On ω_{θ} -Continuity in the Product Space and Some Versions of Separation Axioms

Mhelmar A. Labendia Jemil D. Mancao

Department of Mathematics and Statistics Mindanao State University-Iligan Institute of Technology 9200 Iligan City, Philippines

Received November, 30, 2017, Accepted December, 3, 2018

Abstract

In this paper, the concept of ω_{θ} -continuous function from an arbitrary topological space into the product space will be characterized. Moreover, some versions of separation axioms with respect to ω_{θ} -open set will be introduced and characterized.

Keywords: ω_{θ} -continuous, ω_{θ} -Hausdorff, ω_{θ} -regular, ω_{θ} -normal

1 Introduction

The first attempt to replace various concepts in topology with concepts possessing either of weaker or stronger properties was done by N. Levine [4] in 1963. In his work, Levine introduced the concept of semi-open set and used this to define other new concepts such as semi-closed set and semi-continuity of a function.

After this notable work of Levine on the concept of semi-open set, several mathematicians became interested in introducing other topological concepts which can replace the concept of open set. In 1968, N. Velicko [5] introduced the concept of super-continuity (or θ -continuity) between topological spaces. He also defined the concepts such as super-closure (or θ -closure) and super-interior (or θ -interior) of a subset of a topological space. In 2005, T.A. Al-Hawary [1] characterized super-continuity and gave relationships between super-continuity and the other well-known variations of continuity such as strong continuity, semi-continuity, and closure continuity.

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. The super-closure and super-interior of A are, respectively, denoted and defined by

 $Cl_s(A) = \{x \in X : Cl(U) \cap A \neq \emptyset \text{ for every open set } U \text{ containing } x\}$

and

 $Int_s(A) = \{x \in X : Cl(U) \subseteq A \text{ for some open set } U \text{ containing } x\},\$

where Cl(U) is the closure of U in X. A subset A of X is super-closed if $Cl_s(A) = A$ and super-open if $Int_s(A) = A$. Equivalently, A is super-open if and only if $X \setminus A$ is super-closed.

In 2010, the authors in [2] introduced the concepts of ω_{θ} -open and ω_{θ} closed sets on a topological space. They showed that the family of all ω_{θ} -open sets in a topological space X forms a topology on X. They also introduced the notions of ω_{θ} -interior and ω_{θ} -closure of a subset of a topological space.

A subset A of a topological space X is ω_{θ} -open in X if for every $x \in A$, there exists an open set O containing x such that $O \setminus Int_s(A)$ is countable. A subset B of X is ω_{θ} -closed if its complement $X \setminus B$ is ω_{θ} -open. The ω_{θ} closure and ω_{θ} -interior of $A \subseteq X$ are, respectively, denoted and defined by

$$Cl_{\omega_{\theta}}(A) = \cap \{F : F \text{ is an } \omega_{\theta} \text{-closed set containing } A\}$$

and

 $Int_{\omega_{\theta}}(A) = \bigcup \{ G : G \text{ is an } \omega_{\theta} \text{-open set contained in } A \}.$

It is worth noting that $A \subseteq Cl_{\omega_{\theta}}(A)$ and $Int_{\omega_{\theta}}(A) \subseteq A$. Let $\mathcal{T}_{\omega_{\theta}}$ be the family of all ω_{θ} -open subsets of a topological space X. Since $\mathcal{T}_{\omega_{\theta}}$ is a topology on X, for any set $A \subseteq X$, $Int_{\omega_{\theta}}(A)$ is ω_{θ} -open and the largest ω_{θ} -open set contained in A. Moreover, for any set $A \subseteq X$, $Cl_{\omega_{\theta}}(A)$ is ω_{θ} -closed and the smallest ω_{θ} -closed set containing A. The topological space X is said to be

- (i) ω_{θ} -Hausdorff if given any pair of distinct points $p, q \in X$, there exist disjoint ω_{θ} -open sets U and V such that $p \in U$ and $q \in V$;
- (ii) ω_{θ} -regular if for each closed set F and each point $x \notin F$, there exist disjoint ω_{θ} -open sets U and V such that $x \in U$ and $F \subseteq V$; and
- (*iii*) ω_{θ} -normal if for every pair of disjoint closed sets E and F of X, there exist disjoint ω_{θ} -open sets U and V such that $E \subseteq U$ and $F \subseteq V$.

