INNERNESS σ-DERIVATIONS AND INNERNESS σ-HIGHER DERIVATIONS

H. MAHDAVIAN RAD*
Department of Mathematics, Salman Farsi University of Kazerun, P. O. Box 73175457, Kazerun 7319673544, Iran.

Received November, 21, 2016, Accepted January, 1, 2018

2010 Mathematics Subject Classification. 16w25, 46L57.
E-mail address: mahdavianrad@kazerunsfu.ac.ir, hmahdavianrad@gmail.com

> Abstract. Let \mathcal{M} be a W^{*}-algebra and $\mathcal{A} \subseteq \mathcal{M}$ a commutative W^{*}-subalgebra of \mathcal{M} containing the identity element of \mathcal{M}. Let $\sigma: \mathcal{M} \rightarrow \mathcal{M}$ be a continuous homomorphism and $\delta: \mathcal{M} \rightarrow \mathcal{M}$ a σ-derivation. In this paper, it is proved that there exists a $x_{0} \in \mathcal{M}$ such that $\delta(a)=\sigma(a) x_{0}-x_{0} \sigma(a)$, for each $a \in \mathcal{A}$. Also, it is proved that if $\left\{d_{n}\right\}$ is a continuous strongly σ-higher derivationon on \mathcal{M}, then there exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{M}$ such that
> $d_{n}(a)=\sigma^{n}(a) x_{n}-x_{n} \sigma^{n}(a)-x_{n-1} d_{1}\left(\sigma^{n-1}(a)\right)-x_{n-2} d_{2}\left(\sigma^{n-2}\right)(a)-\ldots-x_{1} d_{n-1}(\sigma(a))$

for each $a \in \mathcal{A}$.

1. INTRODUCTION

Let \mathcal{A} be an algebra. We say that a linear mapping d on \mathcal{A} is a derivation if it satisfies

$$
d(a b)=a d(b)+d(a) b \quad(\forall a, b \in \mathcal{A}) .
$$

For example, suppose $x_{0} \in \mathcal{A}$ is an arbitrarary element; one can prove that a linear mapping d on \mathcal{A} with the property

$$
d(a)=a x_{0}-x_{0} a, \quad(\forall a \in \mathcal{A})
$$

is a derivation; in general, a linear mapping with such a property is called an inner derivation.

A sequence $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} is called a higher derivation if it satifies

$$
\begin{equation*}
d_{n}(a b)=\sum_{k=0}^{n} d_{k}(a) d_{n-k}(b) \tag{1.1}
\end{equation*}
$$

Date: Received: xxxxxx; Revised: yyyyyy; Accepted: zzzzzz.

* Corresponding author.

Key words and phrases. derivation, σ-derivation, σ-higher derivation, inner derivation, W^{*}-algebra.
for all $a, b \in \mathcal{A}$ and each nonnegative integer n; we say that it is strongly, if $d_{0}=I$. A typical example of a higher derivation is $\left\{\frac{\delta^{n}}{n!}\right\}$ where $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation. It seems that this example has been the first motivation to define higher derivations. Higher derivations were introduced, for first time, by Hasse and Schmidt in [3].

Now in what follows, assume that σ, τ be two homomorphism on \mathcal{A}. A linear mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a (σ, τ)-derivation if it satisfies the generalized Leibniz rule $d(x y)=d(x) \sigma(y)+\tau(x) d(y)$ for each $x, y \in \mathcal{A}$. By a σ-derivation we mean a (σ, σ) derivation. An ordinary derivation is an I-derivation where I is the identity mapping on \mathcal{A}. Specially, if $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is an ordinary derivation and $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ is a homomorphism, then $d=\delta \sigma$ is a σ-derivation.

In view of [4$]$, a sequence $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} is called a σ-higher derivation if it satifies

$$
\begin{equation*}
d_{n}(a b)=\sum_{k=0}^{n} d_{k}\left(\sigma^{n-k}(a)\right) d_{n-k}\left(\sigma^{k}(b)\right) \tag{1.2}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$ and each nonnegative integer n; we say that it is strongly, if $d_{0}=I$. A typical example of a σ-higher derivation is $\left\{\frac{\delta^{n}}{n!}\right\}$ where $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a σ-derivation in which $d \sigma=\sigma d$.

