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Abstract

In this paper, the concept of ωθ-continuous function from an ar-
bitrary topological space into the product space will be characterized.
Moreover, some versions of separation axioms with respect to ωθ-open
set will be introduced and characterized.
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1 Introduction

The first attempt to replace various concepts in topology with concepts
possessing either of weaker or stronger properties was done by N. Levine [4]
in 1963. In his work, Levine introduced the concept of semi-open set and
used this to define other new concepts such as semi-closed set and semi-
continuity of a function.

After this notable work of Levine on the concept of semi-open set, several
mathematicians became interested in introducing other topological concepts
which can replace the concept of open set. In 1968, N. Velicko [5] introduced
the concept of super-continuity (or θ-continuity) between topological spaces.
He also defined the concepts such as super-closure (or θ-closure) and super-
interior (or θ-interior) of a subset of a topological space. In 2005, T.A. Al-
Hawary [1] characterized super-continuity and gave relationships between
super-continuity and the other well-known variations of continuity such as
strong continuity, semi-continuity, and closure continuity.

Let (X,T) be a topological space and A ⊆ X. The super-closure and
super-interior of A are, respectively, denoted and defined by

Cls(A) = {x ∈ X : Cl(U) ∩A 6= ∅ for every open set U containing x}

Tamsui Oxford Journal of Informational and Mathematical Sciences 32(2) (2018)
Aletheia University 39



and

Ints(A) = {x ∈ X : Cl(U) ⊆ A for some open set U containing x},

where Cl(U) is the closure of U in X. A subset A of X is super-closed if
Cls(A) = A and super-open if Ints(A) = A. Equivalently, A is super-open
if and only if X\A is super-closed.

In 2010, the authors in [2] introduced the concepts of ωθ-open and ωθ-
closed sets on a topological space. They showed that the family of all ωθ-open
sets in a topological space X forms a topology on X. They also introduced
the notions of ωθ-interior and ωθ-closure of a subset of a topological space.

A subset A of a topological space X is ωθ-open in X if for every x ∈ A,
there exists an open set O containing x such that O\Ints(A) is countable.
A subset B of X is ωθ-closed if its complement X\B is ωθ-open. The ωθ-
closure and ωθ-interior of A ⊆ X are, respectively, denoted and defined
by

Clωθ(A) = ∩{F : F is an ωθ-closed set containing A}

and
Intωθ(A) = ∪{G : G is an ωθ-open set contained in A}.

It is worth noting that A ⊆ Clωθ(A) and Intωθ(A) ⊆ A. Let Tωθ be the
family of all ωθ-open subsets of a topological spaceX. Since Tωθ is a topology
on X, for any set A ⊆ X, Intωθ(A) is ωθ-open and the largest ωθ-open set
contained in A. Moreover, for any set A ⊆ X, Clωθ(A) is ωθ-closed and the
smallest ωθ-closed set containing A. The topological space X is said to be

(i) ωθ-Hausdorff if given any pair of distinct points p, q ∈ X, there exist
disjoint ωθ-open sets U and V such that p ∈ U and q ∈ V ;

(ii) ωθ-regular if for each closed set F and each point x /∈ F , there exist
disjoint ωθ-open sets U and V such that x ∈ U and F ⊆ V ; and

(iii) ωθ-normal if for every pair of disjoint closed sets E and F of X, there
exist disjoint ωθ-open sets U and V such that E ⊆ U and F ⊆ V .

Let X and Y be topological spaces. A function f : X → Y is said to
be ωθ-continuous if for every x ∈ X and every open set V of Y containing
f(x), there exists an ωθ-open set U containing x such that f(U) ⊆ V .

Let A be an indexing set and {Yα : α ∈ A} be a family of topological
spaces. For each α ∈ A, let Tα be the topology on Yα. The Tychonoff
topology on Π{Yα : α ∈ A} is the topology generated by a subbase consisting
of all sets p−1α (Uα), where the projection map pα : Π{Yα : α ∈ A} → Yα is
defined by pα(〈yβ〉) = yα, Uα ranges over all members of Tα, and α ranges
over all elements of A. Corresponding to Uα ⊆ Yα, denote p−1α (Uα) by
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〈Uα〉. Similarly, for finitely many indices α1, α2, . . . , αn, and sets Uα1 ⊆ Yα1 ,
Uα2 ⊆ Yα2 , . . . , Uαn ⊆ Yαn , the subset

〈Uα1〉 ∩ 〈Uα2〉 ∩ · · · ∩ 〈Uαn〉 = p−1α1
(Uα1) ∩ p−1α2

(Uα2) ∩ · · · ∩ p−1αn (Uαn)

is denoted by 〈Uα1 , Uα2 , . . . , Uαn〉. We note that for each open set Uα subset
of Yα, 〈Uα〉 = p−1α (Uα) = Uα × Πβ 6=αYβ. Hence, a basis for the Tychonoff
topology consists of sets of the form 〈Bα1 , Bα2 , ..., Bαk〉, where Bαi is open
in Yαi for every i ∈ K = {1, 2, ..., k}.

