
Characterization on N(k)-Mixed Quasi-Einstein Manifold

Department of Mathematics,
Bamanpukur High School, 

Bamanpukur,PO-Sree Mayapur,
West Bengal,India,PIN-741313 

Email:dipankardebnath123@gmail.com

Department of Mathematics 
Jadavpur University, 

Kolkata-700032, India.
E-mail: bhattachar1968@yahoo.co.in

Mathematics Subject Classification 2010: 53C25.

Dipankar Debnath

Arindam Bhattacharyya

Tamsui Oxford Journal of Informational and Mathematical Sciences 31(2) (2017) 93-103
Aletheia University

Received May 26, 2017  Accepted December 14, 2017



Abstract

In the present paper we study characterizations of odd and even
dimensional N(k)-mixed quasi-Einstein manifold and finally prove
that a N(k)-mixed quasi-Einstein manifold is a semi mixed quasi-
Einstein manifold under a certain condi-tion.

Key words : N(k)-mixed quasi Einstein manifold, semi mixed-Einstein man-
ifold.

1. Introduction

A Riemannian manifold (M , g) with dimension (n ≥ 2) is said to be an Einstein
manifold if the Ricci tensor satisfies the condition S(X, Y ) = r

n
g(X, Y ), holds on

M , here S and r denote the Ricci tensor and the scalar curvature of (M , g) respec-
tively. According to [8] the above equation is called the Einstein metric condition.
Einstein manifolds play an important role in Riemannian Geometry, as well as in
general theory of relativity. The notion of quasi-Einstien manifold were defined
in ([3],[7],[10],[14],[16],[17]). A non-flat Riemannian manifold (M , g), (n ≥ 2) is
said to be an quasi Einstein manifold if its Ricci tensor S of type (0, 2) satisfies
the condition

S(X, Y ) = ag(X, Y ) + bA(X)A(Y ) (1.1)
1
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where a and b are scalars of which b 6= 0 and A is non-zero 1-form such that
g(X, U) = A(X) for all vector field X and U is a unit vector field.

The notion of quasi Einstein manifold was introduced in a paper [10] by M.C.Chaki
and R.K.Maity. According to them a non-flat Riemannian manifold (Mn, g),(n ≥
3) is defined to be a quasi Einstein manifold if its Ricci tensor S of type (0, 2)
satisfies the condition

S(X, Y ) = ag(X, Y ) + bA(X)A(Y ) (1.2)

and is not identically zero, where a, b are scalars b 6= 0 and A is a non-zero 1-form
such that

g(X,U) = A(X), ∀X ∈ TM. (1.3)

U being a unit vector field.
In such a case a, b are called the associated scalars. A is called the associated
1-form and U is called the generator of the manifold. Such an n-dimensional
manifold is denoted by the symbol(QE)n.
Again, U.C.De and G.C.Ghosh defined generalized quasi Einstein manifold [12].
A non-flat Riemannian manifold is called a generalized quasi Einstein manifold
([2], [4], [5], [6], [9], [15], [18])if its Ricci-tensor S of type (0, 2) is non-zero and sat-
isfies the condition

S(X, Y ) = ag(X, Y ) + bA(X)A(Y ) + cB(X)B(Y ) (1.4)

where a, b, c, are non-zero scalars and A,B are two 1-forms such that

g(X,U) = A(X) and g(X, V ) = B(X) (1.5)

U, V being unit vectors which are orthogonal, i.e,

g(U, V ) = 0. (1.6)

The vector fields U and V are called the generators of the manifold. This type
of manifold are denoted by G(QE)n.
The k-nullity distribution [29] of a Riemannian manifold M is defined by

N(k) : p→ Np(k) = {Z ∈ TpM \R(X, Y )Z = k(g(Y, Z)X − g(X,Z)Y )}. (1.7)

for all X, Y ∈ TM and k is a smooth function. M.M.Tripathi and Jeong jik kim
[28] introduced the notion of N(k)-quasi Einstein manifold which defined as fol-
lows: If the generator U belongs to the k-nullity distribution N(k), then a quasi
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Einstein manifold (Mn, g) is called N(k)-quasi Einstein manifold.
In [26], H.G. Nagaraja introduced the concept of N(k)-mixed quasi Einstein man-
ifold and mixed quasi constant curvature.A non flat Riemannian manifold (Mn, g)
is called a N(k)-mixed quasi Einstein manifold [11] if its Ricci tensor of type (0, 2)
is non zero and satisfies the condition

