AN EXTREME POINT THEOREM ON HYPERSPACE

JENNIFER SHUEH-INN HU*

DEPARTMENT OF APPLIED STATISTICS AND INFORMATION SCIENCE, MING CHUAN UNIVERSITY, GUISHAN, TAOYUAN, TAIWAN

E-mail address: jenhu@mail.mcu.edu.tw

KUEI-LIN TSENG

DEPARTMENT OF APPLIED MATHEMATICS, ALETHEIA UNIVERSITY, TAMSUI, NEW TAIPEI CITY 25103, TAIWAN

E-mail address: kltseng@mail.au.edu.tw

Received March 2, 2017 Accepted August 18, 2017

2000 Mathematics Subject Classification. Primary 54A05, 54A20. Secondary 54B20. Corresponding author (*)

ABSTRACT. Let X be a locally convex topological vector space endowed with original topology τ as well as corresponding weak topology τw . Suppose WCC(X) is the collection of all nonempty weakly compact (τw -compact) convex subsets of X. We shall introduce a certain weak topology \mathcal{T}_w on WCC(X) and prove an extreme point theorem which is an extension of the classical Krein-Milman Theorem.

1. INTRODUCTION

Suppose X is a Banach space equipped with the norm topology (denoted by $\|\cdot\|$) as well as the weak topology (denoted by τ_w). Let $CC(X) = \{A \subseteq X : A \text{ is a non-empty} compact convex subset of X\}$, $WCC(X) = \{A \subseteq X : A \text{ is a non-empty} weakly compact, convex subset of X\}$ and $BCC(X) = \{A \subseteq X : A \text{ is a non-empty} bounded, closed, convex subset of X\}$. Then (CC(X), h), (WCC(X), h) and (BCC(X), h) are known as the hyperspaces over the underlying space $(X, \|\cdot\|)$. If $\overline{X} = \{\overline{x} = \{x\} : x \in X\}$, then (\overline{X}, h) is isometrically isomorphic to the underlying space $(X, \|\cdot\|)$. Thus every theorem proved on the hyperspaces is a natural extension of its corresponding counterpart of the underlying space $(X, \|\cdot\|)$.

Blaschke [2] proved that every infinite sequence $\{A_n\}$ with $A_n \in \mathcal{K}$ where \mathcal{K} is an *h*-bounded and *h*-closed subset of the hyperspace $(CC(\mathbb{R}^n), h)$ contains a convergent subsequence $\{A_{n_i}\}$ (*i.e.*, there exists a subsequence $\{A_{n_i}\} \subseteq \mathcal{K}$ and $A_0 \in \mathcal{K}$ such that $\lim_{i \to \infty} A_{n_i} \stackrel{h}{=} A_0$, or $h(A_{n_i}, A_0) \to 0$ as $i \to \infty$). Blaschke's Theorem is an extension of the classical Heine-Borel Theorem which states that every closed and bounded subset $K \subseteq \mathbb{R}^n$ is sequentially compact. Many mathematicians have studied convergence of convex sets on different spaces ([1], [11], [12]).

In 1986, De Blasi and Myjak ([4]) introduced the concept of weak sequential convergence on the hyperspace WCC(X). Suppose $A_n, A \in WCC(X)$, they define A_n converges to A_0 weakly $\left(A_n \stackrel{w}{\to} A_0\right)$ if and only if $\sigma_{A_n}(x^*) \to \sigma_{A_0}(x^*) =$ $\sup\{x^*(a) \mid a \in A_0\}$ and proved an infinite dimensional version of Blaschke's Theorem and other results. The notion of weak topology \mathcal{T}_w has been introduced and investigated by Hu and company ([3], [7], [8], [9], [10]). They showed that Browder-Kirk's fixed point theorem can be extended to the hyperspace WCC(X)equipped with Hausdorff metric h as well as a certain weak topology \mathcal{T}_w and many other results. We remind the readers that many fundamental results that are valid on the underlying space X cannot be extended to hyperspace. For example, it is well-known that every $\|\cdot\|$ -closed (originally closed, strongly closed) convex set is

Key words and phrases. Extreme point, Locally convex topological vector space, Weak topology, Hyperspace, Banach spaces.

also τ_w -closed (weakly closed). Also for every compact convex set $K \subseteq X$ and $x \notin K$, there exists some $x^* \in X^*$ such that $d(x^*(x), x^*(K)) = \inf_{k \in K} d(x^*(x), x^*(k)) = \inf_{k \in K} \{|x^*(x) - x^*(k)|\} = \delta > 0$. Examples have been given in [7] that these results cannot be extended to hyperspace.