Now, the projection map pα : Π{Yα : α ∈ A} → Yα is defined by
pα(〈yβ〉) = yα for each α ∈ A. It is known that every projection map is a
continuous open surjection. Also, it is well known that a function f from
an arbitrary space X into the Cartesian product Y of the family of spaces
{Yα : α ∈ A} with the Tychonoff topology is continuous if and only if each
coordinate function pα ◦ f is continuous, where pα is the α-th coordinate
projection map.

In this paper, we gave a necessary and sufficient condition for a func-
tion from an arbitrary topological space into the product space to be ωθ-
continuous. We also characterized the concepts of ωθ-Hausdorff, ωθ-regular,
and ωθ-normal topological spaces and subsequently examined the relation-
ships of these concepts and to the well-known separation axioms.

2 ωθ-Continuity of Functions in the Product Space

This section gives a characterization of an ωθ-continuous function from an
arbitrary topological space into the product space.

We shall be using the following known result later.

Lemma 2.1 [2, p.296] Let X be a topological space and A ⊆ X. Then

(i) Clωθ(A) is ωθ-closed in X.

(ii) x ∈ Clωθ(A) if and only if A∩G 6= ∅ for all ωθ-open set G containing
x.

(iii) A is ωθ-closed if and only if A = Clωθ(A).

Next, we characterize the concept of ωθ-continuous function.

Theorem 2.2 Let f : X → Y be a function. Then the following statements
are equivalent.

(i) f is ωθ-continuous on X.

(ii) f−1(A) is ωθ-open in X for each open subset A of Y .

(iii) f−1(F ) is ωθ-closed in X for each closed subset F of Y .
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(iv) f−1(B) is ωθ-open in X for each (subbasic) basic open set B in Y .

(v) f(Clωθ(A)) ⊆ Cl(f(A)) for each A ⊆ X.

(vi) Clωθ(f
−1(B)) ⊆ f−1(Cl(B)) for each B ⊆ Y .

Proof. By [2, Theorem 23], statements (i), (ii) and (iii) are equivalent.
(ii)⇒ (iv): This is immediate since (subbasic) basic open sets are open

sets.
(iv) ⇒ (ii): Suppose that f−1(B) is ωθ-open in X for each B ∈ B

where B is a basis for the topology in Y . Let G be an open set in Y .
Then G = ∪{B : B ∈ B∗}, where B∗ ⊆ B. It follows that f−1(G) =
∪
{
f−1(B) : B ∈ B∗

}
. Since the collection of all ωθ-open sets forms a topol-

ogy, f−1(G) is ωθ-open in X.
(i) ⇒ (v): Let A ⊆ X and p ∈ Clωθ(A). Let G be an open subset

of Y containing f(p). Since f is ωθ-continuous on X, there exists an ωθ-
open subset O of X containing p such that f(O) ⊆ G. Since p ∈ Clωθ(A),
O ∩A 6= ∅. It follows that ∅ 6= f(O ∩A) ⊆ f(O) ∩ f(A) ⊆ G ∩ f(A). This
implies that f(p) ∈ Cl(f(A)). Hence, f(Clωθ(A)) ⊆ Cl(f(A)).

(v) ⇒ (vi): Let B ⊆ Y and let A = f−1(B) ⊆ X. By assump-
tion, f(Clωθ(A)) ⊆ Cl(f(A)). Hence, Clωθ(f

−1(B)) ⊆ f−1(f(Clωθ(A))) ⊆
f−1(Cl(f(A))) ⊆ f−1(Cl(B)).

(vi)⇒ (iii): Let F be a closed subset of Y . By assumption,

Clωθ(f
−1(F )) ⊆ f−1(Cl(F )) = f−1(F ).

