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Abstract

In this paper, we prove the strong convergence of an approximating common element of the
set of fixed points of a nonexpansive multivalued mapping and the set of solutions of a variational
inequality problem for a monotone, Lipschitz continuous mapping in a Hilbert space by using
the modified extragradient method. As applications, we give the example and numerical results

for supporting our main theorem.

Keywords: Extragradient method; Variational inequality; Nonexpansive multi-valued mapping;

Iteration; Hilbert space.

1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C
be a nonempty closed convex subset of H . Let CB(C), K(C) and P(C) denote the families of
nonempty closed bounded subsets, nonempty compact subsets and nonempty proximinal bounded
subset of C, respectively. The Hausdorff metric on CB(C) is defined by

H(A, B) = max { 81612 d(z, B), sgg d(y, A)}
@ y

for all A, B € CB(C) where d(x, B) = infycp || — b||. A singlevalued mapping S : C — C is said
to be nonezpansive if
15z = Sy[| < [z = yll

for all z,y € C. A multivalued mapping S : C' — CB(C) is said to be nonexpansive if

H(Sz, Sy) < ||z —
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for all z,y € C. An element z € C is called a fized point of S : C' — C (resp., S: C — CB(C)) if
z =Sz (resp., z € Sz). The fixed point set of S is denoted by F(S). We write x,, — z to indicate
that the sequence {z,} converges weakly to xz and z,, — x implies that {x,} converges strongly to

xT.

Let S: C — CB(H) be a multivalued mapping, I — S (I is an identity mapping) is said to be
demiclosed at y € C if {z,,}72, C C such that x,, = x and {z,, — z,} — y where z, € Sz, imply
x—y € Sx.

Lemma 1.1. [1] Let C' be a nonempty and weakly compact subset of a Hilbert space H and S :
C — K(H) a nonezxpansive mapping. Then I — S is demiclosed.

Recently, many authors have shown the existence of fixed points of multivalued mappings in
Hilbert spaces and Banach spaces (see [3, 9, 10, 14, 13]). The study multivalued mapping is much
more complicated and difficult more than singlevalued mapping.

*_nonexpansive multi-

Subsequently, Hussain and Khan [5] proved fixed point theorems of a
valued mapping and strong convergence of its iterates to a fixed point defined on a closed and
convex subset of a Hilbert space by using the best approximation operator Pgx, which is defined
by Psxz = {y € Sz : ||y —z|| = d(x, Sx)}. For more results, refer to [0, 12, 21]. This is an important

tool for studying fixed point theorem for multivalued mapping.

Let A : C — H be a mapping of C into H. A mapping A is called
(i) monotone if

(Au — Av,u —v) >0 ,Yu,v e C

(ii) k-Lipschitz continuous if there exists a positive real number k such that
|Au — Av|| < klju — | ,Vu,v e C
(iii) a-inverse-strongly-monotone if there exists a positive real number « such that
(Au — Av,u —v) > al|Au — Av|? NVu,v e C.

We know that if S : C — C is nonexpansive, then A = [ — S is % -inverse strongly monotone;
see[16, 17, 18] for more details.

It is easy to see that an a-inverse-strongly-monotone mapping A is monotone and Lipschitz
continuous. We consider the following variational inequality problem (VI(A, C)): find a u € C such
that

(Au,u —v) >0 Vo e C.

The solution set of the variational inequality problem is denoted by €. Recently, Takahashi
and Toyoda [19] introduced the following iterative scheme for finding an element of F'(S) N under
the assumption that a set C' C H is nonempty, closed and convex, a mapping S : C — C is

nonexpansive and a mapping A : C' — H is a-inverse-strongly-monotone :

Tnt1 = nZn + (1 — ap)SPo(x, — ApAxy,) Vn >0,
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where g = z € C, {ay} is a sequence in (0,1) and {\,} is a sequence in (0,2«).They proved that
if F(S)NQ is nonempty, then the sequence {x,} converges weakly to some z ¢ F'(S) N Q.

In 1976, Korpelevich [7] introduced the new method which is called extragradient method
for solving the variational inequality problem in a finite-dimensional Euclidean space R™ under the
assumption that a set C' C R" is nonempty, closed and convex, a mapping A : C — R" is monotone

and k-Lipschitz continuous and €2 is nonempty. The method as follows :

xo=x € R",
T = Po(xn — AMzy,),
x1 = Po(z, — MNAZy,) Vn >0

where A € (0,1/k). He showed that the sequences {z,} and {Z,} converge to the same point z € Q.