Suppose now X is a locally convex topological vector space and X^* its dual space. Let X be equipped with the original topology τ as well as the weak topology τ_w , and $WCC(X) = \{A \subseteq X : A \text{ is a } \tau_w\text{-compact convex subset of } X\}$ is the corresponding hyperspace. A topology \mathcal{T}_w will be introduced on X and the main result of this paper is to show that every $\mathcal{T}_w\text{-compact, convex subset of } WCC(X)$ has an extreme point. This result is an extension of the classical Krein-Milman Theorem.

2. NOTATIONS AND PRELIMINARIES

Let X be a Banach space and X^* its topological dual, and BCC(X) is the collection of all non-empty bounded, closed, convex subsets of X. In general we have $CC(X) \subsetneq WCC(X) \subsetneqq BCC(X)$. For reflexive Banach space X, we have WCC(X) = BCC(X). If X is finite dimensional, then CC(X) = WCC(X) = BCC(X). To avoid avoid confusion we shall use small letters a, b, c, \dots, z to denote elements of the underlying space X, capital letters A, B, \dots, Z to denote elements of the hyperspaces CC(X), WCC(X) and BCC(X) as well as subsets of X, e.g., $A, B \subseteq X$ and $A, B \in BCC(X)$. We shall use script letters to denote subsets of the corresponding hyperspaces, e.g., $\mathcal{K} \subseteq BCC(X)$, $\mathcal{W} \subseteq BCC(X)$. For $A, B \in BCC(X)$, let $A + B = \{a + b : a \in A, b \in B\}$, $N(A, \varepsilon) = \{x \in X : d(x, a) = \|x - a\| < \varepsilon$ for some $a \in A\}$ and $h(A, B) = \inf\{\varepsilon > 0 : A \subseteq N(B, \varepsilon), B \subseteq N(A, \varepsilon)\}$, equivalently, $h(A, B) = \max\left\{\sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A)\right\}$. The metric h is closely related to the norm $(\|\cdot\|)$ as well as $x^* \in X^*$. The following lemmas give some elementary properties of the Hausdorff h and its relationship with them.

Lemma 1. Suppose $A, B, C, D \in WCC(X)$ and $\alpha \in \mathbb{C}$. Then we have

(i) $h(A, \{0\}) = \sup \{ ||a|| : a \in A \},$ (ii) $h(A + B, C + D) \le h(A, C) + h(B, D),$ (iii) $h(\alpha A, \alpha B) = |\alpha| h(A, B),$ (iv) $h([a_1, a_2], [b_1, b_2]) = \max \{ |b_1 - a_1|, |b_2 - a_2| \} for[a_1, a_2], [b_1, b_2] \in (CC(\mathbb{R}), h).$

Lemma 2. Suppose $A, B \in WCC(X)$ and $x^*, y^* \in X^*$. Then

(i) $x^*(A), x^*(B) \in (CC(\mathbb{C}), h),$ (ii) A = B if and only if $x^*(A) = x^*(B)$ for each $x^* \in X^*,$ (iii) $h(x^*(A), x^*(B)) \le ||x^*|| h(A, B),$ (iv) $h(x^*(A), y^*(A)) \le ||x^* - y^*|| h(A, \{0\}).$

Proof. Since $x^* : (X, \tau_w) \to (\mathbb{C}, \|\cdot\|)$ is continuous and linear, it follows that $x^*(A), x^*(B)$ are compact, convex subsets of \mathbb{C} and (i) is proved.