Let X and Y be topological spaces. A function $f : X \to Y$ is said to be ω_{θ} -continuous if for every $x \in X$ and every open set V of Y containing f(x), there exists an ω_{θ} -open set U containing x such that $f(U) \subseteq V$.

Let \mathcal{A} be an indexing set and $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of topological spaces. For each $\alpha \in \mathcal{A}$, let \mathfrak{T}_{α} be the topology on Y_{α} . The *Tychonoff* topology on $\Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ is the topology generated by a subbase consisting of all sets $p_{\alpha}^{-1}(U_{\alpha})$, where the projection map $p_{\alpha} : \Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\} \to Y_{\alpha}$ is defined by $p_{\alpha}(\langle y_{\beta} \rangle) = y_{\alpha}, U_{\alpha}$ ranges over all members of \mathfrak{T}_{α} , and α ranges over all elements of \mathcal{A} . Corresponding to $U_{\alpha} \subseteq Y_{\alpha}$, denote $p_{\alpha}^{-1}(U_{\alpha})$ by $\langle U_{\alpha} \rangle$. Similarly, for finitely many indices $\alpha_1, \alpha_2, \ldots, \alpha_n$, and sets $U_{\alpha_1} \subseteq Y_{\alpha_1}$, $U_{\alpha_2} \subseteq Y_{\alpha_2}, \ldots, U_{\alpha_n} \subseteq Y_{\alpha_n}$, the subset

$$\langle U_{\alpha_1} \rangle \cap \langle U_{\alpha_2} \rangle \cap \dots \cap \langle U_{\alpha_n} \rangle = p_{\alpha_1}^{-1}(U_{\alpha_1}) \cap p_{\alpha_2}^{-1}(U_{\alpha_2}) \cap \dots \cap p_{\alpha_n}^{-1}(U_{\alpha_n})$$

is denoted by $\langle U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n} \rangle$. We note that for each open set U_{α} subset of Y_{α} , $\langle U_{\alpha} \rangle = p_{\alpha}^{-1}(U_{\alpha}) = U_{\alpha} \times \prod_{\beta \neq \alpha} Y_{\beta}$. Hence, a basis for the Tychonoff topology consists of sets of the form $\langle B_{\alpha_1}, B_{\alpha_2}, \ldots, B_{\alpha_k} \rangle$, where B_{α_i} is open in Y_{α_i} for every $i \in K = \{1, 2, \ldots, k\}$.

Now, the projection map $p_{\alpha} : \Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\} \to Y_{\alpha}$ is defined by $p_{\alpha}(\langle y_{\beta} \rangle) = y_{\alpha}$ for each $\alpha \in \mathcal{A}$. It is known that every projection map is a continuous open surjection. Also, it is well known that a function f from an arbitrary space X into the Cartesian product Y of the family of spaces $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ with the Tychonoff topology is continuous if and only if each coordinate function $p_{\alpha} \circ f$ is continuous, where p_{α} is the α -th coordinate projection map.

In this paper, we gave a necessary and sufficient condition for a function from an arbitrary topological space into the product space to be ω_{θ} continuous. We also characterized the concepts of ω_{θ} -Hausdorff, ω_{θ} -regular, and ω_{θ} -normal topological spaces and subsequently examined the relationships of these concepts and to the well-known separation axioms.

2 ω_{θ} -Continuity of Functions in the Product Space

This section gives a characterization of an ω_{θ} -continuous function from an arbitrary topological space into the product space.

We shall be using the following known result later.

Lemma 2.1 [2, p.296] Let X be a topological space and $A \subseteq X$. Then

- (i) $Cl_{\omega_{\theta}}(A)$ is ω_{θ} -closed in X.
- (ii) $x \in Cl_{\omega_{\theta}}(A)$ if and only if $A \cap G \neq \emptyset$ for all ω_{θ} -open set G containing x.
- (iii) A is ω_{θ} -closed if and only if $A = Cl_{\omega_{\theta}}(A)$.

Next, we characterize the concept of ω_{θ} -continuous function.

Theorem 2.2 Let $f : X \to Y$ be a function. Then the following statements are equivalent.

- (i) f is ω_{θ} -continuous on X.
- (ii) $f^{-1}(A)$ is ω_{θ} -open in X for each open subset A of Y.
- (iii) $f^{-1}(F)$ is ω_{θ} -closed in X for each closed subset F of Y.

