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Abstract

In the present paper we study characterizations of odd and even
dimensional N(k)-mixed quasi-Einstein manifold and finally prove
that a N(k)-mixed quasi-Einstein manifold is a semi mixed quasi-
Einstein manifold under a certain condi-tion.

Key words : N(k)-mixed quasi Einstein manifold, semi mixed-Einstein man-
ifold.

1. Introduction

A Riemannian manifold (M, ¢g) with dimension (n > 2) is said to be an Einstein
manifold if the Ricci tensor satisfies the condition S(X,Y) = Zg(X,Y’), holds on
M here S and r denote the Ricci tensor and the scalar curvature of (M, g) respec-
tively. According to [8] the above equation is called the Einstein metric condition.
Einstein manifolds play an important role in Riemannian Geometry, as well as in
general theory of relativity. The notion of quasi-Einstien manifold were defined
in ([3],[7],[10],[14],[16],[17]). A non-flat Riemannian manifold (M, g), (n > 2) is
said to be an quasi Einstein manifold if its Ricci tensor S of type (0,2) satisfies
the condition

S(X, Y) = ag(X,Y) + bA(X)A(Y) (1.1)
1
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where a and b are scalars of which b # 0 and A is non-zero 1-form such that
g9(X, U) = A(X) for all vector field X and U is a unit vector field.

The notion of quasi Einstein manifold was introduced in a paper [10] by M.C.Chaki
and R.K.Maity. According to them a non-flat Riemannian manifold (M", g),(n >
3) is defined to be a quasi Einstein manifold if its Ricci tensor S of type (0, 2)
satisfies the condition

S(X,Y) = ag(X,Y) + bA(X)A(Y) (1.2)

and is not identically zero, where a, b are scalars b # 0 and A is a non-zero 1-form
such that

g(X,U) = A(X), VX € TM. (1.3)

U being a unit vector field.

In such a case a,b are called the associated scalars. A is called the associated
1-form and U is called the generator of the manifold. Such an n-dimensional
manifold is denoted by the symbol(QFE),.

Again, U.C.De and G.C.Ghosh defined generalized quasi Einstein manifold [12].
A non-flat Riemannian manifold is called a generalized quasi Einstein manifold
(2], 4], [5], [6], [9], [15], [18])if its Ricci-tensor S of type (0,2) is non-zero and sat-
isfies the condition

S(X,Y)=ag(X,Y) +bAX)AY) + c¢B(X)B(Y) (1.4)
where a, b, ¢, are non-zero scalars and A, B are two 1-forms such that
9(X,U) = A(X) and g(X,V) = B(X) (1.5)
U,V being unit vectors which are orthogonal, i.e,
g(U, V) =0. (1.6)
The vector fields U and V' are called the generators of the manifold. This type
of manifold are denoted by G(QF),.
The k-nullity distribution [29] of a Riemannian manifold M is defined by

N(k):p— Ny(k)={Z € T,M\ R(X,Y)Z = k(g(Y, 2)X — g(X, Z)Y)}. (1.7)

for all X,Y € TM and k is a smooth function. M.M.Tripathi and Jeong jik kim
28] introduced the notion of N (k)-quasi Einstein manifold which defined as fol-
lows: If the generator U belongs to the k-nullity distribution N(k), then a quasi
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Einstein manifold (M™, g) is called N (k)-quasi Einstein manifold.

In [26], H.G. Nagaraja introduced the concept of N (k)-mixed quasi Einstein man-
ifold and mixed quasi constant curvature.A non flat Riemannian manifold (M™, g)
is called a N (k)-mixed quasi Einstein manifold [11] if its Ricci tensor of type (0, 2)
is non zero and satisfies the condition

S(X,Y)=ag(X,Y) +bA(X)B(Y) + ¢B(X)A(Y), (1.8)
where a, b, ¢, are smooth functions and A, B are non zero 1-forms such that
g(X,U) =A(X) and g(X,V) = B(X) V X, (1.9)

U,V being the orthogonal unit vector fields called generators of the manifold be-
long to N(k).Such aa manifold is denoted by the symbol N (k) — (MQE),.
Again a Riemannian manifold (M™",g) is called of mixed quasi constant curva-
ture [11] if it is conformally flat and curvature tensor R of type (0, 4) satisfies the
condition

R(X,Y, Z,W) =plg(Y, Z)g(X, W) — g(X, Z)g(Y, W)]
+q[g(X, W)A(Y)B(Z) — 9(X, 2)A(Y)B(W)
+9(X,W)A(Z)B(Y) — g(X, Z)A(W)B(Y)]
+s[g(Y, Z)A(W)B(X) — g(Y,W)A(Z)B(X)
+9(Y, 2)A(X)B(W) — g(Y,W)A(X)B(Z)]. (1.10)

Let M be an m-dimensional, m > 3, Riemannian manifold and p € M. De-
note by K(m) or K(U A V) the sectional curvature of M associated with a
plane section 7 C T,M, where {U,V} is an orthonormal basis of 7. For a n-
dimensional subspace L C T,,M, 2 < n < m, its scalar cuvrvature 7(L) is denoted
by 7(L) = Z K(e; N ej), where {ej,es,...,€e,} is any orthonormal basis of
1<i<j<n

L([14)).