If A = B, then $x^*(A) = x^*(B)$ for each $x^* \in X^*$. Suppose $A \neq B$, without loss of generality, we may assume there exists some $b_0 \in B$ such that $b_0 \notin A$. It follows then from Hahn-Banach Theorem that there exists some $x^* \in X^*$ which separates b_0 from A, *i.e.*, there exists $x^* \in X^*$ such that $\sup \{\operatorname{Re} x^*(a) : a \in A\} < \operatorname{Re} x^*(b_0)$. That is a contradiction and (ii) is proved.

(iii) and (iv) follow from that

$$\|x^*(a) - x^*(b)\| = \|x^*(a - b)\| \le \|x^*\| \cdot \|a - b\|,$$

$$\|x^*(a) - y^*(a)\| \le \|x^* - y^*\| \cdot \|a\|$$

on of Hausdorff metric

and the definition of Hausdorff metric.

Now, it follows from Lemma 2 (i) that x^* maps the space WCC(X) into the space $CC(\mathbb{C})$ or $x^* : (WCC(X), h) \to (CC(\mathbb{C}), h)$. Also, by Lemma 2 (iii) that $x^* : (WCC(X), h) \to (CC(\mathbb{C}), h)$ is continuous. Note that both the domain and the range are now hyperspaces endowed with corresponding Hausdorff metric h. Now, recall that the weak topology τ_w on X is defined to be the weakest topology such that each $x^* : (X, \tau_w) \to (\mathbb{C}, |\cdot|)$ is continuous. Analogously, we may define the weak topology on WCC(X) as follows:

Definition 1. The weak topology \mathcal{T}_w on WCC(X) is defined to be the weakest topology on WCC(X) such that each $x^* : (WCC(X), \mathcal{T}_w) \to (CC(\mathbb{C}), h)$ is continuous. Thus a typical \mathcal{T}_w -neighborhood of $A \in WCC(X)$ is denoted by $\mathcal{W}(A; x_1^*, \dots, x_n^*, \varepsilon) = \{B \in WCC(X); h(x_i^*(B), x_i^*(A)) < \varepsilon \text{ for } i = 1, 2, \dots, n, \varepsilon > 0\}.$

As mentioned in the introduction, several results have been extended to the hyperspace WCC(X). In the next section, we shall further extend the notion of hyperspace and its corresponding topology \mathcal{T}_w where the underlying space X is a locally convex topological vector space instead of a Banach space and prove an extreme point theorem which is an extension of the classical Krein-Milman Theorem.

3. Main Results

In this section, X is assumed to be a locally convex topological vector space, X^* its dual space and X is endowed with original topology τ as well as weak topology τ_w . Let $WCC(X) = \{A \subseteq X : A \text{ is a non-empty weakly compact, convex subset of X}\}$. Since each x^* is also weakly continuous $(i.e. x^* : (X, \tau_w) \to (\mathbb{C}, |\cdot|)$ is continuous and linear), it follows that for each $A \in WCC(X)$, $x^*(A)$ is a compact convex subset of the complex plane \mathbb{C} . Thus each x^* is a mapping from the set WCC(X) into the metric space $(CC(\mathbb{C}), h)$. Define \mathcal{T}_w to be the weakest topology and WCC(X) such that each $x^* : (WCC(X), \mathcal{T}_w) \to (CC(\mathbb{C}), h)$ is continuous. Denote $\mathfrak{B}(x^*(A), \varepsilon) = \{B \in CC(\mathbb{C}) : h(x^*(A), B) < \varepsilon\}$ for $\varepsilon > 0$.

Some basic properties of the weak topology \mathcal{T}_w are stated in the following lemma.