Subsequently motivated by the idea of Korpelevich’s extragradient method [7], Nadezhkina
and Takahashi [3] introduced an iterative process for finding a common element of the set of fixed
points of a nonexpansive mapping and the set of solutions of a variational inequality problem. They
proved the following weak convergence theorem for two sequences generated by this process : Let
C be a nonempty closed convex subset of a real Hilbert space H. Let A : C' — H be a monotone,
k-Lipschitz continuous mapping and S : C' — C be a nonexpasive mapping such that F(S)NQ # (.
Let {x,},{yn} be the sequences generated by

To =T € Ha
Yn = PC’(«Tn - )\nAxn)a
Tyl = antn + (1 — an)SPo(zn — AMy,) ¥Yn >0

where {\,} C [a,b] for some a,b € (0,1/k) and {a,} C [c,d] for some ¢,d € (0,1). Then the
sequences {x,},{yn} converge weakly to the same point z € F(S) N where

z = lim PF(S)HQJ“H'

n—oo

Very recently, Lu-Chuan Zeng and Jen-Chih Yao[22]are inspired by Nadezhkina and Takahashi’s

iterative process[3] , they introduced the following iterative process :

To =T € H7
Yn = PC(mn - )\nAxn)a
Tyl = anzo + (1 — an)SPo(zy, — AMyn) ¥Yn >0

where {\,} and {«,} satisfy the conditions :
(a) {\}k C (0,1 —90) for some 6 € (0,1) ;

e8]

(b) {an} € (0,1), > ap =00, lim «, =0.
n=0 n—0o

They showed that the sequences {z,}, {y»} converge strongly to the same point Pp(g)nozo where

lim ||z, — 241l = 0.
n—oo
Motivated by Lu-Chuan Zeng and Jen-Chih Yao [22],we introduce the new iteration for a

nonexpansive multivalued as follow:

Let C' be a closed convex subset of a real Hilbert space H . Let A be an a-inverse strongly
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monotone mapping of C' into H and let S : C' — K(C') be a nonexpansive multivalued mapping.
Let {a,} € (0,1) and {A,} C (0,1). For any x¢ € C, we find yy, tg, x1 € C such that

Yo = Pc(xo — Ao Awo),
to = Po(xo — MoAyo),
x1 € agxo + (1 — 040) Stg.

Then we compute y;,t1 € C by y1 = Po(z1 — MAzy) and ¢ = Po(z1 — A Ayr).
Let ¢; € Sx; from Nadler theorem [9], there exists g1 € Sy; such that
ler = qull < H (Sz1, Sy1) -
Again from Nadler theorem [9] , there exists by € St; such that
g1 — b1]| < H (Sy1,5t1),
then we can find z9 € C such that
x9 = 1o+ (1 —aq) by.
Next, we can compute ya,t2 € C' by 1y = Po(xa — MAxy) and  te = Po(xa — MaAys).

Inductively, we can construct the sequence {z,} C C by the following manner ;
Yn = PC(xn - )\nAxn)a
Tyl = anzo + (1 — ) by,

for each n € N, where b, € St,, such that ¢, = Po(x, — \yAyn) , gn € Sy, and ¢, € Sz, such
that an - gn” <H (StTu Syn) s ”gn - CnH <H (Synv an) .

2 Preliminaries and lemmas

Let H be a real Hilbert space and C' be a nonempty closed convex subset of H. We know that
a Hilbert space H satisfies Opial’s condition, that is, for any sequence {x,} C H with x,, — x, the
inequality
Jim (2, —af < lim [z, — ]
for all y € H with x # y. For every point z € H, there exists a unique nearest point in C', denoted
by Pcx, such that || — Pox|| < ||z —y|| Vy € C. P¢ is called the metric projection of H onto C'. It
is know that P¢ is a nonexpansive mapping of H onto C. Ii is also know that P¢ is characterized

by the following properties :Pox € C and for all z € H,y € C
(v — Pox, Pox —y) > 0, (2.1)
|Pox — Pyl < (Pea — Pey,« — y). (2.2)
Let A: C — H be a mapping. It is easy to see from (2.1) that the following implications hold :
u€ Qs u=Po(u—NAu) VA>0. (2.3)

A setvalued mapping T : H — 2H is called monotone if for all z,y € H, f € Tz and g € Ty,
we have (x —y, f —g) > 0. A monotone mapping T : H — 29 is maximal if its graph G(T) is

not properly contained in the graph of any other monotone mapping. It is know that a monotone
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mapping 7" is maximal if and only if for (z,f) € H x H,(x —y, f — g) > 0 for all (y,g9) € G(T),
then f € Tx. Let A: C — H be a monotone, k-Lipschitz continuous mapping and Ngv be the
normal cone to C at v € C, i.e., Nov={w € H:(v—wu,w) > 0,Yu € C}. Define

Av+ New , if veC,
Tv =
0 yifvée C.