In [13] the result for odd dimensional Einstein spaces was obtained by Dumitru.
Also in [7] Bejan generalized these results (both odd and even dimensions)to
quasi Einstein manifold. Also characterization of super quasi-Einstein manifold
for both of odd and even dimensions was studied in [20]. From above studies,
we have given characterization of N (k)-mixed quasi-Einstein manifold for both
of odd and even dimensions. Next we obtain that a N (k)-mixed quasi-Einstein
manifold is semi mixed quasi-Einstein manifold if either of generators is parallel
vector field.

Geodesic mappings of Einstein spaces were studied in ([19],[21],]22],][23],[24],[25]).
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2. Characterization of N(k)-mixed quasi-Einstein manifold manifold

In this section we establish the characterization of odd and even dimensional

N(k) = (MQE),.

Theorem 2.1. A Riemannian manifold of dimension (2n + 1) with n > 2 is
N (k)-mized quasi-FEinstein manifold if and only if the Ricci operator Q) has eigen
vector fields U and V' such that at any point p € M, there exist three real numbers
a and (B satisfying
7(P)+a=71(P); U, V € T,P*,

7(N)+a=7(N*+); UeT,N, Ve€T,N*,

7(R)+ 8 =7(R"Y); U€T,R, V€T,R",
for any n-plane sections P, N and (n+ 1)-plane section R where P+, Nt and R*
denote the orthogonal complements of P, N and R in T,M respectively and

a=a/2, f=—c/2,

where a,b, c are scalars.

Proof. First suppose that M is a (2n+1) dimensional N (k)-mixed quasi-Einstein
manifold, so

S(X,Y)=ag(X,Y)+bAX)B(Y) + cA(Y)B(X), (2.1)
where a, b, ¢ are scalars such that b, ¢ are nonzero and A, B are two nonzero 1-
forms such that g(X,U) = A(X) and g(X,V) = B(X), VX € x(M), U, V being
unit vectors which are orthogonal, i.e., g(U, V) = 0.

Let P C T,M be an n-dimensional plane orthogonal to U,V and let {e1, €3, ..., €,}
be orthonormal basis of it. Since U and V are orthogonal to P, we can take or-
thonormal basis {€,11,€nia, ..., e€amr1} of PL such that ey, = U and eg,11 = V.
Thus {e1,ea,...,€n,€nt1,€n12,...,€a,+1} is an orthonormal basis of T,M.Then
we can take X =Y =¢; in (2.1), we have

2n+1 a, for 1<i<2n-1
S(e;,e;) = Z R(ej, e €i,e5) =< a, for i=2n
j=1 a, for 1=2n+1

By use of (2.1) for any 1 <14 < 2n + 1, we can write

S(er,e1) = K(egNeg)+K(egNez)+-- -+ K(egNegp—1)+K(en AU)+K (e AV) = a,

5(62, 62) = K(62A61)+K(62A63)+' . '+K<€2/\€2n_1)+K(€2AU)+K(€2/\V) = a,

S(eam—1,em-1) = K(ean_1/Ne1)+ K (ean—1N€2)+K (€2, 1N€3)+ - -+ K (€2, 1A\V) = a,
SUU)=K({UANe1)+K{UANex)+---+ KU ANeg1) + K(UANV)=a,
S(‘/,V) :K(V/\Gl)+K(V/\62)+"'+K(V/\€2n_1)+K(V/\U) = Q.
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Adding first n-equations, we get

2r(P)+ Y. K(ejAej) =na. (2.2)

1<i<n<j<2n+1
Then adding the last (n + 1)-equations, we have

2r(PY)+ Y K(eihe) =(n+1)a (2.3)

1<j<n<i<2n+1
Then, by substracting the equation (2.2) and (2.3), we obtain
7(P+) — 7(P) = a/2.
Therefore 7(P) + a = 7(P+), where,
a=a/2.