Lemma 3. (a) The collection { $\mathcal{W}(A; x_1^*, x_2^*, \cdots, x_n^*, \varepsilon) : x_i \in X^* \text{ for } i = 1, 2, \cdots, n, \varepsilon > 0$ } is a local base at $A \in WCC(X)$ where

$$\mathcal{W}(A; x_1^*, x_2^*, \cdots, x_n^*, \varepsilon)$$

$$= \{B \in WCC(X); h(x_i^*(B), x_i^*(A)) < \varepsilon \text{ for } i = 1, 2, \cdots, n\}$$

$$= \bigcap_{i=1}^n \mathcal{W}(A; x_i^*, \varepsilon) = \bigcap_{i=1}^n (x_i^*)^{-1} (\mathfrak{B}(x_i^*(A), \varepsilon))\}.$$

(b) \mathcal{T}_w is a Hausdorff topology on WCC (X), i.e., distinct $A, B \in WCC(X)$ have disjoint neighborhoods containing them.

Proof. (a) Since $x_i^* : (WCC(X), \mathcal{T}_w) \to (CC(\mathbb{C}), h)$ is continuous, $(\mathfrak{B}(x_i^*(A), \varepsilon))$ is open in $(CC(\mathbb{C}), h)$, we have $(x_i^*)^{-1}(\mathfrak{B}(x_i^*(A), \varepsilon))$ is open in $(WCC(X), \mathcal{T}_w)$, *i.e.*, $\mathcal{W}(A; x_i^*, \varepsilon) = (x_i^*)^{-1}(\mathfrak{B}(x_i^*(A), \varepsilon) \in \mathcal{T}_w)$ and $\mathcal{W}(A; x_1^*, x_2^*, \cdots, x_n^*, \varepsilon)$ being the finite intersection of open sets is also open.

(b) Let $A, B \in WCC(X)$ with $A \neq B$. We may assume without loss of generality that there exists some $a \in A$ such that $a \notin B$. Since B is a τ_w -compact subset of the locally convex topological vector space (X, τ_w) , it follows from the Hahn-Banach Separation Theorem that there exists some $x^* \in X^*$ such that $\sup_{b \in B} \operatorname{Re} x^*(b) < \operatorname{Re} x^*(a)$. Let $\delta = \operatorname{Re} x^*(a) - \sup_{b \in B} \operatorname{Re} x^*(b) > 0$. We have $\operatorname{Re} x^*(a) - \operatorname{Re} x^*(b) \ge \delta$

for all $b \in B$ which in turn implies that

(1)
$$|x^*(a) - x^*(b)| \ge |\operatorname{Re} x^*(a) - \operatorname{Re} x^*(b)| \ge \delta.$$

Suppose $0 < \varepsilon < \delta$ is chosen, we have $|x^*(a) - x^*(b)| > \varepsilon$ for all $b \in B$. Claim that $\mathcal{W}(A; x^*, \frac{\varepsilon}{2}) \cap \mathcal{W}(B; x^*, \frac{\varepsilon}{2}) = \emptyset$. Otherwise, there exists some $D \in \mathcal{W}(A; x^*, \frac{\varepsilon}{2}) \cap \mathcal{W}(B; x^*, \frac{\varepsilon}{2})$ and we have $h(x^*(D), x^*(A)) < \frac{\varepsilon}{2}$, $h(x^*(D), x^*(B)) < \frac{\varepsilon}{2}$. Consequently $x^*(A) \subset N(x^*(D), \frac{\varepsilon}{2})$, $x^*(D) \subset N(x^*(B), \frac{\varepsilon}{2})$. Hence for the given $a \in A$, there exists some $d \in D$ such that $|x^*(a) - x^*(d)| < \frac{\varepsilon}{2}$, and for the $d \in D$, there exists some $b \in B$ such that $|x^*(d) - x^*(b)| < \frac{\varepsilon}{2}$ which in turn implies that

$$x^{*}(a) - x^{*}(b)| \le |x^{*}(a) - x^{*}(d)| + |x^{*}(d) - x^{*}(b)| < \varepsilon < \delta.$$

That is a contradiction to the inequality (1) and the proof is complete.

Suppose $A, B \in WCC(X)$. Then A, B are weakly compact, convex subsets of X. Since addition and scalar multiplication are continuous operations on (X, τ_w) , we have $A + B, \alpha A$ are weakly compact, convex subsets of X, *i.e.*, $A + B, \alpha A \in WCC(X)$. Thus we may define, algebraic line segments, convex sets, extremal subsets and extreme points on the hyperspace WCC(X) analogous to their counterparts on the underlying space X.

