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Abstract. Let X be a locally convex topological vector space 
endowed with              original topology τ  as well as corresponding weak 
topology τ w. Suppose                                             WCC (X) is the collection of all non-
empty weakly compact (τ w-compact)                                      convex subsets of X. We 
shall introduce a certain weak topology Tw on WCC (X) and
prove an extreme point theorem which is an extension of the 
classical Krein-Milman Theorem.

1. Introduction

Suppose X is a Banach space equipped with the norm topology (denoted by ‖·‖)
as well as the weak topology (denoted by τw). Let CC (X) ={A ⊆ X : A is a
non-empty compact convex subset of X}, WCC (X) ={A ⊆ X : A is a non-empty
weakly compact, convex subset of X} and BCC (X) ={A ⊆ X : A is a non-
empty bounded, closed, convex subset of X}. Then (CC (X) , h) , (WCC (X) , h)
and (BCC (X) , h) are known as the hyperspaces over the underlying space (X, ‖·‖).
If X = {x = {x} : x ∈ X} , then

(
X,h

)
is isometrically isomorphic to the under-

lying space (X, ‖·‖). Thus every theorem proved on the hyperspaces is a natural
extension of its corresponding counterpart of the underlying space (X, ‖·‖).
Blaschke [2] proved that every infinite sequence {An} with An ∈ K where K

is an h-bounded and h-closed subset of the hyperspace (CC (Rn) , h) contains a
convergent subsequence {Ani} (i.e., there exists a subsequence {Ani} ⊆ K and A0 ∈
K such that lim

i→∞
Ani

h
= A0, or h (Ani , A0) → 0 as i → ∞). Blaschke’s Theorem is

an extension of the classical Heine-Borel Theorem which states that every closed
and bounded subset K j Rn is sequentially compact. Many mathematicians have
studied convergence of convex sets on different spaces ([1], [11], [12]) .
In 1986, De Blasi and Myjak ([4]) introduced the concept of weak sequential

convergence on the hyperspaceWCC (X) . Suppose An, A ∈WCC (X) , they define

An converges to A0 weakly
(
An

w→ A0

)
if and only if σAn (x∗) → σA0 (x∗) =

sup{x∗ (a) | a ∈ A0} and proved an infinite dimensional version of Blaschke’s
Theorem and other results. The notion of weak topology Tw has been introduced
and investigated by Hu and company ([3], [7], [8], [9], [10]). They showed that
Browder-Kirk’s fixed point theorem can be extended to the hyperspace WCC (X)
equipped with Hausdorff metric h as well as a certain weak topology Tw and many
other results. We remind the readers that many fundamental results that are valid
on the underlying space X cannot be extended to hyperspace. For example, it is
well-known that every ‖·‖-closed (originally closed, strongly closed) convex set is
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also τw-closed (weakly closed). Also for every compact convex set K ⊆ X and x /∈
K, there exists some x∗ ∈ X∗ such that d (x∗ (x) , x∗ (K))= inf

k∈K
d (x∗ (x) , x∗ (k))

= inf
k∈K

{|x∗ (x)− x∗ (k)|}=δ > 0. Examples have been given in [7] that these results

cannot be extended to hyperspace.
Suppose nowX is a locally convex topological vector space andX∗ its dual space.

LetX be equipped with the original topology τ as well as the weak topology τw, and
WCC (X) ={A ⊆ X : A is a τw-compact convex subset of X} is the corresponding
hyperspace. A topology Tw will be introduced on X and the main result of this
paper is to show that every Tw-compact, convex subset ofWCC (X) has an extreme
point. This result is an extension of the classical Krein-Milman Theorem.

2. Notations and preliminaries

Let X be a Banach space and X∗ its topological dual, and BCC (X) is the
collection of all non-empty bounded, closed, convex subsets of X. In general we
have CC (X) $ WCC (X) $ BCC (X) . For reflexive Banach space X, we have
WCC (X) = BCC (X) . If X is finite dimensional, then CC (X) = WCC (X) =
BCC (X) . To avoid avoid confusion we shall use small letters a, b, c, · · · , z to denote
elements of the underlying space X, capital letters A,B, · · · , Z to denote elements
of the hyperspaces CC (X) ,WCC (X) and BCC (X) as well as subsets of X, e.g.,
A,B ⊆ X and A,B ∈ BCC (X) . We shall use script letters to denote subsets of
the corresponding hyperspaces, e.g., K ⊆ BCC (X) ,W ⊆ BCC (X) . For A,B ∈
BCC (X) , let A + B = {a+ b : a ∈ A, b ∈ B} , N (A, ε) ={x ∈ X : d (x, a) =
‖x− a‖ < ε for some a ∈ A} and h (A,B) = inf{ε > 0 : A ⊆ N (B, ε) , B ⊆