Hence, f−1(F ) ⊆ Clωθ(f
−1(F )). Then Clωθ(f

−1(F )) = f−1(F ), which
means that f−1(F ) is ωθ-closed. 2

Theorem 2.3 Let Y =

n∏
i=1

Yαi be a product space and Aαi ⊆ Yαi for each

i ∈ {1, 2, . . . , n}. Then Ints

(
n∏
i=1

Aαi

)
=

n∏
i=1

Ints(Aαi).

Proof. Let x = 〈aα〉 ∈ Ints

(
n∏
i=1

Aαi

)
. Then there exists a basic open

set 〈Uα1 , . . . , Uαn〉 containing x such that x ∈ Cl(〈Uα1 , . . . , Uαn〉 ⊆
n∏
i=1

Aαi .

Moreover,

Cl(〈Uα1 , . . . , Uαn〉) = 〈Cl(Uα1), . . . , Cl(Uαn)〉 ⊆ 〈Aα1 , . . . , Aαn〉 .

Hence, each aαi ∈ Cl(Uαi) ⊆ Aαi , and so each aαi ∈ Ints(Aαi). It follows

that x = 〈aα〉 ∈
n∏
i=1

Ints(Aαi). The converse is proved similarly. 2
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Theorem 2.4 Let X be a topological space and Y =
∏
{Yα : α ∈ A} a prod-

uct space. A function f : X → Y is ωθ-continuous on X if and only if each
coordinate function pα ◦ f is ωθ-continuous on X.

Proof. Suppose that f is ωθ-continuous on X. Let α ∈ A, and Uα be open
in Yα. Since pα is continuous, p−1α (Uα) is open in Y . Hence,

f−1(p−1α (Uα)) = (pα ◦ f)−1(Uα)

is an ωθ-open set in X. Thus, pα ◦ f is ωθ-continuous for every α ∈ A.
Conversely, suppose that each coordinate function pα◦f is ωθ-continuous.

Let Gα be open in Yα. Then 〈Gα〉 is a subbasic open set in Y and
(pα◦f)−1(Gα) = f−1(p−1α (Gα)) = f−1(〈Gα〉) is an ωθ-open set in X. There-
fore, f is ωθ-continuous on X. 2

Corollary 2.5 Let X be a topological space, Y =
∏
{Yα : α ∈ A} a product

space, and fα : X → Yα a function for each α ∈ A. Let f : X → Y be the
function defined by f(x) = 〈fα(x)〉. Then f is ωθ-continuous on X if and
only if each fα is ωθ-continuous for each α ∈ A.

Proof. For each α ∈ A and each x ∈ X, we have

(pα ◦ f)(x) = pα(f(x)) = pα(〈fβ(x)〉) = fα(x).

Thus, pα ◦ f = fα for every α ∈ A. The result now follows from Theorem
2.4. 2

Theorem 2.6 Let Y =
n∏
i=1

Yαi be a product space. If a nonempty set O =

〈Oα1 , . . . , Oαn〉 is ωθ-open in Y , then each Oαi is ωθ-open in Yαi .

Proof. Suppose that O = 〈Oα1 , . . . , Oαn〉 is ωθ-open in Y . Then pαi(O) =
Oαi . Let aαi ∈ Oαi . Then there exists x = 〈aαi〉 ∈ O such that pαi(x) = aαi .
Since O is ωθ-open, there exists a basic open set U = 〈Uα1 , . . . , Uαn〉 contain-
ing x such that U \ Ints(O) is countable. Note that pαi(U)\pαi(Ints(O)) ⊆
pαi(U \ Ints(O)) and since U \ Ints(O) is countable, pαi(U \ Ints(O)) is
countable. It follows that pαi(U) \ pαi(Ints(O)) is also countable. Hence
pαi(U) \ pαi(Ints(O)) = Uαi \ Ints(Oαi) is countable. Therefore, each Oαi
is ωθ-open in Yαi . 2

Theorem 2.7 Let X =
n∏
i=1

Xαi and Y =
n∏
i=1

Yαi be product spaces, and for

each i ∈ {1, 2, . . . , n}, let fαi : Xαi → Yαi be a function. If f : X → Y
defined by f(〈xαi〉) = 〈fαi(xαi)〉, is ωθ-continuous on X, then each fαi is
ωθ-continuous on Xαi.
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Proof. Assume that f : X → Y is ωθ-continuous. Let Oαi be an open set
in Yαi . For each i ∈ {1, 2, . . . , n}, let aαi ∈ f−1αi (Oαi) := Gαi . Then

x := 〈aα1 , . . . , aαn〉 ∈ 〈Gα1 , . . . , Gαn〉 =
〈
f−1α1

(Oα1), . . . , f−1αn (Oαn)
〉

= f−1(〈Oα1 , . . . , Oαn〉).