Then T is maximal monotone and 0 € T'v if and only if v € Q.

In order to prove the main result in Section 3, we shall use the following lemmas in the sequel.

Lemma 2.1. [20] Let {s,} be a sequence of nonnegative numbers satisfying the conditions : sp4+1 <
(1 — ap)Sn + anfhn, ¥n > 0 where {an} and {Bn} are sequences of real numbers such that
(i) {an} C [0,1] and > .2 | oy = 00, or equivalently,
[[2o (1 —an) i=limy oo [Tr—o (1 — ax) = 0;
(#) im sup,, o Bn <0, or
(111) Y, anfBy is convergent.
Then lim,,_oo Sp, = 0.

Lemma 2.2. In a real Hilbert space H, there holds the inequality :
2 +yl* < l«|* +2(y,z +y) Va,y€H.

Lemma 2.3. Let H be a real Hilbert space. Then the following hold:

@) llz = yl* = ll=[I* = ly* — 2(z — y,y) for all z,y € H;

@) llz+yll* < ll2l* +2(y, 2 +y) for all v,y € H;

(3) [tz + (1 = t)yll* = tz]> + (1 = )llyl|* = t(1 — )ll= — y||* for all t € [0,1] and z,y € H;
Lemma 2.4. [15] Let {z,} and {yn} be bounded sequences in a Banach space and let {3,} be a

sequence of [0,1] such that 0 < hrn inf 3, < hm sup B, < 1. Suppose xp11 = (1 — Bn) Yn + Bnn
for alln € N and hm sup(Hyn+1 ynH - Hxn+1 —x,||) <0. Then, hm |y — znll = 0.

Lemma 2.5. [2] Let {sn} be a sequence of nonnegative real numbers, {a,} be a sequence in [0, 1]
with Y~ | o, = 00, {Bn} be a sequence of nonnegative real numbers with Y .~ 1 B, < 0o and {y,}

be a sequence of real numbers with lim sup,,_, ., vn < 0. Suppose that

Sn+l = (1 - an)sn + apyn + 571

for all n € N. Then lim,, o S, = 0.

Condition(A). Let H be a Hilbert space and C be a subset of H. A multivalued mapping
S:C — K(C) is said to satisfy Condition (A) if ||z — p|| = d(x, Sp) for all x € H and p € F(S).

Remark 2.6. We see that S satisfies Condition (A) if and only if Sp = {p} for all p € F(S). It is

known that the best approximation operator Ps also satisfies Condition (A).
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3 Main results

In this section, we prove strong convergence theorems for a variational inequality problem and

a fixed point problem of a nonexpansive multivalued mapping.

Theorem 3.1. Let C' be a nonempty weakly compact and conver subset of a real Hilbert space H.
Let A: C — H be a monotone, k-Lipschitz continuous mapping and S : C' — K(C) a nonexpansive

multivalued mapping such that F (S)NQ # 0. Let {x,}, {yn} be the sequences generated by

xg € C chosen arbitrary,
Yn = PC(xn - )\nAxn)a

Tnt1 = QpZo + (1 - an) bn7

for each n € N, where ¢, € Sz, , there exist g, € Sy, and b, € SP.(x, — \yAy,) such that
16, = gnll < H (SPc(zn — AnAyn), Syn) and ||gn — cn|l < H (Syn, Szn).
Assume that {\,} and {ay,} satisfy the conditions :

(a) {ank} C (0,1 =) forsome § € (0,1) ,

(b) {an} € (0,1), § ap = oo,nlin;oan = 0.
If S satisfies Conditi:n:l(A), then the sequences {x,}, {yn} converge strongly to the same point
Pr(s)naxo provided

lim |z, — xpt1]] = 0.
n—oo

Proof. We divide the proof into five steps.
Step 1. Show that {z,} is bounded. Let v € F' (S) N Q. From the definition of {x,}, we have