N (A, ε)}, equivalently, h (A,B) = max

{
sup
x∈A

d (x,B) , sup
x∈B

d (x,A)

}
. The metric h

just defined is known as the Hausdorff metric and (BCC (X) , h) is known to be a
complete metric space. Since h is induced by the ‖·‖ of the underlying space X, h
is closely related to the norm (‖·‖) as well as x∗ ∈ X∗. The following lemmas give
some elementary properties of the Hausdorff h and its relationship with them.

Lemma 1. Suppose A,B,C,D ∈WCC (X) and α ∈ C. Then we have

(i) h (A, {0}) = sup {‖a‖ : a ∈ A} ,
(ii) h (A+B,C +D) ≤ h (A,C) + h (B,D) ,
(iii) h (αA,αB) = |α|h (A,B) ,
(iv) h ([a1, a2] , [b1, b2]) = max {|b1 − a1| , |b2 − a2|} for [a1, a2] , [b1, b2] ∈ (CC (R) , h) .

Lemma 2. Suppose A,B ∈WCC (X) and x∗, y∗ ∈ X∗. Then

(i) x∗ (A) , x∗ (B) ∈ (CC (C) , h) ,
(ii) A = B if and only if x∗ (A) = x∗ (B) for each x∗ ∈ X∗,
(iii) h (x∗ (A) , x∗ (B)) ≤ ‖x∗‖h (A,B) ,
(iv) h (x∗ (A) , y∗ (A)) ≤ ‖x∗ − y∗‖h (A, {0}) .

Proof. Since x∗ : (X, τw) → (C, ‖·‖) is continuous and linear, it follows that
x∗ (A) , x∗ (B) are compact, convex subsets of C and (i) is proved.
If A = B, then x∗ (A) = x∗ (B) for each x∗ ∈ X∗. Suppose A 6= B, without loss

of generality, we may assume there exists some b0 ∈ B such that b0 /∈ A. It follows
then from Hahn-Banach Theorem that there exists some x∗ ∈ X∗ which separates
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b0 from A, i.e., there exists x∗ ∈ X∗ such that sup {Rex∗ (a) : a ∈ A} < Rex∗ (b0) .
That is a contradiction and (ii) is proved.
(iii) and (iv) follow from that

‖x∗ (a)− x∗ (b)‖ = ‖x∗ (a− b)‖ ≤ ‖x∗‖ · ‖a− b‖ ,
‖x∗ (a)− y∗ (a)‖ ≤ ‖x∗ − y∗‖ · ‖a‖

and the definition of Hausdorff metric. �
Now, it follows from Lemma 2 (i) that x∗ maps the space WCC (X) into the

space CC (C) or x∗ : (WCC (X) , h) → (CC (C) , h) . Also, by Lemma 2 (iii) that
x∗ : (WCC (X) , h) → (CC (C) , h) is continuous. Note that both the domain and
the range are now hyperspaces endowed with corresponding Hausdorff metric h.
Now, recall that the weak topology τw on X is defined to be the weakest topology
such that each x∗ : (X, τw) → (C, |·|) is continuous. Analogously, we may define
the weak topology on WCC (X) as follows:

Definition 1. The weak topology Tw on WCC (X) is defined to be the weak-
est topology on WCC (X) such that each x∗ : (WCC (X) , Tw) → (CC (C) , h)
is continuous. Thus a typical Tw-neighborhood of A ∈ WCC (X) is denoted by
W (A;x∗1, · · · , x∗n, ε) = {B ∈WCC (X) ;h(x∗i (B), x∗i (A)) < ε for i = 1, 2, · · · , n, ε >
0}.

As mentioned in the introduction, several results have been extended to the
hyperspace WCC (X) . In the next section, we shall further extend the notion
of hyperspace and its corresponding topology Tw where the underlying space X
is a locally convex topological vector space instead of a Banach space and prove
an extreme point theorem which is an extension of the classical Krein-Milman
Theorem.