Since each Oαi is open in Yαi , O := 〈Oα1 , . . . , Oαn〉 is open in Y . Since
f is ωθ-continuous, f−1(O) = 〈Gα1 , . . . Gαn〉 is ωθ-open in X. Since x ∈
〈Gα1 , . . . Gαn〉, there exists a basic open set U = 〈Uα1 , . . . Uαn〉 containing x
such that U \ Ints(〈Gα1 , . . . , Gαn〉) is countable. Note that

pαi(U) \ pαi(Ints(〈Gα1 , . . . , Gαn〉)) ⊆ pαi(U \ Ints(〈Gα1 , . . . , Gαn〉)).

Since U \Ints(〈Gα1 , . . . , Gαn〉) is countable, pαi(U \Ints(〈Gα1 , . . . , Gαn〉)) is
also countable. It follows that pαi(U) \ pαi(Ints(〈Gα1 , . . . , Gαn〉)) is count-
able. Hence Uαi \ Ints(Gαi) is countable. This means that each Gαi =
f−1αi (Oαi) is ωθ-open in Xαi . Thus, each fαi is ωθ-continuous on Xαi . 2

3 Some Versions of Separation Axioms

This section provides some characterizations of ωθ-Hausdorff, ωθ-regular,
and ωθ-normal topological spaces.

Theorem 3.1 Let X be a topological space. Then the following are equiva-
lent:

(i) X is ωθ-Hausdorff.

(ii) Let p ∈ X. For each q 6= p, there exists an ωθ-open set U with p ∈ U
such that q /∈ Clωθ(U).

(iii) For each p ∈ X,

C = ∩{Clωθ(U) : U is an ωθ-open set with p ∈ U} = {p}

Proof. (i) ⇒ (ii): Let X be ωθ-Hausdorff. Let p ∈ X and q 6= p. Since
X is an ωθ-Hausdorff, there exists ωθ-open sets U and V such that p ∈ U ,
q ∈ V , and U ∩ V = ∅. By Lemma 2.1, q /∈ Clωθ(U).

(ii) ⇒ (iii): Assume that (ii) holds. Let p ∈ X and q 6= p. Note
that p ∈ C. By (ii), there exists an ωθ-open set U with p ∈ U such that
q /∈ Clωθ(U). This means that q /∈ C. Since q is arbitrary, C = {p}.

(iii) ⇒ (ii): Let p ∈ X and q 6= p. By hypothesis, there exists an
ωθ-open set U such that p ∈ U and q /∈ Clωθ(U), which implies that there
exists an ωθ-open set V with q ∈ V such that U ∩ V = ∅. Hence, X is
ωθ-Hausdorff. 2
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Remark 3.2 There is a topological space X that is an ωθ-Hausdorff but
not Hausdorff.

Consider X = {a, b, c} with topology τ = {X,∅, {a}}. X is not Haus-
dorff since the open sets that contains a and b intersects, but X is ωθ-
Hausdorff since the disjoint ωθ-open sets {a}, {b}, and {c} contains a, b,
and c, respectively.

Theorem 3.3 Let X be a topological space. Then the following are equiva-
lent:

(i) X is ωθ-regular.

(ii) For each x ∈ X and open set U with x ∈ U , there exists an ωθ-open
set V with x ∈ V such that x ∈ V ⊆ Clωθ(V ) ⊆ U .

(iii) For each x ∈ X and closed set F with x /∈ F , there exists an ωθ-open
set V with x ∈ V such that Clωθ(V ) ∩ F = ∅.

Proof. (i)⇒ (ii): Let x ∈ X and U an open set with x ∈ U . Then X \ U
is closed and x /∈ X \ U . By hypothesis, there exist ωθ-open sets V and W
such that x ∈ V , X \ U ⊆ W , and V ∩W = ∅. Thus, V ⊆ X \W so that
Clωθ(V ) ⊆ Clωθ(X \W ) = X \W . Also, Clωθ(V )∩(X \U) ⊆ Clωθ(V )∩W =
∅. Hence, Clωθ(V ) ⊆ U and so x ∈ V ⊆ Clωθ(V ) ⊆ U .