”xn - )\nAyn - ’U,||2 > ”xn - )\nAyn - Pc (xn - A’rLAyn) ||2 + ||u - Pc (mn - )\nAyn) H2
”xn - )\nAyn - thQ - ||u - tn||2'

v

We observe that

lu—tall® < ll#n = AnAyn — ull® = [lzn — An Ay — tol|?
< lzn —ul]? = |20 — tall? = 200 Ayn, 2n — w) + 2(M Ay, zp — t)
<l = ull® =l — tall* + 220 (Ayn, u — tn)
= Hxn—uHQ— Hxn_thQ
+20, ((Ayp, — Au,u — yp) + (Au,u — yn) + (AYn, Yn — tn))
<l —ul® = llzn — tall® + 220 (Ayn, yn — ta)

= |lzn — UH2 — [|on — yn||2 = 2(Tp — Yny Yn — tn) — lyn — tn”2
+2)\n<Ayn7yn - tn)
= Hxn - uH2 - Hxn - yn||2 —lyn — tn”2 +2(zn — MAYn — Yn, tn — yn>- (3.1)
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Further from the property of metric projection, we obtain

<xn - )\nAyn — Yn,tp — yn> =

<

<

It follows from (3.1) and (3.2) that
[t —ul® < lan —ul?* -
< lan — ul® -

< —ul?.

For b,, € St,,, we have

Hxn+1 - u” =
<
<
<
<
<
<

This implies that {z,} is bounded. It follows from (3.3) that

84
<xn — MAz, — Yn, bn — yn> + <)\nA$n - )\nAyna ty — yn>
<>\nAxn - )\nAym tn — yn)

W 32)
20 = ynll> = lyn — tall® + 2Xnkl|zn — ynlllltn — yal
[z — ynll? + 275K |20 — ynl|®
(3.3)
llanzo + (1 — )by, — ul|, Vb, € Sty
anl|zo — ull + (1 — )| b — uf]
ap||lxo — ul| + (1 — a)d(bn, Su)
ap||lxo — ul| + (1 — an) H(Sty, Su)
anllzo — ull + (1 — an)[tn — ull
apllzo — ull + (1 — an)||2n — u|
anl|zo — ul| + (1 — ay)[lzo — ul|
|zo — ull
ltw — ull < lzo — ], ¥ > 0. (3.4

This shows that {¢,} is also bounded.

Step 2. Show that lim |z,
n—oo

have
|1 —ul® =
<
<
<
It follows from (3.3) that
Itn —ull?* <
From (3.5) and (3.6), we have
s —ul® <
<

— yn|| = 0. Since S satisfies Condition (A), for each b, € St,, we

lanzo + (1 — o) by — ul|?

an ||z = ull* + (1 = an) b — ul?

an [|wo — ul]* + (1 — o) d (b, u)?

o |lzo — ull? + (1 — o) H (Sty, Su)?

an [[zo — ul* + (1 — o) [Itn — ull*. (3.5)
Hxn - uH2 + ()‘anQ - 1) Hxn - ynH2 (3-6)

an llzg = ul® + (1 = @) (llzn = ull® + (A2k? = 1) llzn = yll?)

an ||lwo — ull® + [lzn — ul® + (A2 = 1) |20

2
_ynH )
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which implies that

8llzn —yal® < (1= Xa2k?) Il — yall®
< ap fleo = ull® + llzn — ul® = 21 — ul?
< anllzo — ul® + [lon — wnsi ]l (lzn = ull = Jens —ul).
Since lim ||, — 2p41]] =0 and lim «,, = 0, we have
n—00 n—00

lim ||z, —yn|| =0. (3.7)

Step 3. Show that lim |l¢, — z,|| = 0 for some ¢, € Sx,. Setting t,, = Po(x, — Ay Ay,), we
n—oo

have
lyn —tull = [[Pe(zn — AAzn) — Po(zn — AnAyn)||
< |len — AnAxy — xp + A Ay ||
= allAz, — Ay,
< )\nk||$n - yn” (3'8)

It follows from (3.7) and (3.8) that
lim |y, — t,[| = 0. (3.9)
n—oo

By the definition of {z,}, there exists b, € St, such that ||g, — b,|| < H(Syn, St,). For u € F(S),

from (3.5) we have

lgn = zniall < llgn = bull + [1bn — zp 41 |
< H(Syn, Stn) + ||bn — (anzo + (1 — an)by) ||
< lyn = tall + anllbn — ol
< g = tall + an(([bn — ull + llu — zol)
[yn = tnll + an(d(bn, Su) + [lu — zol])
< lyn = tall + an(H(Stn, Su) + [[u — zol|)
< lyn = tall + an(lltn — ull + [Ju — zol|)
< |y — tall + amllzo — ull + anl[zo — ull
< yn — tall 4 2am|[zo — ul]. (3.10)