S(X, Y ) = ag(X, Y ) + bA(X)B(Y ) + cB(X)A(Y ), (1.8)

where a, b, c, are smooth functions and A,B are non zero 1-forms such that

g(X,U) = A(X) and g(X, V ) = B(X) ∀ X, (1.9)

U, V being the orthogonal unit vector fields called generators of the manifold be-
long to N(k).Such aa manifold is denoted by the symbol N(k)− (MQE)n.
Again a Riemannian manifold (Mn, g) is called of mixed quasi constant curva-
ture [11] if it is conformally flat and curvature tensor Ŕ of type (0, 4) satisfies the
condition

Ŕ(X, Y, Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+q[g(X,W )A(Y )B(Z)− g(X,Z)A(Y )B(W )

+g(X,W )A(Z)B(Y )− g(X,Z)A(W )B(Y )]

+s[g(Y, Z)A(W )B(X)− g(Y,W )A(Z)B(X)

+g(Y, Z)A(X)B(W )− g(Y,W )A(X)B(Z)]. (1.10)

Let M be an m-dimensional, m ≥ 3, Riemannian manifold and p ∈ M . De-
note by K(π) or K(U ∧ V ) the sectional curvature of M associated with a
plane section π ⊆ TpM , where {U, V } is an orthonormal basis of π. For a n-
dimensional subspace L ⊆ TpM, 2 ≤ n ≤ m, its scalar cuvrvature τ(L) is denoted

by τ(L) =
∑

1≤i<j≤n

K(ei ∧ ej), where {e1, e2, . . . , en} is any orthonormal basis of

L([14]).
In [13] the result for odd dimensional Einstein spaces was obtained by Dumitru.
Also in [7] Bejan generalized these results (both odd and even dimensions)to
quasi Einstein manifold. Also characterization of super quasi-Einstein manifold
for both of odd and even dimensions was studied in [20]. From above studies,
we have given characterization of N(k)-mixed quasi-Einstein manifold for both
of odd and even dimensions. Next we obtain that a N(k)-mixed quasi-Einstein
manifold is semi mixed quasi-Einstein manifold if either of generators is parallel
vector field.

Geodesic mappings of Einstein spaces were studied in ([19],[21],[22],[23],[24],[25]).
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2. Characterization of N(k)-mixed quasi-Einstein manifold manifold

In this section we establish the characterization of odd and even dimensional
N(k)− (MQE)n.

Theorem 2.1. A Riemannian manifold of dimension (2n + 1) with n ≥ 2 is
N(k)-mixed quasi-Einstein manifold if and only if the Ricci operator Q has eigen
vector fields U and V such that at any point p ∈M , there exist three real numbers
α and β satisfying

τ(P ) + α = τ(P⊥); U, V ∈ TpP⊥,

τ(N) + α = τ(N⊥); U ∈ TpN, V ∈ TpN⊥,
τ(R) + β = τ(R⊥); U ∈ TpR, V ∈ TpR⊥,

for any n-plane sections P,N and (n+ 1)-plane section R where P⊥, N⊥ and R⊥

denote the orthogonal complements of P,N and R in TpM respectively and

α = a/2, β = −c/2,
where a, b, c are scalars.

Proof. First suppose that M is a (2n+1) dimensional N(k)-mixed quasi-Einstein
manifold, so

S(X, Y ) = ag(X, Y ) + bA(X)B(Y ) + cA(Y )B(X), (2.1)

where a, b, c are scalars such that b, c are nonzero and A,B are two nonzero 1-
forms such that g(X,U) = A(X) and g(X, V ) = B(X), ∀X ∈ χ(M), U, V being
unit vectors which are orthogonal, i.e., g(U, V ) = 0.

Let P ⊆ TpM be an n-dimensional plane orthogonal to U, V and let {e1, e2, . . . , en}
be orthonormal basis of it. Since U and V are orthogonal to P , we can take or-
thonormal basis {en+1, en+2, . . . , e2n+1} of P⊥ such that e2n = U and e2n+1 = V .
Thus {e1, e2, . . . , en, en+1, en+2, . . . , e2n+1} is an orthonormal basis of TpM .Then
we can take X = Y = ei in (2.1), we have

S(ei, ei) =
2n+1∑
j=1

R(ej, ei, ei, ej) =

 a, for 1 ≤ i ≤ 2n− 1
a, for i = 2n
a, for i = 2n+ 1

By use of (2.1) for any 1 ≤ i ≤ 2n+ 1, we can write

S(e1, e1) = K(e1∧e2)+K(e1∧e3)+· · ·+K(e1∧e2n−1)+K(e1∧U)+K(e1∧V ) = a,

S(e2, e2) = K(e2∧e1)+K(e2∧e3)+· · ·+K(e2∧e2n−1)+K(e2∧U)+K(e2∧V ) = a,

....................................................................