Definition 2. (a) $[A, B] = \{\alpha A + (1 - \alpha)B : A, B \in WCC(X), 0 \le \alpha \le 1\}$ is called the closed line segment joining A and B.

(b) A subset $\mathcal{K} \subset WCC(X)$ is said to be convex if and only if $A_1, A_2, \cdots, A_n \in \mathcal{K}$ implies $\sum_{i=1}^{n} \alpha_i A_i \in \mathcal{K}$ where $\alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i = 1.$

(c) A mapping $T : WCC(X) \to WCC(X)$ is said to be affine if and only if $T(\alpha A + (1 - \alpha)B) = \alpha T(A) + (1 - \alpha)T(B)$ where $0 \le \alpha \le 1$.

(d) Suppose $\mathcal{K}_1, \mathcal{K}_2 \subset (WCC(X), \mathcal{T}_w)$ are closed $(\mathcal{T}_w\text{-closed})$, convex subsets. Then \mathcal{K}_1 is said to be an extremal subset of \mathcal{K}_2 if and only if $A, B \in \mathcal{K}_2$ and $\alpha A + (1 - \alpha)B \in \mathcal{K}_1$ for some $0 < \alpha < 1$ implies that $A, B \in \mathcal{K}_1$.

(e) Suppose \mathcal{K} is a \mathcal{T}_w -closed, convex subset of WCC(X). Then P is said to be an extreme point of \mathcal{K} if and only if $A, B \in \mathcal{K}, 0 < \alpha < 1, \alpha A + (1 - \alpha)B = P$ implies A = B = P.

We state the following lemmas whose proofs are similar as in the underlying space X.

Lemma 4. Suppose \mathcal{K} is a \mathcal{T}_w -closed, convex subset of the hyperspace $(WCC(X), \mathcal{T}_w)$. Then

(a) If $P \in \mathcal{K}$, then P is an extreme point of \mathcal{K} if and only if $\{P\}$ is an extremal subset of \mathcal{K} .

(b) If $\mathcal{K}_1 \subset \mathcal{K}_2 \subset \mathcal{K}_3$ are \mathcal{T}_w -closed, convex subsets, \mathcal{K}_1 is an extremal subset of \mathcal{K}_2 , and \mathcal{K}_2 is an extremal subset of \mathcal{K}_3 , then \mathcal{K}_1 is an extremal subset of \mathcal{K}_3 .

The next lemma is essential in the proof of our main theorem.

Lemma 5. (a) Suppose $[a_1, a_2]$, $[b_1, b_2] \in (CC(\mathbb{R}^1), h)$. Then $h([a_1, a_2], [b_1, b_2]) = \max\{|b_1 - a_1|, |b_2 - a_2|\}$, and the mapping $T : (CC(\mathbb{R}^1), h) \to (\mathbb{R}^1, |\cdot|)$ defined by $T([a_1, a_2]) = a_2$ is a continuous (in fact, nonexpansive), affine mapping.

(b) Suppose $\overline{X} = \{\overline{x} = \{x\} : x \in X\} \subset WCC(X)$. Then the mapping $T : X \to \overline{X} \subset WCC(X)$ defined by $Tx = \overline{x}$ is an isomorphic homeomorphism of (X, τ_w) onto $(\overline{X}, \mathcal{T}_w)$.