- (iv) $f^{-1}(B)$ is ω_{θ} -open in X for each (subbasic) basic open set B in Y.
- (v) $f(Cl_{\omega_{\theta}}(A)) \subseteq Cl(f(A))$ for each $A \subseteq X$.
- (vi) $Cl_{\omega_{\theta}}(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for each $B \subseteq Y$.

Proof. By [2, Theorem 23], statements (i), (ii) and (iii) are equivalent.

 $(ii) \Rightarrow (iv)$: This is immediate since (subbasic) basic open sets are open sets.

 $(iv) \Rightarrow (ii)$: Suppose that $f^{-1}(B)$ is ω_{θ} -open in X for each $B \in \mathcal{B}$ where \mathcal{B} is a basis for the topology in Y. Let G be an open set in Y. Then $G = \bigcup \{B : B \in \mathcal{B}^*\}$, where $\mathcal{B}^* \subseteq \mathcal{B}$. It follows that $f^{-1}(G) = \bigcup \{f^{-1}(B) : B \in \mathcal{B}^*\}$. Since the collection of all ω_{θ} -open sets forms a topology, $f^{-1}(G)$ is ω_{θ} -open in X.

 $(i) \Rightarrow (v)$: Let $A \subseteq X$ and $p \in Cl_{\omega_{\theta}}(A)$. Let G be an open subset of Y containing f(p). Since f is ω_{θ} -continuous on X, there exists an ω_{θ} open subset O of X containing p such that $f(O) \subseteq G$. Since $p \in Cl_{\omega_{\theta}}(A)$, $O \cap A \neq \emptyset$. It follows that $\emptyset \neq f(O \cap A) \subseteq f(O) \cap f(A) \subseteq G \cap f(A)$. This implies that $f(p) \in Cl(f(A))$. Hence, $f(Cl_{\omega_{\theta}}(A)) \subseteq Cl(f(A))$.

 $(v) \Rightarrow (vi)$: Let $B \subseteq Y$ and let $A = f^{-1}(B) \subseteq X$. By assumption, $f(Cl_{\omega_{\theta}}(A)) \subseteq Cl(f(A))$. Hence, $Cl_{\omega_{\theta}}(f^{-1}(B)) \subseteq f^{-1}(f(Cl_{\omega_{\theta}}(A))) \subseteq f^{-1}(Cl(f(A))) \subseteq f^{-1}(Cl(B))$.

 $(vi) \Rightarrow (iii)$: Let F be a closed subset of Y. By assumption,

$$Cl_{\omega_{\theta}}(f^{-1}(F)) \subseteq f^{-1}(Cl(F)) = f^{-1}(F).$$

Hence, $f^{-1}(F) \subseteq Cl_{\omega_{\theta}}(f^{-1}(F))$. Then $Cl_{\omega_{\theta}}(f^{-1}(F)) = f^{-1}(F)$, which means that $f^{-1}(F)$ is ω_{θ} -closed.

Theorem 2.3 Let $Y = \prod_{i=1}^{n} Y_{\alpha_i}$ be a product space and $A_{\alpha_i} \subseteq Y_{\alpha_i}$ for each $i \in \{1, 2, ..., n\}$. Then $Int_s\left(\prod_{i=1}^{n} A_{\alpha_i}\right) = \prod_{i=1}^{n} Int_s(A_{\alpha_i})$.

Proof. Let $x = \langle a_{\alpha} \rangle \in Int_s \left(\prod_{i=1}^n A_{\alpha_i} \right)$. Then there exists a basic open

set $\langle U_{\alpha_1}, \ldots, U_{\alpha_n} \rangle$ containing x such that $x \in Cl(\langle U_{\alpha_1}, \ldots, U_{\alpha_n} \rangle \subseteq \prod_{i=1}^n A_{\alpha_i}$. Moreover,

$$Cl(\langle U_{\alpha_1},\ldots,U_{\alpha_n}\rangle) = \langle Cl(U_{\alpha_1}),\ldots,Cl(U_{\alpha_n})\rangle \subseteq \langle A_{\alpha_1},\ldots,A_{\alpha_n}\rangle$$

Hence, each $a_{\alpha_i} \in Cl(U_{\alpha_i}) \subseteq A_{\alpha_i}$, and so each $a_{\alpha_i} \in Int_s(A_{\alpha_i})$. It follows that $x = \langle a_{\alpha} \rangle \in \prod_{i=1}^n Int_s(A_{\alpha_i})$. The converse is proved similarly. \Box

Theorem 2.4 Let X be a topological space and $Y = \prod \{Y_{\alpha} : \alpha \in A\}$ a product space. A function $f : X \to Y$ is ω_{θ} -continuous on X if and only if each coordinate function $p_{\alpha} \circ f$ is ω_{θ} -continuous on X.