In view [6, theorem 2.5.1], if \mathcal{M} is a W^{*}-algebra and $\mathcal{A} \subseteq \mathcal{M}$ is a commutative W^{*} subalgebra containing the identity element of \mathcal{M} and $d: \mathcal{M} \rightarrow \mathcal{M}$ a derivation, then there exists a $x_{0} \in \mathcal{M}$ such that $d(a)=a x_{0}-x_{0} a$ for each $a \in \mathcal{A}$. Also in light of [6 , theorem 2.5.3], every derivation on a W^{*}-algebra is inner.

In view [5], if \mathcal{M}, \mathcal{A} are as in the same sets stated above and $\left\{d_{n}\right\}$ a stongly higher derivation, then there exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{M}$ such that

$$
d_{n}(a)=a x_{n}-x_{n} a-x_{n-1} d_{1}(a)-x_{n-2} d_{2}(a)-\ldots-x_{1} d_{n-1}(a), \forall a \in \mathcal{A}
$$

In this paper, by supposing that \mathcal{M}, \mathcal{A} are as in the same sets stated above and that $\sigma: \mathcal{M} \rightarrow \mathcal{M}$ a continuous homomorphism and $\delta: \mathcal{M} \rightarrow \mathcal{M}$ a σ-derivation, it is showed that there exists a $x_{0} \in \mathcal{M}$ such that $\delta(a)=\sigma(a) x_{0}-x_{0} \sigma(a)$, for each $a \in \mathcal{A}$. Also, it is demonstrated that if $\left\{d_{n}\right\}$ is a continuous and strongly σ-higher derivation on \mathcal{M}, then there exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{M}$ such that
$d_{n}(a)=\sigma^{n}(a) x_{n}-x_{n} \sigma^{n}(a)-x_{n-1} d_{1}\left(\sigma^{n-1}(a)\right)-x_{n-2} d_{2}\left(\sigma^{n-2}\right)(a)-\ldots-x_{1} d_{n-1}(\sigma(a))$
for each $\mathrm{a} \in \mathrm{A}$.

2. INNERNESS σ-DERIVATIONS

Let \mathcal{A} be an algebra. A linear operator d is said to be a deivation if it satisfies the Libnitz Rule $d(a b)=d(a) b+a d(b)$ for each $a, b \in \mathcal{A}$. We say that it is inner if there exists $x_{0} \in \mathcal{A}$ such that $d(a)=a x_{0}-x_{0} a$ for each $a \in \mathcal{A}$. If σ is a homomorphism on \mathcal{A}, a linear mapping d with the property

$$
d(a b)=d(a) \sigma(a)+\sigma(a) d(b), \quad(\forall a, b \in \mathcal{A})
$$

is called a σ-derivation. We say that it is inner, if there exists $x_{0} \in \mathcal{A}$ such that $d(a)=$ $\sigma(a) x_{0}-x_{0} \sigma(a)$ for each $a \in \mathcal{A}$.

Theorem 2.1. Let \mathcal{M} is a W^{*}-algebra and $\mathcal{A} \subseteq \mathcal{M}$ a commutative W^{*}-subalgebra of \mathcal{M} containing the identity element of \mathcal{M}. Let $\sigma: \mathcal{M} \rightarrow \mathcal{M}$ be a continuous homomorphism and $d: \mathcal{M} \rightarrow \mathcal{M}$ a σ-derivation. There exists an element $x_{0} \in \mathcal{M}$ with the property $\left\|x_{0}\right\| \leq\|\sigma\|\|d\|$ such that $d(a)=\sigma(a) x_{0}-x_{0} \sigma(a)$ for each $a \in \mathcal{A}$.