Proof. (a) That $h([a_1, a_2], [b_1, b_2]) = \max\{|b_1 - a_1|, |b_2 - a_2|\}$ follows immediately from the definition of Hausdorff metric. Next, $[a_1, a_2] + [b_1, b_2] = [a_1 + b_1, a_2 + b_2]$, $\alpha [a_1, a_2] = [\alpha a_1, \alpha a_2]$ implies

$$T(\alpha [a_1, a_2] + (1 - \alpha) [b_1, b_2])$$

= $T([\alpha a_1, \alpha a_2] + [(1 - \alpha)b_1, (1 - \alpha)b_2])$
= $T([\alpha a_1 + (1 - \alpha)b_1, \alpha a_2 + (1 - \alpha)b_2])$
= $\alpha a_2 + (1 - \alpha)b_2$
= $\alpha T([a_1, a_2]) + (1 - \alpha)T([b_1, b_2])$

where $0 < \alpha < 1$. Consequently T is affine. Finally

$$|T([a_1, a_2]) - T([b_1, b_2])| = |a_2 - b_2| \le \max\{|a_1 - b_1|, |a_2 - b_2| = h([a_1, a_2], [b_1, b_2])\}$$

showing that T is nonexpansive.

(b) Obviously, $T: X \to \overline{X}$ is one to one and onto. Also $T(x+y) = \overline{x+y} = \{x+y\} = \{x\} + \{y\} = \overline{x} + \overline{y} = T(x) + T(y)$ and $T(\alpha x) = \overline{\alpha x} = \{\alpha x\} = \alpha \{x\} = \alpha \overline{x} = \alpha T(x)$ showing that T is linear.

 $\begin{array}{l} y \in w(x;x_1^*,\cdots,x_n^*,\varepsilon) \text{ implies that } |x_i^*(y) - x_i^*(x)| < \varepsilon \text{ for } i = 1,2,\cdots,n, \text{ which} \\ \text{in turn implies that } h(x_i^*(\overline{y}),x_i^*(\overline{x})) = h(x_i^*(Ty),x_i^*(Tx) < \varepsilon \text{ for } i = 1,2,\cdots,n. \\ \text{Hence } Ty = \overline{y} \in \mathcal{W}\left(\overline{x};x_1^*,\cdots,x_n^*,\varepsilon\right). \text{ Similarly } \overline{y} \in \mathcal{W}\left(\overline{x};x_1^*,\cdots,x_n^*,\varepsilon\right) \text{ implies } y \in \\ w\left(x;x_1^*,\cdots,x_n^*,\varepsilon\right). \text{ Consequently } T(w\left(x;x_1^*,\cdots,x_n^*,\varepsilon\right)) = \mathcal{W}\left(\overline{x} = Tx;x_1^*,\cdots,x_n^*,\varepsilon\right) \\ \text{and the proof is complete.} \qquad \Box \end{array}$

Our main theorem is an extension of the classical Krein-Milman's Extreme Point Theorem to the hyperspace $(WCC(X), \mathcal{T}_w)$.

Theorem 1. Suppose X is a locally convex topological vector space equipped with original topology τ as well as weak topology τ_w , and $(WCC(X), \mathcal{T}_w)$ is the corresponding hyperspace. Suppose \mathcal{K} is a \mathcal{T}_w -compact, convex subset of $(WCC(X), \mathcal{T}_w)$. Then \mathcal{K} has an extreme point in \mathcal{K} .

Proof. Let Ω denote the collection of all non-empty, \mathcal{T}_w -closed, convex subsets of \mathcal{K} . $\Omega \neq \emptyset$ since $\mathcal{K} \in \Omega$. Define a partial order in Ω by inverse inclusion, *i.e.*, $\mathcal{K}_2 \leq \mathcal{K}_1$ if and only if $\mathcal{K}_1 \subset \mathcal{K}_2$. If $\{\mathcal{K}_i\}_{i \in I} \subset \Omega$ is a totally ordered subset, we shall show that $\mathcal{K}_0 = \bigcap_{i \in I} \mathcal{K}_i$ is an upper bound of $\{\mathcal{K}_i\}_{i \in I}$. Each \mathcal{K}_i is \mathcal{T}_w -compact, convex