Similarly, Let N C T,M be an n-dimensional plane orthogonal to V' and let
{e1,ea,...,e,} be orthonormal basis of it. Since V' is orthogonal to N, we can take
an orthonormal basis {€,;1,€n42,. ., €1} of N orthogonal to U, such that
e, = U and ey, = V, respectively. Thus, {e1,ea,...,€n,€n11,€n12, .-, €211}
is an orthonormal basis of T,M. Then we can take X =Y =¢; in (2.1) to have

a, 1<i:1<n-—1
o a 1=n
S(ei,ei) = ZR(ej,ei,ei,ej) = CL7 n+1 <i<om
7=t a, i=2m+1
Adding first n-equations, we get
27(N) + Z K(e; Nej) = na, (2.4)
1<i<n<j<2n+1

and adding the last (n 4 1)-equations, we have
2r(NY )+ Y K(eiAe) =(n+1)a (2.5)
1<j<n<i<2n+1

Then, by substracting the equation (2.4) and (2.5), we obtain

7(N*) = 7(N) = a/2.
Therefore 7(N) + a = 7(N*1), where,
a=a/2.
Analogously, Let R C T,M be an (n+1)-plane orthogonal to V and let {e1, €2, ..., €p41}

be orthonormal basis of it. Since V' is orthogonal to R, we can take an orthonor-
mal basis {€,12,€ni3, - -, €om, €any1} of R orthogonal to U, such that e, 1 = U
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and eg, 1 = V. Thus, {e1,e2,...,€n,€n11,€n12,---,€2,11} 18 an orthonormal ba-
sis of T,M. Then we can take X =Y =¢; in (2.1) to have

a, 1< <n
2n+1 a i=n+1

Sleier) = ) Rlejenene;) =9 ) n+2<i<2n
=1 a, 1=2n+1

Adding the first (n + 1)-equations, we get

2(R)+ Y Klehe) =+, (26)
1<i<n4-1<j<2n+1
and adding the last n-equations, we have

2r(R) + > K(e; Aej) = na. (2.7)
1<j<n+1<i<2n+1
Then, by substracting the equation (2.6) and (2.7), we obtain

7(R*Y) — 7(R) = —a/2.
Therefore 7(R) + 8 = 7(R*), where,

pf=—a/2.
Conversely, let Vi be an arbitrary unit vector of T,M, at p € M, orthogonal to
U and V. We take an orthonormal basis {e,es,...,€pn, €11, €n10,...,€on41} Of

T,M such that Vi = e, e,41 = U and egp1 = V. We consider n-plane section [NV
and (n + 1)-plane section R in T,M as follows N = span {es, ..., €, en41} and
R =span {ej1, s, ..., en, eny1} respectively. Then we have N+ = span {e1, €40, .. .,
€om, €ant1} and RY = span {e, o...., e, } respectively. Now

S(‘/I;‘/I) = [K(@l N 62) —+ K(61 N 63) + -+ K(@l A 6n+1)}
+[K(€1 N €n+2) + :+K(€1 A egn) + K(61 A\ 62n+1)]
=[r(R) = > Klare)l+[r(ND) = > K(ene)
2<i<j<n+1 n+2<i<j<2n+1

= 7(R)=7(N)+7(N*) =7(R*) = [(R) = 7(N)]+[r(N) +a~T7(R) — f] = a— .

Therefore, S(V1,V1) = a — B, for any unit vector V; € T,M, orthogonal to U
and V. Then we can write for any 1 < i < 2n + 1, S(e;,e;) = a — 3, since
S(Vi,V1) = (a — B)g(Vi, V). It follows that S(X,X) = (o — 8)g(X,X) and
SY,Y) = (a=B)g(Y,Y)+ K A(Y)B(Y)+ Ky;B(Y)A(Y) for any X € [span{U}]*
and Y € [span{V }]*, where A, B are the dual forms of U and V with respect to
g, respectively and K7, Ky are scalars, such that Ky # 0, Ky # 0.

Now from the above equations, we get from symmetry that S with tensors (a«—f)g
and (a—p)+ K1 (A® B)+ K3 (A® B) must coincide on the complement of U and V/,
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respectively, that is S(X,Y) = (a — p)g(X,Y) + K1A(X)B(Y) + Ko B(X)A(Y),
for any X,Y € [span{U,V}]* . Since U and V are eigenvector fields of Q, we
also have S(X,U) =0 and S(Y,V) = 0 for any X,Y € T, M orthogonal to U and
V. Thus, we can extend the above equation to

S(X, 2) = (a — B)g(X, Z) + Ky A(X)B(Z) + IGA(Z)B(X)  (28)