Proof. In view of [G], d is continuous. From [[], proposition 14] (or [7, proposition 1.4.5]), \mathcal{A} is the linear span of its unitary elements (i.e. any element of \mathcal{A} is a finite linear combination of the unitary elements). Suppose \mathcal{A}^{u} be the set of all unitary elements of \mathcal{A}. It is enough to show that the result holds for \mathcal{A}^{u}. For each $u \in \mathcal{A}^{u}$, we define the linear mapping

$$
\begin{aligned}
& T_{u}: \mathcal{M} \rightarrow \mathcal{M} \\
& T_{u}(x)=(\sigma(u))^{-1}(x \sigma(u)+d(u)), \quad \forall x \in \mathcal{M}
\end{aligned}
$$

Suppose $a, b \in \mathcal{A}^{u}$. We have

$$
\begin{aligned}
T_{a} T_{b}(x) & =T_{a}\left((\sigma(b))^{-1}(x \sigma(b)+d(b))\right) \\
& =(\sigma(a))^{-1}\left[\left((\sigma(b))^{-1}(x \sigma(b)+d(b))\right) \sigma(a)+d(a)\right] \\
& =(\sigma(a))^{-1}(\sigma(b))^{-1} x \sigma(b) \sigma(a)+(\sigma(a))^{-1}(\sigma(b))^{-1} d(b) \sigma(a) \\
& +(\sigma(a))^{-1}(\sigma(b))^{-1} \sigma(b) d(a) \\
& =(\sigma(a))^{-1}(\sigma(b))^{-1}(x \sigma(b) \sigma(a)+d(b) \sigma(a)+\sigma(b) d(a)) \\
& =\sigma(b a)^{-1}(x \sigma(b a)+d(b a)) \\
& =T_{b a}(x)=T_{a b}(x)=T_{a} T_{b}(x)
\end{aligned}
$$

Now consider $\Omega=\left\{T_{u}: u \in \mathcal{A}^{u}\right\}$; for each $u \in \mathcal{A}^{u}$, the function T_{u} is σ-continuous (see [6, page 2]). Suppose \mathcal{K} is the σ-closed convex subset of \mathcal{M} generated by $\left\{T_{u}(0): u \in \mathcal{A}^{u}\right\}$; since

$$
\begin{aligned}
\left\|T_{u}(0)\right\| & =\left\|(\sigma(u))^{-1} d(u)\right\| \\
& =\left\|\left(\sigma\left(u^{-1}\right)\right) d(u)\right\| \\
& \leqslant\|\sigma\|\|d\|
\end{aligned}
$$

In light of the Banach-Alaogla theorem, \mathcal{K} is σ-compact. Also since $T_{v u}=T_{v} T_{u}$, for each $u, v \in \mathcal{A}^{u}$, it is immediate that $T(\mathcal{K}) \subseteq \mathcal{K}$. Thus in view the Markov -Kakutani (see [ZZ, Theorem VII.2.1; page 185]), there exists $x_{0} \in \mathcal{K}$ such that $T\left(x_{0}\right)=x_{0}$ for each $T \in \Omega$; actually, for each $u \in \mathcal{A}^{u}, T_{u}\left(x_{0}\right)=x_{0}$. In fact, for each $u \in \mathcal{A}^{u}$,

$$
d(u)=\sigma(u) x_{0}-x \sigma(u) .
$$

Moreover that, obviously

$$
\left\|x_{0}\right\| \leq\|\sigma\|\|d\|
$$

Remark 2.2. Let $\sigma, \tau: \mathcal{M} \rightarrow \mathcal{M}$ be continuous homomorphisms and $\delta: \mathcal{M} \rightarrow \mathcal{M}$ a (σ, τ)-derivation. Then, similar to the proof of Theorem [2.D, and by considering that

$$
\begin{aligned}
& T_{u}: \mathcal{M} \rightarrow \mathcal{M} \\
& T_{u}(x)=(\sigma(u))^{-1}(x \tau(u)+d(u)), \quad \forall x \in \mathcal{M}
\end{aligned}
$$

one can show that there exists an element $x 0 \in M$ such that $d(a)=\tau(a) x 0 \quad x 0 \sigma(a)$ for each $\mathrm{a} \in \mathrm{A}$.

