F (c, µ) has maximum value at the point (0, 0), from
(3.22), it is given by

Gmax = F (0, 0) = 24k2. (3.26)

Simplifying the expressions (3.18), (3.21) and (3.26), we get

|bk+1b2k+1 − b3k+1| ≤
1

2k
. (3.27)

By setting c1 = c = y = 0 and selecting ζ = 1 in the expressions (2.2) and
(2.4), we find that c2 = 0 and c3 = 2 respectively. Substituting the values
c1 = c2 = 0, c3 = 2 in (3.3) and then the obtained values in (3.27), we observe
that equality is attained, which shows that our result is sharp. For the values
c1 = c2 = 0 and c3 = 2, from (2.1), we derive the extremal function, given by

g(z) = 1 + 2z3 + ... =
1 + z3

1− z3
.

so that from (2.1), we have

f ′(z) = 1 + 2z3 + ..... =
1 + z3

1− z3
.

This completes the proof of our Theorem 3.4.
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Remarks 3.5. By choosing k = 1 in (3.27), we get |b2b3 − b4| ≤ 1
2
. This

result coincides with that of Bansal et al. [2].

Theorem 3.6. If f ∈ ℜ and F is the kth root transformation of f given by
(1.2), then we have the following inequalities:

(i)
∣∣∣bk+1

∣∣∣ ≤ 1

k
. (ii)

∣∣∣b2k+1

∣∣∣ ≤ 3 + k

6k2
. (iii)

∣∣∣b3k+1

∣∣∣ ≤ k2 + k + 1

6k3
.

(iv)
∣∣∣b4k+1

∣∣∣ ≤ 54k3 + 405k2 − 710k + 395

360k4
.

Proof. Using the fact that |cn| ≤ 2, for n ∈ N, with the help of c2 and
c3 values given in (2.2) and (2.4) respectively together with the values in
(3.5), upon simplification, we at once obtain all the above inequalities. This
completes the proof of our Theorem 3.6.

Substituting the results of Theorems 3.1, 3.3, 3.4 and 3.6 in the inequality
given in (1.4), which simplifies to obtain the following Corollary.

Corollary 3.7. If f ∈ ℜ and F is the kth root transformation of f given by
(1.2) then ∣∣[H3(1)]

1
k

∣∣ ≤ 99k3 + 490k2 − 545k + 395

540k5
. (3.28)

Remarks 3.8. Choosing k = 1 in (3.28), which simplifies to |H3(1)| ≤ 439
540

.
This result coincides with that of Bansal et al. [2].
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