Proof. Suppose that f is ω_{θ} -continuous on X. Let $\alpha \in \mathcal{A}$, and U_{α} be open in Y_{α} . Since p_{α} is continuous, $p_{\alpha}^{-1}(U_{\alpha})$ is open in Y. Hence,

$$f^{-1}(p_{\alpha}^{-1}(U_{\alpha})) = (p_{\alpha} \circ f)^{-1}(U_{\alpha})$$

is an ω_{θ} -open set in X. Thus, $p_{\alpha} \circ f$ is ω_{θ} -continuous for every $\alpha \in \mathcal{A}$.

Conversely, suppose that each coordinate function $p_{\alpha} \circ f$ is ω_{θ} -continuous. Let G_{α} be open in Y_{α} . Then $\langle G_{\alpha} \rangle$ is a subbasic open set in Y and $(p_{\alpha} \circ f)^{-1}(G_{\alpha}) = f^{-1}(p_{\alpha}^{-1}(G_{\alpha})) = f^{-1}(\langle G_{\alpha} \rangle)$ is an ω_{θ} -open set in X. Therefore, f is ω_{θ} -continuous on X.

Corollary 2.5 Let X be a topological space, $Y = \prod \{Y_{\alpha} : \alpha \in A\}$ a product space, and $f_{\alpha} : X \to Y_{\alpha}$ a function for each $\alpha \in A$. Let $f : X \to Y$ be the function defined by $f(x) = \langle f_{\alpha}(x) \rangle$. Then f is ω_{θ} -continuous on X if and only if each f_{α} is ω_{θ} -continuous for each $\alpha \in A$.

Proof. For each $\alpha \in \mathcal{A}$ and each $x \in X$, we have

$$(p_{\alpha} \circ f)(x) = p_{\alpha}(f(x)) = p_{\alpha}(\langle f_{\beta}(x) \rangle) = f_{\alpha}(x).$$

Thus, $p_{\alpha} \circ f = f_{\alpha}$ for every $\alpha \in \mathcal{A}$. The result now follows from Theorem 2.4.

Theorem 2.6 Let $Y = \prod_{i=1}^{n} Y_{\alpha_i}$ be a product space. If a nonempty set $O = \langle O_{\alpha_1}, \ldots, O_{\alpha_n} \rangle$ is ω_{θ} -open in Y, then each O_{α_i} is ω_{θ} -open in Y_{α_i} .

Proof. Suppose that $O = \langle O_{\alpha_1}, \ldots, O_{\alpha_n} \rangle$ is ω_{θ} -open in Y. Then $p_{\alpha_i}(O) = O_{\alpha_i}$. Let $a_{\alpha_i} \in O_{\alpha_i}$. Then there exists $x = \langle a_{\alpha_i} \rangle \in O$ such that $p_{\alpha_i}(x) = a_{\alpha_i}$. Since O is ω_{θ} -open, there exists a basic open set $U = \langle U_{\alpha_1}, \ldots, U_{\alpha_n} \rangle$ containing x such that $U \setminus Int_s(O)$ is countable. Note that $p_{\alpha_i}(U) \setminus p_{\alpha_i}(Int_s(O)) \subseteq p_{\alpha_i}(U \setminus Int_s(O))$ and since $U \setminus Int_s(O)$ is countable, $p_{\alpha_i}(U \setminus Int_s(O))$ is countable. It follows that $p_{\alpha_i}(U) \setminus p_{\alpha_i}(Int_s(O))$ is also countable. Hence $p_{\alpha_i}(U) \setminus p_{\alpha_i}(Int_s(O)) = U_{\alpha_i} \setminus Int_s(O_{\alpha_i})$ is countable. Therefore, each O_{α_i} is ω_{θ} -open in Y_{α_i} .