3. INNERNESS σ-HIGHER DERIVATIONS

Let \mathcal{A} be an algebra. A sequence $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} is called a higher derivation if it satifies

$$
\begin{equation*}
d_{n}(a b)=\sum_{k=0}^{n} d_{k}(a) d_{n-k}(b) \tag{3.1}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$ and each nonnegative integer n; it is siad to be strongly if $d_{0}=I$. We say that a stongly higher derivation $\left\{d_{n}\right\}$ is inner if ther exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{A}$ such that

$$
d_{n}(a)=a x_{n}-x_{n} a-x_{n-1} d_{1}(a)-x_{n-2} d_{2}(a)-\ldots-x_{1} d_{n-1}(a) .
$$

In view [5], if \mathcal{M}, \mathcal{A} are as in Theorem [2.1] and $\left\{d_{n}\right\}$ a stongly higher derivation, then there exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{M}$ such that

$$
d_{n}(a)=a x_{n}-x_{n} a-x_{n-1} d_{1}(a)-x_{n-2} d_{2}(a)-\ldots-x_{1} d_{n-1}(a) .
$$

Definition 3.1. Let $\sigma: \mathcal{M} \rightarrow \mathcal{M}$ be a homomorphism; in view of [G], a sequence $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} is called a σ-higher derivation if it satifies

$$
\begin{equation*}
d_{n}(a b)=\sum_{k=0}^{n} d_{k}\left(\sigma^{n-k}(a)\right) d_{n-k}\left(\sigma^{k}(b)\right) \tag{3.2}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$ and each nonnegative integer n; it is strongly if $d_{0}=I$. We say that a stongly σ-higher derivation $\left\{d_{n}\right\}$ is inner if ther exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{A}$ such that

$$
d_{n}(a)=\sigma^{n}(a) x_{n}-x_{n} \sigma^{n}(a)-x_{n-1} d_{1}\left(\sigma^{n-1}(a)\right)-x_{n-2} d_{2}\left(\sigma^{n-2}(a)-\ldots-x_{1} d_{n-1}(\sigma(a))\right.
$$

If moreover $\tau: \mathcal{M} \rightarrow \mathcal{M}$ be a homomorphism, a sequence $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} is called a (σ, τ)-higher derivation if it satifies

$$
\begin{equation*}
d_{n}(a b)=\sum_{k=0}^{n} d_{k}\left(\tau^{n-k}(a)\right) d_{n-k}\left(\sigma^{k}(b)\right) \tag{3.3}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$ and each nonnegative integer n; we say that a stongly (σ, τ)-higher derivation $\left\{d_{n}\right\}$ is inner if ther exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{A}$ such that

$$
d_{n}(a)=\tau^{n}(a) x_{n}-x_{n} \sigma^{n}(a)-x_{n-1} d_{1}\left(\sigma^{n-1}(a)\right)-x_{n-2} d_{2}\left(\sigma^{n-2}(a)-\ldots-x_{1} d_{n-1}(\sigma(a))\right.
$$

for each $a \in \mathcal{A}$.

Theorem 3.2. Let \mathcal{M} be are as in Theorem 2.1. Let $\left\{d_{n}\right\}$ be a continuous and strongly σ higher derivation on \mathcal{A}. Then there exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{M}$ with the property

$$
\left\|x_{n}\right\| \leqslant\left\|d_{n}\right\|\|\sigma\|+\left(\left\|x_{1}\right\|\left\|d_{n-1}\right\|+\ldots+\left\|x_{n-1}\right\|\left\|d_{1}\right\|\right)\|\sigma\|^{2}
$$

such that

$$
d_{n}(a)=\sigma^{n}(a) x_{n}-x_{n} \sigma^{n}(a)-x_{n-1} d_{1}\left(\sigma^{n-1}(a)\right)-x_{n-2} d_{2}\left(\sigma^{n-2}(a)-\ldots-x_{1} d_{n-1}(\sigma(a))\right.
$$

for each $a \in \mathcal{A}$.