It follows from (3.9), (3.10) and lim,, .~ v, that
lim ||gn — Tn41]| = 0. (3.11)
n—oo

From the definition of {z,}, for each ¢, € Sz, there exists g, € Sy, such that |c, — gnl <
H(Sxy, Sy,). Observe that

len —znll < len = gnll + lgn — Znta | + (2041 — zn]
< H(Swn, Syn) + lgn — nat |l + | 201 — 20|
< Mo = yull + 190 — Tptall + |21 — 240l
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From (3.7), (3.13) and limy, e ||Zn+1 — zn|| = 0, we obtain

lim |¢, — x| = 0. (3.12)

n—00
Step 4. Show that limsup (zo — u*, 2, — u*) < 0 where u* = Pp(y)n oTo. Indeed we pick a
n—oo
subsequence {x,,} of {x,} so that

limsup (zg —u*, 2y, —u™) = lim (zg —u",zp, —u™). (3.13)
n—00 n—00

Without loss of generality, we may further assume that {z,,} converges weakly to @ for some @ € H.
Hence (3.13) reduces to

limsup (g — v, 2, —u*) = (xg—u",0—u"). (3.14)

n—oo

In order to prove (xo — u*,u — u*) <0, it suffices to show that o € F'(S)N Q.

From (zo — u*, @ — u*) = (xo — Pr(s)n o0, % — Pp(s)n a®o) <0, we have @ € F (S)N Q.

By Lemma (1.1) ; it follows from step 3 , we obtain @ € P(S). Now we show @ € 2. Since from
(3.7) and (3.8) we have t,,, = @ and y,, — . Let

Av+ New , if veC,
Tv =
0, ifvégC.

Then T' is maximal monotone and 0 € T'v if and only if v €  ; see [11]. Let (v,w) € G(T'). Then
we have w € Tv = Av + N¢v and hence w — Av € Neov. Therefore we have (v — u,w — A4,) > 0 for
all u € C. On the other hand , from t, = Po(z, — \yAyy) and v € C we have

<-Tn — M Ay — tp, ty — U>

v

0
(V—tn,tn — Tn + AMAyn) >0

v—t tp — T + )\nAyn
ns X,

0
An

v

and hence

tn_ n
<v—tn,>\x+Ayn> > 0.

Therefore according to the face that w — Av € Nov and t, € C' , we have

(v —=tp,,w) < (v—ty,, Av)
tn; — Tn,;

< (v —ty,, Av) — <v —tni,? +Ayi>

tn

< (v —ty,, Av — Aty,,) — <v —tn,, Z/\_xn’> + (v —tn,, —Atn, — Ayn,)
ni

to—
< <v—tni,—Ayni—Atni>—<v—tni,M>.
o,

7

Thus we get (v — @, w) > 0 as i — oo. Since T is maximal monotone, we have % € T~10 and hence
@ € €. This shows that @ e F(S)N$. Therefore by the property of the metric projection, we obtain

(xo —u*,u—u*)y <0.
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Step 5. Show that z, — u* and y, — u* as n — oo where u* € Pp(g)nqzo. By Lemma 2.2
and (3.3), we get

llonxo + (1 — ap )by, — u”‘||2

01 — ||

< (L= an)?[lbn — u||* + 2an{zo — u*, wpgr — u")
= (1 —apn)?d(b,, Su*)? + 20 (xo — u*, g1 — u*)
< (1= an)H(Sty, Su*)? + 204, (v0 — u*, 2py1 — u™)
< (1= an)|[tn — u*|]* + 20 (0 — u*, Tpp1 — u*)

< (L= an)lzn — u[* + anfy

where (8, = 2(xo — u*, 41 — u*). Thus an application of Lemma 2.1 combined with Step 4 yields

that x,, — w*. Since ||z, — yn|| — 0,we have y,, — w*. This completes the proof. O

If Sp = {p} for all p € F(S) , S satisfies Condition (A) then we obtain the following results.