Theorem 2.7 Let $X = \prod_{i=1}^{n} X_{\alpha_i}$ and $Y = \prod_{i=1}^{n} Y_{\alpha_i}$ be product spaces, and for each $i \in \{1, 2, ..., n\}$, let $f_{\alpha_i} : X_{\alpha_i} \to Y_{\alpha_i}$ be a function. If $f : X \to Y$ defined by $f(\langle x_{\alpha_i} \rangle) = \langle f_{\alpha_i}(x_{\alpha_i}) \rangle$, is ω_{θ} -continuous on X, then each f_{α_i} is ω_{θ} -continuous on X_{α_i} .

Proof. Assume that $f: X \to Y$ is ω_{θ} -continuous. Let O_{α_i} be an open set in Y_{α_i} . For each $i \in \{1, 2, ..., n\}$, let $a_{\alpha_i} \in f_{\alpha_i}^{-1}(O_{\alpha_i}) := G_{\alpha_i}$. Then

$$x := \langle a_{\alpha_1}, \dots, a_{\alpha_n} \rangle \in \langle G_{\alpha_1}, \dots, G_{\alpha_n} \rangle = \langle f_{\alpha_1}^{-1}(O_{\alpha_1}), \dots, f_{\alpha_n}^{-1}(O_{\alpha_n}) \rangle$$
$$= f^{-1}(\langle O_{\alpha_1}, \dots, O_{\alpha_n} \rangle).$$

Since each O_{α_i} is open in Y_{α_i} , $O := \langle O_{\alpha_1}, \ldots, O_{\alpha_n} \rangle$ is open in Y. Since f is ω_{θ} -continuous, $f^{-1}(O) = \langle G_{\alpha_1}, \ldots, G_{\alpha_n} \rangle$ is ω_{θ} -open in X. Since $x \in \langle G_{\alpha_1}, \ldots, G_{\alpha_n} \rangle$, there exists a basic open set $U = \langle U_{\alpha_1}, \ldots, U_{\alpha_n} \rangle$ containing x such that $U \setminus Int_s(\langle G_{\alpha_1}, \ldots, G_{\alpha_n} \rangle)$ is countable. Note that

$$p_{\alpha_i}(U) \setminus p_{\alpha_i}(Int_s(\langle G_{\alpha_1}, \dots, G_{\alpha_n} \rangle)) \subseteq p_{\alpha_i}(U \setminus Int_s(\langle G_{\alpha_1}, \dots, G_{\alpha_n} \rangle)).$$

Since $U \setminus Int_s(\langle G_{\alpha_1}, \ldots, G_{\alpha_n} \rangle)$ is countable, $p_{\alpha_i}(U \setminus Int_s(\langle G_{\alpha_1}, \ldots, G_{\alpha_n} \rangle))$ is also countable. It follows that $p_{\alpha_i}(U) \setminus p_{\alpha_i}(Int_s(\langle G_{\alpha_1}, \ldots, G_{\alpha_n} \rangle))$ is countable. Hence $U_{\alpha_i} \setminus Int_s(G_{\alpha_i})$ is countable. This means that each $G_{\alpha_i} = f_{\alpha_i}^{-1}(O_{\alpha_i})$ is ω_{θ} -open in X_{α_i} . Thus, each f_{α_i} is ω_{θ} -continuous on X_{α_i} . \Box

3 Some Versions of Separation Axioms

This section provides some characterizations of ω_{θ} -Hausdorff, ω_{θ} -regular, and ω_{θ} -normal topological spaces.

Theorem 3.1 Let X be a topological space. Then the following are equivalent:

- (i) X is ω_{θ} -Hausdorff.
- (ii) Let $p \in X$. For each $q \neq p$, there exists an ω_{θ} -open set U with $p \in U$ such that $q \notin Cl_{\omega_{\theta}}(U)$.
- (iii) For each $p \in X$,

$$C = \cap \{ Cl_{\omega_{\theta}}(U) : U \text{ is an } \omega_{\theta} \text{-open set with } p \in U \} = \{ p \}$$

Proof. $(i) \Rightarrow (ii)$: Let X be ω_{θ} -Hausdorff. Let $p \in X$ and $q \neq p$. Since X is an ω_{θ} -Hausdorff, there exists ω_{θ} -open sets U and V such that $p \in U$, $q \in V$, and $U \cap V = \emptyset$. By Lemma 2.1, $q \notin Cl_{\omega_{\theta}}(U)$.