Proof. For $n=1$, it is clear that $d_{1}(a b)=d_{1}(a) \sigma(b)+\sigma(a) d_{1}(b)$; i.e. d_{1} is a σ-derivation and hence from Theorem [2.], there exists an element $x_{0} \in \mathcal{M}$ such that $d(a)=\sigma(a) x_{0}$ $x_{0} \sigma(a)$. By assumming that the theorem holds for $n-1$, we continue the proof by induction and prove the fact for n. Similar to the proof of Theorem [2.], it is enough to show that the result holds for the unitary elements. Suppose \mathcal{A}^{u} be the set of all unitary elements of \mathcal{A}. For each $u \in \mathcal{A}^{u}$, we define the linear mapping

$$
\begin{aligned}
& T_{u}: \mathcal{M} \rightarrow \mathcal{M} \\
& T_{u}(x)=\left(\sigma^{n}(u) x-d_{n}(u)-x_{1} d_{n-1}(\sigma(u))-\ldots-x_{n-1} d_{1}\left(\sigma^{n-1}(u)\right)\right)(\sigma(u))^{-n}, \forall x \in \mathcal{M}
\end{aligned}
$$

Suppose $u, v \in \mathcal{A}^{u}$; we have

$$
\begin{aligned}
T_{u} T_{v}(x) & =T_{u}\left(\left(\sigma^{n}(v) x-d_{n}(v)-x_{1} d_{n-1}(\sigma(v))-\ldots-x_{n-1} d_{1}\left(\sigma^{n-1}(v)\right)\right)\left(\sigma^{-n}(v)\right)\right) \\
& =\left(\sigma^{n}(u)\left[\left(\sigma^{n}(v) x-d_{n}(v)-x_{1} d_{n-1}(\sigma(v))-\ldots-x_{n-1} d_{1}\left(\sigma^{n-1}(v)\right)\right)\left(\sigma^{-n}(v)\right)\right]\right. \\
& \left.-d_{n}(u)-x_{1} d_{n-1}(\sigma(u))-\ldots-x_{n-1} d_{1}\left(\sigma^{n-1}(u)\right)\right) \sigma^{-n}(u) \\
& =\left[(\sigma ^ { n } (u) \sigma ^ { n } (v) x - \sigma ^ { n } (u) d _ { n } (v) - \sigma ^ { n } (u) x _ { 1 } d _ { n - 1 } (\sigma (v)) - \ldots - \sigma ^ { n } (u) x _ { n - 1 } d _ { 1 } (\sigma ^ { n - 1 } (v))) \left(\sigma^{-n}(v)\right.\right. \\
& \left.-d_{n}(u)-x_{1} d_{n-1}(\sigma(u))-\ldots-x_{n-1} d_{1}\left(\sigma^{n-1} u\right)\right] \sigma^{-n} u
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sigma^{n}(u) \sigma^{n}(v) x-d_{n}(u v)+d_{n}(u) \sigma^{n}(v)+d_{n-1}(\sigma(u)) d_{1}\left(\sigma^{n-1} v\right)+d_{n-2}\left(\sigma^{2}(u)\right) d_{2}\left(\sigma^{n-2}(v)\right)\right. \\
& \left.+\ldots+d_{2}\left(\sigma^{n-2}(u)\right) d_{n-2}\left(\sigma^{2}(v)\right)+d_{1}\left(\sigma^{n-1}(u)\right) d_{n-1}(\sigma(v))\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\left(\sigma^{n}(u) x_{1} d_{n-1}(\sigma(v))-\sigma^{n}(u) x_{2} d_{n-2}\left(\sigma^{2}(v)\right)-\ldots-\sigma^{n}(u) x_{n-1} d_{1}\left(\sigma^{n-1}(v)\right)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\left(-d_{n}(u) \sigma^{n}(v)-x_{1} d_{n-1}(\sigma(u)) \sigma^{n}(v)-\ldots-x_{n-1} d_{1}\left(\sigma^{n-1}(u)\right) \sigma^{n}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& =\sigma^{n}(u) \sigma^{n}(v) x \sigma^{-n}(v) \sigma^{-n}(u)-d_{n}(u v) \sigma^{-n}(v) \\