3. Main Results

In this section, X is assumed to be a locally convex topological vector space,
X∗ its dual space and X is endowed with original topology τ as well as weak
topology τw. Let WCC (X) = {A ⊆ X : A is a non-empty weakly compact, convex
subset of X}. Since each x∗ is also weakly continuous (i.e. x∗ : (X, τw)→ (C, |·|) is
continuous and linear), it follows that for each A ∈WCC (X) , x∗ (A) is a compact
convex subset of the complex plane C. Thus each x∗ is a mapping from the set
WCC (X) into the metric space (CC (C) , h) . Define Tw to be the weakest topology
and WCC (X) such that each x∗ : (WCC (X) , Tw) → (CC (C) , h) is continuous.
Denote B(x∗(A), ε) = {B ∈ CC (C) : h(x∗(A), B) < ε} for ε > 0.
Some basic properties of the weak topology Tw are stated in the following lemma.

Lemma 3. (a) The collection {W (A;x∗1, x
∗
2, · · · , x∗n, ε) : xi ∈ X∗ for i = 1, 2, · · · , n, ε >

0} is a local base at A ∈WCC (X) where

W (A;x∗1, x
∗
2, · · · , x∗n, ε)

= {B ∈WCC (X) ;h(x∗i (B), x∗i (A)) < ε for i = 1, 2, · · · , n}

=
n⋂
i=1

W(A;x∗i , ε) =
n⋂
i=1

(x∗i )
−1(B(x∗i (A), ε)}.

(b) Tw is a Hausdorff topology on WCC (X) , i.e., distinct A,B ∈ WCC (X) have
disjoint neighborhoods containing them.
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Proof. (a) Since x∗i : (WCC (X) , Tw) → (CC (C) , h) is continuous, (B(x∗i (A), ε)
is open in (CC (C) , h) , we have (x∗i )

−1(B(x∗i (A), ε) is open in (WCC (X) , Tw) ,
i.e., W(A;x∗i , ε) = (x∗i )

−1(B(x∗i (A), ε) ∈ Tw and W (A;x∗1, x
∗
2, · · · , x∗n, ε) being the

finite intersection of open sets is also open.
(b) Let A,B ∈WCC (X) with A 6= B.We may assume without loss of generality

that there exists some a ∈ A such that a /∈ B. Since B is a τw-compact subset of the
locally convex topological vector space (X, τw) , it follows from the Hahn-Banach
Separation Theorem that there exists some x∗ ∈ X∗ such that sup

b∈B
Rex∗ (b) <

Rex∗ (a) . Let δ = Rex∗ (a)− sup
b∈B

Rex∗ (b) > 0. We have Rex∗ (a)− Rex∗ (b) ≥ δ

for all b ∈ B which in turn implies that

(1) |x∗ (a)− x∗ (b)| ≥ |Rex∗ (a)− Rex∗ (b)| ≥ δ.

Suppose 0 < ε < δ is chosen, we have |x∗ (a)− x∗ (b)| > ε for all b ∈ B. Claim
thatW(A;x∗, ε2 )∩W(B;x∗, ε2 ) = ∅. Otherwise, there exists someD ∈ W(A;x∗, ε2 )∩
W(B;x∗, ε2 ) and we have h(x∗(D), x∗(A)) < ε

2 , h(x∗(D), x∗(B)) < ε
2 . Consequently

x∗(A) ⊂ N(x∗(D), ε2 ), x∗(D) ⊂ N(x∗(B), ε2 ).Hence for the given a ∈ A, there exists
some d ∈ D such that |x∗ (a)− x∗ (d)| < ε

2 , and for the d ∈ D, there exists some
b ∈ B such that |x∗ (d)− x∗ (b)| < ε

2 which in turn implies that

|x∗ (a)− x∗ (b)| ≤ |x∗ (a)− x∗ (d)|+ |x∗ (d)− x∗ (b)| < ε < δ.

That is a contradiction to the inequality (1) and the proof is complete. �

Suppose A,B ∈ WCC (X) . Then A,B are weakly compact, convex subsets of
X. Since addition and scalar multiplication are continuous operations on (X, τw) ,
we have A + B,αA are weakly compact, convex subsets of X, i.e., A + B,αA ∈
WCC (X) . Thus we may define, algebraic line segments, convex sets, extremal
subsets and extreme points on the hyperspace WCC (X) analogous to their coun-
terparts on the underlying space X.

Definition 2. (a) [A,B] = {αA + (1 − α)B : A,B ∈ WCC (X) , 0 ≤ α ≤ 1} is
called the closed line segment joining A and B.

(b) A subset K ⊂WCC (X) is said to be convex if and only if A1, A2, · · · , An ∈

K implies
n∑
i=1

αiAi ∈ K where αi ≥ 0,
n∑
i=1

αi = 1.