and $\{\mathcal{K}_i\}_{i\in I}$ has finite intersection implies that \mathcal{K}_0 is a non-empty \mathcal{T}_w -compact, convex set. Suppose we have $A, B \in \mathcal{K}, 0 < \alpha < 1$ and $\alpha A + (1 - \alpha)B \in \mathcal{K}_0$. Since $\mathcal{K}_0 \subset \mathcal{K}_i$ for each *i*, we have $\alpha A + (1 - \alpha)B \in \mathcal{K}_i$ which in turn implies that $A, B \in \mathcal{K}_i$ because \mathcal{K}_i is an extremal subset of \mathcal{K} . Thus $A, B \in \mathcal{K}_0$ showing that \mathcal{K}_0 is an extremal subset of \mathcal{K} and consequently \mathcal{K}_0 is an upper bound of $\{\mathcal{K}_i\}_{i\in I}$. It follows now from Zorn's Lemma that Ω has a maximal element, denoted by \mathcal{K}_∞ . We claim that \mathcal{K}_∞ is a singleton. Otherwise, there exists $A_0, B_0 \in \mathcal{K}_\infty$ with $A_0 \neq B_0$, without loss of generality, assume there exists some $b_0 \in B_0$ such that $b_0 \notin A_0$. By Hahn-Banach Separation Theorem, there exists some $x^* \in X^*$ such that $\sup_{a \in \mathcal{A}_0} \operatorname{Re} x^*(a) < \operatorname{Re} x^*(b_0)$. Let $\operatorname{Re} x^*(A_0) = [a_1, a_2]$, $\operatorname{Re} x^*(B_0) = [b_1, b_2] \in \mathcal{C}(\mathbb{P})$, we have $a_* = \sup_{a \in \mathcal{A}_0} \operatorname{Re} x^*(a) < \operatorname{Re} x^*(a) < \operatorname{Re} x^*(a) < \operatorname{Re} x^*(b_0) <$

 $CC(\mathbb{R})$, we have $a_2 = \sup_{a \in A_0} \operatorname{Re} x^*(a) < \operatorname{Re} x^*(b_0) \le b_2$. Define $\mathbb{G} : (CC(\mathbb{R}), h) \to \mathbb{C}$

 $(\mathbb{R}, |\cdot|)$ by $\mathbb{G}([a_1, a_2]) = a_2$. It follows from Lemma 5 (a) that \mathbb{G} is a nonexpansive (hence continuous) affine mapping.

Next, let $\mathbb{F} : (WCC(X), \mathcal{T}_w) \to (\mathbb{R}, |\cdot|)$ be defined by $\mathbb{F}(A) = \mathbb{G}(\operatorname{Re} x^*(A))$. $\mathbb{F} : (\mathcal{K}_{\infty}, \mathcal{T}_w) \to (\mathbb{R}, |\cdot|)$ is continuous implies \mathbb{F} attains its maximum on \mathcal{K}_{∞} , *i.e.*, there exists $b_{\infty} \in \mathbb{R}$ and $B_{\infty} \in \mathcal{K}_{\infty}$ such that $\mathbb{F}(B_{\infty}) = b_{\infty} = \sup_{A \in \mathcal{K}_{\infty}} \mathbb{F}(A) = \max_{A \in \mathcal{K}_{\infty}} \mathbb{F}(A)$.

Since $a_2 < b_2 \leq b_{\infty}$, $A_0 \notin \mathbb{F}^{-1}(b_{\infty})$. Claim that $\mathbb{F}^{-1}(b_{\infty})$ is an extremal subset of \mathcal{K}_{∞} . For that purpose, we let $D, E \in \mathcal{K}_{\infty}$, $0 < \alpha < 1$ with $\alpha D + (1-\alpha)E \in \mathbb{F}^{-1}(b_{\infty})$. Thus $\mathbb{F}(\alpha D + (1-\alpha)E) = b_{\infty}$ which implies that $\alpha \mathbb{F}(D) + (1-\alpha)\mathbb{F}(E) = b_{\infty}$. Also $D, E \in \mathcal{K}_{\infty}$ implies that $\mathbb{F}(D), \mathbb{F}(E) \leq b_{\infty}$ and consequently, $\alpha \mathbb{F}(D) + (1-\alpha)\mathbb{F}(E) \leq b_{\infty}$. Hence $\mathbb{F}(D), \mathbb{F}(E) = b_{\infty}$ that implies $D, E \in \mathbb{F}^{-1}(b_{\infty})$. Otherwise, we would have $\alpha \mathbb{F}(D) + (1-\alpha)\mathbb{F}(E) < b_{\infty}$, contradicting that $\alpha \mathbb{F}(D) + (1-\alpha)\mathbb{F}(E) = b_{\infty}$. Now that $\mathbb{F}^{-1}(b_{\infty}) \subset \mathcal{K}_{\infty}$, and $\mathbb{F}^{-1}(b_{\infty})$ is an extremal subset of \mathcal{K}_{∞} implies $\mathbb{F}^{-1}(b_{\infty}) \subset \mathcal{K}_{\infty}$. But $A_0 \notin \mathbb{F}^{-1}(b_{\infty})$ implies $\mathbb{F}^{-1}(b_{\infty}) \subsetneq \mathcal{K}_{\infty} = \{P\}$ proving that P is an extreme point of \mathcal{K} and the proof is complete.