& \left.+\quad\left(d_{n-1}(\sigma u)\right)-\sigma^{n}(u) x_{n-1}\right) d_{1}\left(\sigma^{n-1}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\quad\left(d_{n-2}\left(\sigma^{2}(u)\right)-\sigma^{n}(u) x_{n-2}\right) d_{2}\left(\sigma^{n}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\quad \ldots+\left(d_{2}\left(\sigma^{n-2}(u)\right)-\sigma^{n}(u) x_{2}\right) d_{n-2}\left(\sigma^{2}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\quad\left(d_{1}\left(\sigma^{n-1}(u)\right)-\sigma^{n}(u) x_{1}\right) d_{n-1}(\sigma(v)) \sigma^{-n}(v) \sigma^{-n}(u) \\
& -x_{1} d_{n-1}(\sigma(u)) \sigma^{-n}(u)-x_{2} d_{n-2}\left(\sigma^{2}(u)\right) \sigma^{-n}(u) \\
& -\ldots-x_{n-2} d_{2}\left(\sigma^{n-2}(u)\right) \sigma^{-n}(u)-x_{n-1} d_{1}\left(\sigma^{n-1}(u)\right) \sigma^{-n}(u) \\
& =\sigma^{n}(u) \sigma^{n}(v) x \sigma^{-n}(v) \sigma^{-n}(u)-d_{n}(u v) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\left(-x_{n-1} \sigma^{n}(u)-x_{n-2} d_{1}\left(\sigma^{n-1}(u)\right)-x_{n-3} d_{2}\left(\sigma^{n-2}(u)\right)\right. \\
& \left.-\ldots-x_{2} d_{n-3}\left(\sigma^{3}(u)\right)-x_{1} d_{n-2}\left(\sigma^{2}(u)\right)\right) d_{1}\left(\sigma^{n-1}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\left(-x_{n-2} \sigma^{n}(u)-x_{n-3} d_{1}\left(\sigma^{n-1}(u)\right)-x_{n-4} d_{2}\left(\sigma^{n-2}(u)\right)\right. \\
& \left.-\ldots-x_{2} d_{n-4}\left(\sigma^{4}(u)\right)-x_{1} d_{n-3}\left(\sigma^{3}(u)\right)\right) d_{2}\left(\sigma^{n-2}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\ldots+\left(-x_{2} \sigma^{n}(u)-x_{1} d_{1}\left(\sigma^{n-1}(u)\right)\right) d_{n-2}\left(\sigma^{2}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& +\left(-x_{1} \sigma^{n}(u)\right) d_{n-1}(\sigma(v)) \sigma^{-n}(v) \sigma^{-n}(u) \\
& -x_{1} d_{n-1}(\sigma(u)) \sigma^{n}(v) \sigma^{-n}(v) \sigma^{-n}(u)-x_{2} d_{n-2}\left(\sigma^{2}(u)\right) \sigma^{n}(v) \sigma^{-n}(v) \sigma^{-n}(u) \\
& -\ldots-x_{n-2} d_{2}\left(\sigma^{n-2}(u)\right) \sigma^{n}(v) \sigma^{-n}(v) \sigma^{-n}(u)-x_{n-1} d_{1}\left(\sigma^{n-1}(u)\right) \sigma^{n}(v) \sigma^{-n}(v) \sigma^{-n}(u) \\
& =\sigma^{n}(u) \sigma^{n}(v) x \sigma^{-n}(v) \sigma^{-n}(u)-d_{n}(u v) \sigma^{-n}(v) \sigma^{-n}(u) \\
& -x_{n-1}\left(\sigma^{n}(u) d_{1}\left(\sigma^{n-1}(v)\right)+d_{1}\left(\sigma^{n-1}(u)\right) \sigma^{n}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u)
\end{aligned}
$$