 $(ii) \Rightarrow (iii)$: Assume that (ii) holds. Let $p \in X$ and $q \neq p$. Note that $p \in C$. By (ii), there exists an ω_{θ} -open set U with $p \in U$ such that $q \notin Cl_{\omega_{\theta}}(U)$. This means that $q \notin C$. Since q is arbitrary, $C = \{p\}$.

 $(iii) \Rightarrow (ii)$: Let $p \in X$ and $q \neq p$. By hypothesis, there exists an ω_{θ} -open set U such that $p \in U$ and $q \notin Cl_{\omega_{\theta}}(U)$, which implies that there exists an ω_{θ} -open set V with $q \in V$ such that $U \cap V = \emptyset$. Hence, X is ω_{θ} -Hausdorff. \Box

Remark 3.2 There is a topological space X that is an ω_{θ} -Hausdorff but not Hausdorff.

Consider $X = \{a, b, c\}$ with topology $\tau = \{X, \emptyset, \{a\}\}$. X is not Hausdorff since the open sets that contains a and b intersects, but X is ω_{θ} -Hausdorff since the disjoint ω_{θ} -open sets $\{a\}, \{b\}$, and $\{c\}$ contains a, b, and c, respectively.

Theorem 3.3 Let X be a topological space. Then the following are equivalent:

- (i) X is ω_{θ} -regular.
- (ii) For each $x \in X$ and open set U with $x \in U$, there exists an ω_{θ} -open set V with $x \in V$ such that $x \in V \subseteq Cl_{\omega_{\theta}}(V) \subseteq U$.
- (iii) For each $x \in X$ and closed set F with $x \notin F$, there exists an ω_{θ} -open set V with $x \in V$ such that $Cl_{\omega_{\theta}}(V) \cap F = \emptyset$.

Proof. $(i) \Rightarrow (ii)$: Let $x \in X$ and U an open set with $x \in U$. Then $X \setminus U$ is closed and $x \notin X \setminus U$. By hypothesis, there exist ω_{θ} -open sets V and W such that $x \in V, X \setminus U \subseteq W$, and $V \cap W = \emptyset$. Thus, $V \subseteq X \setminus W$ so that $Cl_{\omega_{\theta}}(V) \subseteq Cl_{\omega_{\theta}}(X \setminus W) = X \setminus W$. Also, $Cl_{\omega_{\theta}}(V) \cap (X \setminus U) \subseteq Cl_{\omega_{\theta}}(V) \cap W = \emptyset$. Hence, $Cl_{\omega_{\theta}}(V) \subseteq U$ and so $x \in V \subseteq Cl_{\omega_{\theta}}(V) \subseteq U$.

 $(ii) \Rightarrow (iii)$: Let $x \in X$ and F a closed set with $x \notin F$. Then $X \setminus F$ is open and $x \in X \setminus F$. By (ii), there exists an ω_{θ} -open set V with $x \in V$ such that $x \in V \subseteq Cl_{\omega_{\theta}}(V) \subseteq X \setminus F$. Hence, $Cl_{\omega_{\theta}}(V) \cap F = \emptyset$.

 $(iii) \Rightarrow (i)$: Let F be closed and $x \notin F$. By (iii), there exists an ω_{θ} -open set V with $x \in V$ such that $Cl_{\omega_{\theta}}(V) \cap F = \emptyset$. Note that $X \setminus Cl_{\omega_{\theta}}(V)$ is ω_{θ} -open and $F \subseteq X \setminus Cl_{\omega_{\theta}}(V)$. Furthermore, $V \cap X \setminus Cl_{\omega_{\theta}}(V) = \emptyset$. Hence, X is ω_{θ} -regular. \Box

Remark 3.4 There is a topological space X that is an ω_{θ} -regular but not regular.

Consider $X = \{a, b, c\}$ with topology $\tau = \{X, \emptyset, \{a\}\}$. X is not regular since every open set that contains the closed set $\{b, c\}$ intersects with $\{a\}$. But X is ω_{θ} -regular since $\{b, c\}$ and $\{a\}$ are disjoint ω_{θ} -open sets containing $\{b, c\}$ and $\{a\}$, respectively.

Recall that a topological space X is said to be T_1 [3, p.138] if for each $p, q \in X$ with $p \neq q$, there exists open sets U and V such that $p \in U$ and $q \notin U$, and $q \in V$ and $p \notin V$.

Theorem 3.5 Let X be a T_1 -space. If X is ω_{θ} -regular, then X is ω_{θ} -Hausdorff.