(c) A mapping T : WCC (X) → WCC (X) is said to be affi ne if and only if
T (αA+ (1− α)B) = αT (A) + (1− α)T (B) where 0 ≤ α ≤ 1.
(d) Suppose K1,K2 ⊂ (WCC (X) , Tw) are closed (Tw-closed), convex subsets.

Then K1 is said to be an extremal subset of K2 if and only if A,B ∈ K2 and
αA+ (1− α)B ∈ K1 for some 0 < α < 1 implies that A,B ∈ K1.
(e) Suppose K is a Tw-closed, convex subset of WCC (X) . Then P is said to

be an extreme point of K if and only if A,B ∈ K, 0 < α < 1, αA+ (1− α)B = P
implies A = B = P.
We state the following lemmas whose proofs are similar as in the underlying

space X.

Lemma 4. Suppose K is a Tw-closed, convex subset of the hyperspace (WCC (X) , Tw).
Then
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(a) If P ∈ K, then P is an extreme point of K if and only if {P} is an extremal
subset of K.
(b) If K1 ⊂ K2 ⊂ K3 are Tw-closed, convex subsets, K1 is an extremal subset of

K2, and K2 is an extremal subset of K3, then K1 is an extremal subset of K3.
The next lemma is essential in the proof of our main theorem.

Lemma 5. (a) Suppose [a1, a2] , [b1, b2] ∈
(
CC

(
R1
)
, h
)
. Then h([a1, a2] , [b1, b2]) =

max{|b1 − a1| , |b2 − a2|}, and the mapping T :
(
CC

(
R1
)
, h
)
→ (R1, |·|) defined by

T ([a1, a2]) = a2 is a continuous (in fact, nonexpansive), affi ne mapping.

(b) Suppose X = {x = {x} : x ∈ X} ⊂ WCC (X) . Then the mapping T : X →
X ⊂ WCC (X) defined by Tx = x is an isomorphic homeomorphism of (X, τw)
onto (X, Tw).

Proof. (a) That h([a1, a2] , [b1, b2]) = max{|b1 − a1| , |b2 − a2|} follows immediately
from the definition of Hausdorff metric. Next, [a1, a2] + [b1, b2] = [a1 + b1, a2 + b2] ,
α [a1, a2] = [αa1, αa2] implies

T (α [a1, a2] + (1− α) [b1, b2])

= T ([αa1, αa2] + [(1− α)b1, (1− α)b2])

= T ([αa1 + (1− α)b1, αa2 + (1− α)b2])

= αa2 + (1− α)b2

= αT ([a1, a2]) + (1− α)T ([b1, b2])

where 0 < α < 1. Consequently T is affi ne. Finally

|T ([a1, a2])− T ([b1, b2])|
= |a2 − b2|
≤ max{|a1 − b1| , |a2 − b2| = h([a1, a2] , [b1, b2])

showing that T is nonexpansive.
(b) Obviously, T : X → X is one to one and onto. Also T (x + y) = x+ y =

{x + y} = {x} + {y} = x + y = T (x) + T (y) and T (αx) = αx = {αx} = α{x} =
αx = αT (x) showing that T is linear.
y ∈ w(x;x∗1, · · · , x∗n, ε) implies that |x∗i (y)− x∗i (x)| < ε for i = 1, 2, · · · , n, which

in turn implies that h(x∗i (y), x∗i (x)) = h(x∗i (Ty), x∗i (Tx) < ε for i = 1, 2, · · · , n.
Hence Ty = y ∈ W (x;x∗1, · · · , x∗n, ε) . Similarly y ∈ W (x;x∗1, · · · , x∗n, ε) implies y ∈
w (x;x∗1, · · · , x∗n, ε) . Consequently T (w (x;x∗1, · · · , x∗n, ε)) =W (x = Tx;x∗1, · · · , x∗n, ε)
and the proof is complete. �

Our main theorem is an extension of the classical Krein-Milman’s Extreme Point
Theorem to the hyperspace (WCC (X) , Tw).

Theorem 1. Suppose X is a locally convex topological vector space equipped with
original topology τ as well as weak topology τw, and (WCC (X) , Tw) is the corre-
sponding hyperspace. Suppose K is a Tw-compact, convex subset of (WCC (X) , Tw).
Then K has an extreme point in K.