$$
\begin{aligned}
& -x_{n-2}\left(d_{1}\left(\sigma^{n-1}(u)\right) d_{1}\left(\sigma^{n-1}(v)\right)+\sigma^{n}(u) d_{2}\left(\sigma^{n-2}(v)\right)\right. \\
& \left.+d_{2}\left(\sigma^{n-2}(u)\right) \sigma^{n}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& -x_{n-3}\left(\sigma^{n}(u) d_{3}\left(\sigma^{n-3}(v)\right)+d_{1}\left(\sigma^{n-1}(u)\right) d_{2}\left(\sigma^{n-2}(v)\right)\right. \\
& \left.+d_{2}\left(\sigma^{n-2}(u)\right) d_{1}\left(\sigma^{n-1}(v)\right)+d_{3}\left(\sigma^{n-3}(u)\right) \sigma^{n}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& -\ldots-x_{1}\left(\sigma^{n}(u) d_{n-1}(\sigma(v))+\ldots+d_{n-1}(\sigma(u)) \sigma^{n}(v)\right) \sigma^{-n}(v) \sigma^{-n}(u) \\
& =\left(\sigma^{n}(u v) x-d_{n}(u v)-x_{n-1} d_{1}(u v)-x_{n-2} d_{2}(u v)\right. \\
& \left.-x_{n-3} d_{3}(u v)-\ldots-x_{1} d_{n-1}(u v)\right)\left(\sigma^{-n}(u v)\right) \\
& =T_{u v}(x)
\end{aligned}
$$

Now consider $\Omega=\left\{T_{u}: u \in \mathcal{A}^{u}\right\}$; for each $u \in \mathcal{A}^{u}$, since $\left\{d_{n}\right\}$ is continuous, the function T_{u} is σ-continuous (see [$[$, page 2]). Suppose \mathcal{K} is the σ-closed convex subset of \mathcal{M} generated by $\left\{T_{u}(0): u \in \mathcal{A}^{u}\right\} ;$ since

$$
\begin{aligned}
\left\|T_{u}(0)\right\| & =\left\|\left(d_{n}(u)+x_{1} d_{n-1}(\sigma(u))+\ldots+x_{n-1} d_{1}\left(\sigma^{n-1}(u)\right)\right)(\sigma(u))^{-n}\right\| \\
& \leqslant\left\|d_{n}(u)\right\|+\left\|x_{1} d_{n-1}(\sigma(u))\right\|+\ldots+\left\|x_{n-1} d_{1}\left(\sigma^{n-1}(u)\right)(\sigma(u))^{-n}\right\| \\
& \leqslant\left(\left\|d_{n}\right\|+\left\|x_{1}\right\|\left\|d_{n-1}\right\|\|\sigma\|+\ldots+\left\|x_{n-1}\right\|\left\|d_{1}\right\|\|\sigma\|\right)\|\sigma\| \\
& =\left\|d_{n}\right\|\|\sigma\|+\left(\left\|x_{1}\right\|\left\|d_{n-1}\right\|+\ldots+\left\|x_{n-1}\right\|\left\|d_{1}\right\|\right)\|\sigma\|^{2}
\end{aligned}
$$

in light of the Banach-Alaogla theorem, \mathcal{K} is σ-compact. Also since $T_{v u}=T_{v} T_{u}$, it is clear that $T(\mathcal{K}) \subseteq \mathcal{K}$. Thus in view the Markov-Kakutani theorem (see [2 , theorem VII.2.1]), there exists $x_{0} \in \mathcal{K}$ such that $T\left(x_{0}\right)=x_{0}$ for each $T \in \Omega$; actually, for each $u \in \mathcal{A}^{u}$, $T_{u}\left(x_{0}\right)=x_{0}$ and hence the proof is finished. Moreover that, obviously

$$
\left\|x_{0}\right\| \leqslant\left\|d_{n}\right\|\|\sigma\|+\left(\left\|x_{1}\right\|\left\|d_{n-1}\right\|+\ldots+\left\|x_{n-1}\right\|\left\|d_{1}\right\|\right)\|\sigma\|^{2}
$$