, for any X € [span{U,V}|* and Z € T,M, where K;, K», are scalars and K; #
0, K3 # 0,. Now, let us consider the n-plane section P and (n + 1)-plane section
R in T,M as follows P = span {ej,es,...,e,} and R = span {ej, e, ...,e,, U}
Then we have P+ = span {U, e, 19, . .., €s,11} and Rt =span {e, 19, ..., €an, €ani1}
respectively. Now

S{U,U)=[K({UANe)))+KUANey)+ -+ KU Aey)]
KU A enta) + -+ KU Aegn) + K(er A ez

=[r(R)— Y Kleine)l+[r(PH)— D K(eine)

1<i<j<n n+2<i<j<2n+1

= 7(R)—71(P)+7(P+) = 7(R") = [r(R) = 7(P)]+[a+7(P) = B—T(R)] = a—B.

Therefore we can write

SWU,U) = (a = p)g(U,U). (2.9)
Analogously, let us consider the n-plane section P and N € T,M as follows
P = span {ey,es,...,e,} and N = span {e,11, €nt2, ..., €, } respectively. Then
we have P+ = span {e,i1,€n42,...,€0,, V} and Nt = span {e,...,e,, V} re-

spectively. Now, we have
SV, V)y=[K(VAe)+ KWV ANeg)+---+K(V Ae,)]
HEWV Aepi1) + K(V ANepra) + -+ K(eg Aeay)]

=[r(NY) = > K(eane)l+[r(P)— D Kleihe)

=7(N) =7(P) +7(P) = 7(N) = [r(N) + a = 7(P)] + [a+7(P) = 7(N)] = 20
Then, we get
SV, V) = 2ag(V, V) + K\ A(V)B(V) + Ko A(V)B(V). (2.10)
Now from (2.8),(2.9) and (2.10) we can write the Ricci tensor by
S(X, V)= Mg(X, Y)+ K AX)B(Y) + KyB(X)A(Y), (2.11)

for any X,Y € T,M. From (2.11) it follows that M is a N(k)-mixed quasi-
Einstein manifold, where A\, K7, Ky, are scalars and K; # 0, Ky # 0,. Hence the
theorem is proved.
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Theorem 2.2. A Riemannian manifold of dimension 2n with n > 2 is N(k)-
mized quasi-Einstein manifold if and only if the Ricci operator QQ has eigen vector
fields U and V' such that at any point p € M, satisfying

7(P)=7(PY); U,V € TP,
7(N) = 7(N*); U €T,N,V € T,N*,
7(R) = 7(R*); U € T,R,V € T,R",

for any n-plane section P, N and (n + 1)-plane section R where P+, N+ and R*
denote the orthogonal complements of PN and R in T,M respectively.

Proof. Let P and R be n-plane sections and N be an (n — 1)-plane section
such that, P = span{ej,es,...,e,}, R = span{e, 1,€n12,...,€0,} and N =

span{es, €3, ..., e, } respectively. Therefore the orthogonal complements of these
sections can be written as P+ = span{e, 1, €nt2,. .-, }, RT =span{ei, es,...,e,}
and N+ = span{ei, enp1,...,€m .

Then rest of the proof is similar to the proof of Theorem 2.1.

3. N(k) — MQE, with the parallel vector field generators

Theorem 3.1. A N(k)- mized quasi-Einstein manifold is semi-mized quasi-
Einstein manifold if either of generators is parallel vector field.

Proof. By the definition of the Riemannian curvature tensor, if U is parallel
vector field, then we find that

R(X,Y)U = VxVyU — Vy VU — Vix U = 0,

and consequently we get

S(X,U)=0. (3.1)
Again, putting Y = U in the equation (1.8) and applying (1.9) , we have
S(X,U) =ag(X,U) +cg(X,V).
So, if U is a parallel vector field, by (3.1), we get
ag(X,U) +cg(X, V) =0. (3.2)

Now, putting X = V in the equation (3.2) and using (1.9) we get ¢ = 0. So, if
U is parallel vector field in a mixed-quasi-Einstein manifold, then the manifold is
semi-mixed quasi Einstein manifold.

Again, if V' is parallel vector field, then R(X,Y)V = 0. Contracting, we get

S(Y,V)=0. (3.3)
Putting X = V in the equation (1.8) and applying (1.9), we obtain
S(Y,V) =ag(Y,V) +bg(Y,U).
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If, V is a parallel vector field, by (3.3), we get

ag(Y, V) + bg(Y,U) = 0. (3.4)

Putting Y = U and using (3.4), (1.9), we obtain b = 0, i.e., the manifold is semi
mixed quasi-Einstein manifold.
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