Proof. Let $x, y \in X$ with $x \neq y$. Note that X is a T_1 -space, so there exist open sets U and V with $x \in U$ and $y \in V$ such that $x \notin V$ and $y \notin U$. Then $x \notin X \setminus U$ where $X \setminus U$ is closed. Since X is ω_{θ} -regular, there exist disjoint ω_{θ} -open sets E and F such that $x \in E$ and $X \setminus U \subseteq F$. Observe that $y \in X \setminus U$ and so $y \in F$. Hence, X is ω_{θ} -Hausdorff. \Box

Theorem 3.6 Let X be a topological space. Then the following are equivalent:

- (i) X is ω_{θ} -normal.
- (ii) For each closed set A and for each open set U containing A, there exists ω_{θ} -open set V containing A such that $Cl_{\omega_{\theta}}(V) \subseteq U$.
- (iii) For each pair of disjoint closed sets A and B, there exists ω_{θ} -open set U containing A such that $Cl_{\omega_{\theta}}(U) \cap B = \emptyset$.

Proof. $(i) \Rightarrow (ii)$: Let A be closed and U be an open set containing A. Then, $A \cap X \setminus U = \emptyset$ and so they are disjoint closed sets in X. Since X is ω_{θ} -normal, there exist disjoint ω_{θ} -open sets V and W such that $A \subseteq V$ and $X \setminus U \subseteq W$ (or $X \setminus W \subseteq U$). Now, $V \cap W = \emptyset$ which implies that $V \subseteq X \setminus W$. Hence, $Cl_{\omega_{\theta}}(V) \subseteq Cl_{\omega_{\theta}}(X \setminus W) = X \setminus W$. Therefore, $A \subseteq V \subseteq Cl_{\omega_{\theta}}(V) \subseteq X \setminus W \subseteq U$.

 $(ii) \Rightarrow (iii)$: Let A and B be disjoint closed sets in X. Then, $A \subseteq X \setminus B$ and $X \setminus B$ is an open set containing A. By (ii), there exists ω_{θ} -open set V containing A such that $Cl_{\omega_{\theta}}(V) \subseteq X \setminus B$, which implies that $Cl_{\omega_{\theta}}(V) \cap B = \emptyset$.

 $(iii) \Rightarrow (i)$: Let A and B be an disjoint closed sets in X. By (iii), there exists ω_{θ} -open set U with $A \subseteq U$ such that $Cl_{\omega_{\theta}}(U) \cap B = \emptyset$, which implies that $B \subseteq X \setminus Cl_{\omega_{\theta}}(U)$. Now, U and $X \setminus Cl_{\omega_{\theta}}(U)$ are disjoint ω_{θ} -open sets such that $A \subseteq U$ and $B \subseteq X \setminus Cl_{\omega_{\theta}}(U)$. Hence, X is ω_{θ} -normal. \Box

Remark 3.7 There is a topological space X that is ω_{θ} -normal but not normal.

Consider $X = \{a, b, c\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. X is not normal since all open sets containing $\{a\}$ and $\{b\}$, respectively, intersect. However, X is ω_{θ} -normal since each subset of X is ω_{θ} -open, and so if A and B are any disjoint closed sets in X, then A and B are also disjoint ω_{θ} -open sets in X.

Theorem 3.8 Let X be a T_1 -space. If X is ω_{θ} -normal, then X is ω_{θ} -regular.

Proof. Let $x \in X$ and F be a closed set with $x \notin F$. Since X is a T_1 -space, $\{x\}$ is closed. Clearly, F and $\{x\}$ are disjoint closed sets. Since X is ω_{θ} -normal, there exist disjoint ω_{θ} -open sets U and V such that $F \subseteq U$ and $\{x\} \subseteq V$. Thus, $x \in V$. Hence, X is ω_{θ} -regular. \Box

References

- Al-Hawary, T. A., On supper continuity of topological spaces, MATEM-ATIKA, 21(2005), 43-49.
- [2] Ekici, E., Jafari, S. and Latif, R. M., On a finer topological space than \mathcal{T}_{θ} and some maps, Ital. J. Pure Appl. Math., 27(2010), 293-304.
- [3] Dugundji, J., *Topology*, New Delhi Prentice Hall of India Private Ltd., 1975.
- [4] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Month., 70(1963), 36-41.
- [5] Velicko, N., H-closed topological spaces, Trans. AMS., 78(1968), 103-118.