Corollary 3.3. Let \mathcal{M}, \mathcal{A} be as in Theorem w. Let $\sigma: \mathcal{M} \rightarrow \mathcal{M}$ be a continuous homomorphism with the condition $\sigma^{2}=\sigma$. Let $\left\{d_{n}\right\}$ be a strongly σ-higher derivation on \mathcal{A}. Then there exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{M}$ such that

$$
d_{n}(a)=\sigma^{n}(a) x_{n}-x_{n} \sigma^{n}(a)-x_{n-1} d_{1}\left(\sigma^{n-1}(a)\right)-x_{n-2} d_{2}\left(\sigma^{n-2}(a)-\ldots-x_{1} d_{n-1}(\sigma(a))\right.
$$

for each $a \in \mathcal{A}$.

Proof. From [3], $\{\mathrm{dn}\}$ is continuous and in view of Theorem 3.2, the desired fact is easily

proved.
Theorem 3.4. Let \mathcal{M}, \mathcal{A} be as in Theorem [2.]. Let $\sigma, \tau: \mathcal{M} \rightarrow \mathcal{M}$ be continuous homomorphisms. Let $\left\{d_{n}\right\}$ be a continuous and strongly (σ, τ)-higher derivation on \mathcal{A}. Then there exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{M}$ such that

$$
d_{n}(a)=\tau^{n}(a) x_{n}-x_{n} \sigma^{n}(a)-x_{n-1} d_{1}\left(\sigma^{n-1}(a)\right)-x_{n-2} d_{2}\left(\sigma^{n-2}(a)-\ldots-x_{1} d_{n-1}(\sigma(a))\right.
$$

for each $a \in \mathcal{A}$.
Corollary 3.5. Let \mathcal{M}, \mathcal{A} be as in Theorem [.]. Let $\sigma, \tau: \mathcal{M} \rightarrow \mathcal{M}$ be continuous homomorphisms with the condition $\sigma^{2}=\sigma$ and $\tau^{2}=\tau$. Let $\left\{d_{n}\right\}$ be a strongly (σ, τ) higher derivation on \mathcal{A}. Then there exist $x_{1}, x_{2}, x_{3}, \ldots x_{n} \in \mathcal{M}$ such that

$$
d_{n}(a)=\tau^{n}(a) x_{n}-x_{n} \sigma^{n}(a)-x_{n-1} d_{1}\left(\sigma^{n-1}(a)\right)-x_{n-2} d_{2}\left(\sigma^{n-2}(a)-\ldots-x_{1} d_{n-1}(\sigma(a))\right.
$$

for each $a \in \mathcal{A}$.
Proof. From [3], $\left\{d_{n}\right\}$ is continuous and in view of Theorem [3.4], the desired fact is easily proved.

References

[1] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag Berlin Heidelberg New York 1973.
[2] Kenneth R. Davidson, C^{*}-Algebras by Example, American Mathematical Society, 1996.
[3] H. Hasse and F. K. Schmidt, Noch eine Begrdung der theorie der hheren differential quotienten in einem algebraischen funtionenkrper einer unbestimmeten, J. Reine Angew. Math. 177 (1937), 215237.
[4] S. Hejazian, H. Mahdavian Rad, M. Mirzavaziri, (σ, τ)-Higher Derivation, Journal of Advanced Research in Pure Mathematics, 4 (2012), no. 4, 67-77.
[5] S. Hejazian, T. L. Shatry, Characterization of higher derivations on Banach algebras, to appear.
[6] S. Sakai, Operator algebras in dynamical systems, CAMBRIDGE UNIVERSITY PRESS, 1991.
[7] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer-Verlag Berlin Heidelberg New York 1971.