Theorem 3.2. Let C be a nonempty weakly compact and convex subset of a real Hilbert space H.
Let A: C — H be a monotone, k-Lipschitz continuous mapping and S : C — K(C) nonexpansive

multivalued mapping such that F(S)NQ # O . Let {zn},{yn} be sequences generated by

xg € C chosen arbitrary,
Yn = PC(xn - )\nAxn)
Tnt1 = QpZo + (1 - an) bn7

for each n € N, where ¢, € Sz, , there exist g, € Sy, and b, € SPo(x, — A\yAyy) such that
1bn — gull < H (SPc(zn — AnAyn), Syn) and ||gn — cnl| < H (Syn, Szn).
Assume that {\,} and {a,} satisfy the conditions :

(a) {ank} C (0,1 —9) forsome § € (0,1) ,

(b) {an} € (0,1), § ap = oo,nllrlgoan =0.
If Sp = {p} for all pn€:1F(S), then the sequences {xyn},{yn} converge strongly to the same point
Pp(s)nqTo provided nlg{.lo |z — Tnt1]] = 0.

Since Pg satisfies condition (A), we also obtain the following result.

Theorem 3.3. Let C be a nonempty weakly compact and convex subset of a real Hilbert space H.
Let A: C — H be a monotone, k-Lipschitz continuous mapping and Ps : C — K(C') nonexpansive

multivalued mapping such that F(S)N Q #0. Let {x,},{yn} be sequences generated by

xg € C  chosen arbitrary,
Yn = PC(xn - )\nA$n)

Tnt+l = QpZo + (1 - an) bn,

for each n € N, where ¢, € Psxy, , there exist g, € Psy, and b, € PsPo(x, — Ay Ayy) such that
”bn - gnH <H (PSPC(xn - AnAyn)a PSyn) and Hgn - CnH <H (Psym Pan)~
Assume that {\,} and {a,} satisfy the conditions :
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(a) {ank} C (0,1 —9) forsome § € (0,1) ,

(b) {an} C(0,1), > a, =00, lim a, =0.
n=1 =00

If Ps is nonexpansive multivalued mapping, then the sequences {x,},{yn} converge strongly to the

same point Pp(s)naTo provided lim ||z, — zp41] = 0.
n—oo
Proof. By the same proof as in theorem 3.1, we have
lim |¢, — x| =0
n—oo

where ¢, € Psx,,.
This implies that
d(xpn, Sty) < d(xp, Psxy) < |lcn — zp]| — 0

as n — 00. From I — S is demiclosed at 0, so we obtain the result. O

4 Examples and Numerical Results
In this section, we give examples with numerical results for supporting our theorem.

Example 4.1 Let H = Rand C = [-0.5,0.5] . Define mappings A: C — H and S : C — K(C) by
Az =2z for all x € C and Sz = [0, %2] for all z € C, respectively. Choose A\, = m, n = 5707
It is easy to check that A satisfy all condition in Theorem 3.1 , S nonexpansive multivalued mapping
such that F'(S) = {0}. Since S(0) = {0} , we have ||z — 0|| = d(x,{0}). Thus S satisfies condition

(A).

Table 4.1. Numerical results of Example 4.1 being randomized ¢, € Sx,, in two times

Randomized in the 1st

Randomized in the 2nd

" Cn Yn T, Cn Yn Tp,

0 0.117802458 -0.5 0.5 0.077357373 -0.5 0.5

1 0.002411539 -0.235604916 0.117802458 0.001829127 -0.154714754 0.077357373
2 0.000714444 -0.5 0.168065128 0.007705911 -0.5 0.167821762
3 0.008117840 -0.5 0.166826993 0.006591779 -0.5 0.16881101
4 0.001859387 -0.5 0.149521120 0.005185511 -0.5 0.139377096
5 0.001297219 -0.5 0.112447639 0.001793885 -0.5 0.11881805
6 0.000384351 -0.5 0.093610049 0.002015589 -0.5 0.093528338
7 0.002045022 -0.5 0.079139023 0.002553498 -0.5 0.080024555
8 0.002207204 -0.5 0.06971751 0.000122847 -0.5 0.069324433
9 0.000384815 -0.5 0.06081756 0.001202973 -0.5 0.060701763
49  5.1122E-0.5 -0.5 0.010407632 5.29047E-0.5 -0.5 0.010408298
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Figure 4.1: Error plots for all sequences {z,} in Table 4.1.

Choosing x¢g = 0.5, we can compute the numerical results as in Table 4.1 and Figure 4.1. From

Table 4.1 and Figure 4.1, we see that 0 is the solution in Example 4.1.
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