The following corollary is the classical Krein-Milman extreme point theorem.

Corollary 1. Let K be a non-empty compact, convex subset of a locally convex topological vector space X. Then K has an extreme point in K.

Proof. Let X a locally convex topological vector space endowed with original topology τ as well as weak topology τ_w , and $(WCC(X), \mathcal{T}_w)$ is the corresponding hyperspace. K is τ -compact implies K is τ_w -compact. It follows from Lemma 5 (b) that $\overline{K} = \{\overline{x} = \{x\} : x \in K\}$ is a \mathcal{T}_w -compact, convex subset of $(WCC(X), \mathcal{T}_w)$ and hence has an extreme point $\overline{P} = \{p\}$ by Theorem 1. Consequently p is an extreme point of K and the proof is complete.

Remark 1. (a) Since Krein-Milman Theorem has numerous important applications in various branches of mathematics, we hope further investigation on the hyperspace $(WCC(X), \mathcal{T}_w)$ will lead to some useful applications.

(b) The study of convex sets has always been interesting and useful. However, the traditional method has relied heavily on support functionals. With the \mathcal{T}_w -topology defined on WCC (X), we hope it will provide an altermative way to study convex sets.

References

- M. Baronti and P. L. Papini, Convergence of sequences of sets in Methods of Functional Analysis in Approximation Theory, ISNM 76 (1986)
- [2] W. Blaschke, Kreis und Kugel, Leipzig: Verlag von Veit & Co. 1916.
- [3] F. S. De Blasi, T. Hu and J.-C. Huang, Weak*-topology and Alaoglu's theorem on yperspace, J. Nonlinear Convex Anal. 10 (2009), no. 1, 33–40.
- [4] F. S. De Blasi and J. Myjak, Weak convergence of convex sets in Banach spaces, Arch. Math. 47 (1986), no. 5, 448–456.
- [5] L. de Branges, The Stone-Weierstrass theorem, Proc. Amer. Math. Soc. 10 (1959), no. 5, 822–824.
- [6] L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1955), no. 2, 181–186.
- [7] J. S. Hu and T. Hu, Krein-Milman's Extreme Point Theorem and Weak Topology on Hyperspace, *Taiwanese J. Math.* 20, no. 3 (2016) 629–638.
- [8] T. Hu and J.-C. Fang, Weak topology and Browder-Kirk's theorem on hyperspace, J. Math. Anal. Appl. 334 (2007), no. 2, 799–803.
- T. Hu and J.-C. Huang, Weak topology and Markov-Kakutani theorem on hyperspace, Publ. Math. Debrecen 53 (1998), no. 1-2, 113–117.
- [10] T. Hu and J.-C. Huang, Weak and weak* topologies and Brodskii-Milman's theorem on hyperspaces, *Taiwanese J. Math.* 13 (2009), no. 2A, 459–466.
- [11] G. Salinetti and R. J.-B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979), no. 1, 18–33
- [12] F. A. Valentine, Convex Sets, McGraw-Hill Series in Higher Mathematics, McGrawHill Book Co., New York, 1964.