(ii) ⇒ (iii): Let x ∈ X and F a closed set with x /∈ F . Then X \ F is
open and x ∈ X \F . By (ii), there exists an ωθ-open set V with x ∈ V such
that x ∈ V ⊆ Clωθ(V ) ⊆ X \ F . Hence, Clωθ(V ) ∩ F = ∅.

(iii)⇒ (i): Let F be closed and x /∈ F . By (iii), there exists an ωθ-open
set V with x ∈ V such that Clωθ(V ) ∩ F = ∅. Note that X \ Clωθ(V ) is
ωθ-open and F ⊆ X \Clωθ(V ). Furthermore, V ∩X \Clωθ(V ) = ∅. Hence,
X is ωθ-regular. 2

Remark 3.4 There is a topological space X that is an ωθ-regular but not
regular.

Consider X = {a, b, c} with topology τ = {X,∅, {a}}. X is not regular
since every open set that contains the closed set {b, c} intersects with {a}.
But X is ωθ-regular since {b, c} and {a} are disjoint ωθ-open sets containing
{b, c} and {a}, respectively.

Recall that a topological space X is said to be T1 [3, p.138] if for each
p, q ∈ X with p 6= q, there exists open sets U and V such that p ∈ U and
q /∈ U , and q ∈ V and p /∈ V .

Theorem 3.5 Let X be a T1-space. If X is ωθ-regular, then X is ωθ-
Hausdorff.
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Proof. Let x, y ∈ X with x 6= y. Note that X is a T1-space, so there exist
open sets U and V with x ∈ U and y ∈ V such that x /∈ V and y /∈ U .
Then x /∈ X \ U where X \ U is closed. Since X is ωθ-regular, there exist
disjoint ωθ-open sets E and F such that x ∈ E and X \ U ⊆ F . Observe
that y ∈ X \ U and so y ∈ F . Hence, X is ωθ-Hausdorff. 2

Theorem 3.6 Let X be a topological space. Then the following are equiva-
lent:

(i) X is ωθ-normal.

(ii) For each closed set A and for each open set U containing A, there
exists ωθ-open set V containing A such that Clωθ(V ) ⊆ U .

(iii) For each pair of disjoint closed sets A and B, there exists ωθ-open set
U containing A such that Clωθ(U) ∩B = ∅.

Proof. (i) ⇒ (ii): Let A be closed and U be an open set containing A.
Then, A ∩ X \ U = ∅ and so they are disjoint closed sets in X. Since X
is ωθ-normal, there exist disjoint ωθ-open sets V and W such that A ⊆ V
and X \ U ⊆ W (or X \ W ⊆ U). Now, V ∩ W = ∅ which implies
that V ⊆ X \W . Hence, Clωθ(V ) ⊆ Clωθ(X \W ) = X \W . Therefore,
A ⊆ V ⊆ Clωθ(V ) ⊆ X \W ⊆ U .

(ii)⇒ (iii): Let A and B be disjoint closed sets in X. Then, A ⊆ X \B
and X \B is an open set containing A. By (ii), there exists ωθ-open set V
containing A such that Clωθ(V ) ⊆ X \B, which implies that Clωθ(V )∩B =
∅.

(iii)⇒ (i): Let A and B be an disjoint closed sets in X. By (iii), there
exists ωθ-open set U with A ⊆ U such that Clωθ(U)∩B = ∅, which implies
that B ⊆ X \ Clωθ(U). Now, U and X \ Clωθ(U) are disjoint ωθ-open sets
such that A ⊆ U and B ⊆ X \ Clωθ(U). Hence, X is ωθ-normal. 2

Remark 3.7 There is a topological space X that is ωθ-normal but not
normal.

Consider X = {a, b, c} with topology τ = {X,∅, {a} , {a, b} , {a, c}}.
X is not normal since all open sets containing {a} and {b}, respectively,
intersect. However, X is ωθ-normal since each subset of X is ωθ-open, and
so if A and B are any disjoint closed sets in X, then A and B are also
disjoint ωθ-open sets in X.

Theorem 3.8 Let X be a T1-space. If X is ωθ-normal, then X is ωθ-
regular.

Proof. Let x ∈ X and F be a closed set with x /∈ F . Since X is a T1-
space, {x} is closed. Clearly, F and {x} are disjoint closed sets. Since X is
ωθ-normal, there exist disjoint ωθ-open sets U and V such that F ⊆ U and
{x} ⊆ V . Thus, x ∈ V . Hence, X is ωθ-regular. 2
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