Proof. Let Ω denote the collection of all non-empty, Tw-closed, convex subsets of K.
Ω 6= ∅ since K ∈ Ω. Define a partial order in Ω by inverse inclusion, i.e., K2 ≤ K1
if and only if K1 ⊂ K2. If {Ki}i∈I ⊂ Ω is a totally ordered subset, we shall show

Tamsui Oxford Journal of Informational and Mathematical Sciences 31(2) (2017)
Aletheia University 109



that K0 =
⋂
i∈I
Ki is an upper bound of {Ki}i∈I . Each Ki is Tw-compact, convex

and {Ki}i∈I has finite intersection implies that K0 is a non-empty Tw-compact,
convex set. Suppose we have A,B ∈ K, 0 < α < 1 and αA + (1 − α)B ∈ K0.
Since K0⊂ Ki for each i, we have αA + (1 − α)B ∈ Ki which in turn implies that
A,B ∈ Ki because Ki is an extremal subset of K. Thus A,B ∈ K0 showing that
K0 is an extremal subset of K and consequently K0 is an upper bound of {Ki}i∈I .
It follows now from Zorn’s Lemma that Ω has a maximal element, denoted by
K∞. We claim that K∞ is a singleton. Otherwise, there exists A0, B0 ∈ K∞ with
A0 6= B0, without loss of generality, assume there exists some b0 ∈ B0 such that
b0 /∈ A0. By Hahn-Banach Separation Theorem, there exists some x∗ ∈ X∗ such
that sup

a∈A0

Rex∗ (a) < Rex∗ (b0) . Let Rex∗ (A0) = [a1, a2], Rex∗ (B0) = [b1, b2] ∈

CC(R), we have a2 = sup
a∈A0

Rex∗ (a) < Rex∗ (b0) ≤ b2. Define G : (CC(R), h) →

(R, |·|) by G([a1, a2]) = a2. It follows from Lemma 5 (a) that G is a nonexpansive
(hence continuous) affi ne mapping.
Next, let F : (WCC(X), Tw) → (R, |·|) be defined by F(A) = G(Rex∗ (A)). F :

(K∞, Tw)→ (R, |·|) is continuous implies F attains its maximum on K∞, i.e., there
exists b∞ ∈ R and B∞ ∈ K∞ such that F(B∞) = b∞ = sup

A∈K∞
F(A) = max

A∈K∞
F(A).

Since a2 < b2 ≤ b∞, A0 /∈ F−1(b∞). Claim that F−1(b∞) is an extremal subset of
K∞. For that purpose, we letD,E ∈ K∞, 0 < α < 1 with αD+(1−α)E ∈ F−1(b∞).
Thus F(αD+ (1−α)E) = b∞ which implies that αF(D) + (1−α)F(E) = b∞. Also
D,E ∈ K∞ implies that F(D),F(E) ≤ b∞ and consequently, αF(D)+(1−α)F(E) ≤
b∞. Hence F(D),F(E) = b∞ that implies D,E ∈ F−1(b∞). Otherwise, we would
have αF(D)+(1−α)F(E) < b∞, contradicting that αF(D)+(1−α)F(E) = b∞. Now
that F−1(b∞) ⊂ K∞, and F−1(b∞) is an extremal subset of K∞ implies F−1(b∞) ⊂
K∞. But A0 /∈ F−1(b∞) implies F−1(b∞) & K∞ contradicting that K∞ is a maximal
element. Hence K∞ is a singleton, say K∞ = {P} proving that P is an extreme
point of K and the proof is complete. �

The following corollary is the classical Krein-Milman extreme point theorem.

Corollary 1. Let K be a non-empty compact, convex subset of a locally convex
topological vector space X. Then K has an extreme point in K.

Proof. Let X a locally convex topological vector space endowed with original topol-
ogy τ as well as weak topology τw, and (WCC (X) , Tw) is the corresponding hy-
perspace. K is τ -compact implies K is τw-compact. It follows from Lemma 5 (b)
that K = {x = {x} : x ∈ K} is a Tw-compact, convex subset of (WCC (X) , Tw)
and hence has an extreme point P = {p} by Theorem 1. Consequently p is an
extreme point of K and the proof is complete. �

Remark 1. (a) Since Krein-Milman Theorem has numerous important applications
in various branches of mathematics, we hope further investigation on the hyperspace
(WCC (X) , Tw) will lead to some useful applications.

(b) The study of convex sets has always been interesting and useful. However, the
traditional method has relied heavily on support fucntionals. With the Tw-topology
defined on WCC (X) , we hope it will provide an altermative way to study convex
sets.
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