S(e2n−1, e2n−1) = K(e2n−1∧e1)+K(e2n−1∧e2)+K(e2n−1∧e3)+· · ·+K(e2n−1∧V ) = a,

S(U,U) = K(U ∧ e1) +K(U ∧ e2) + · · ·+K(U ∧ e2n−1) +K(U ∧ V ) = a,

S(V, V ) = K(V ∧ e1) +K(V ∧ e2) + · · ·+K(V ∧ e2n−1) +K(V ∧ U) = a.
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Adding first n-equations, we get

2τ(P ) +
∑

1≤i≤n<j≤2n+1

K(ei ∧ ej) = na. (2.2)

Then adding the last (n+ 1)-equations, we have

2τ(P⊥) +
∑

1≤j≤n<i≤2n+1

K(ei ∧ ej) = (n+ 1)a. (2.3)

Then, by substracting the equation (2.2) and (2.3), we obtain

τ(P⊥)− τ(P ) = a/2.

Therefore τ(P ) + α = τ(P⊥), where,

α = a/2.

Similarly, Let N ⊆ TpM be an n-dimensional plane orthogonal to V and let
{e1, e2, . . . , en} be orthonormal basis of it. Since V is orthogonal to N , we can take
an orthonormal basis {en+1, en+2, . . . , e2n+1} of N⊥ orthogonal to U , such that
en = U and e2n+1 = V , respectively. Thus, {e1, e2, . . . , en, en+1, en+2, . . . , e2n+1}
is an orthonormal basis of TpM . Then we can take X = Y = ei in (2.1) to have

S(ei, ei) =
2n+1∑
j=1

R(ej, ei, ei, ej) =


a, 1 ≤ i ≤ n− 1
a, i = n
a, n+ 1 ≤ i ≤ 2n
a, i = 2n+ 1

Adding first n-equations, we get

2τ(N) +
∑

1≤i≤n<j≤2n+1

K(ei ∧ ej) = na, (2.4)

and adding the last (n+ 1)-equations, we have

2τ(N⊥) +
∑

1≤j≤n<i≤2n+1

K(ei ∧ ej) = (n+ 1)a. (2.5)

Then, by substracting the equation (2.4) and (2.5), we obtain

τ(N⊥)− τ(N) = a/2.

Therefore τ(N) + α = τ(N⊥), where,

α = a/2.

Analogously, LetR ⊆ TpM be an (n+1)-plane orthogonal to V and let {e1, e2, . . . , en+1}
be orthonormal basis of it. Since V is orthogonal to R, we can take an orthonor-
mal basis {en+2, en+3, . . . , e2n, e2n+1} of R⊥ orthogonal to U , such that en+1 = U
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and e2n+1 = V . Thus, {e1, e2, . . . , en, en+1, en+2, . . . , e2n+1} is an orthonormal ba-
sis of TpM . Then we can take X = Y = ei in (2.1) to have

S(ei, ei) =
2n+1∑
j=1

R(ej, ei, ei, ej) =


a, 1 ≤ i ≤ n
a, i = n+ 1
a, n+ 2 ≤ i ≤ 2n
a, i = 2n+ 1

Adding the first (n+ 1)-equations, we get

2τ(R) +
∑

1≤i≤n+1<j≤2n+1

K(ei ∧ ej) = (n+ 1)a, (2.6)

and adding the last n-equations, we have

2τ(R⊥) +
∑

1≤j≤n+1<i≤2n+1

K(ei ∧ ej) = na. (2.7)

Then, by substracting the equation (2.6) and (2.7), we obtain

τ(R⊥)− τ(R) = −a/2.
Therefore τ(R) + β = τ(R⊥), where,

β = −a/2.
Conversely, let V1 be an arbitrary unit vector of TpM , at p ∈ M , orthogonal to
U and V . We take an orthonormal basis {e1, e2, . . . , en, en+1, en+2, . . . , e2n+1} of
TpM such that V1 = e1, en+1 = U and e2n+1 = V . We consider n-plane section N
and (n + 1)-plane section R in TpM as follows N = span {e2, . . . , en, en+1} and
R = span {e1, e2, . . . , en, en+1} respectively.Then we haveN⊥ = span {e1, en+2, . . . ,
e2n, e2n+1} and R⊥ = span {en+2. . . . , e2n} respectively. Now

S(V1, V1) = [K(e1 ∧ e2) +K(e1 ∧ e3) + · · ·+K(e1 ∧ en+1)]

+[K(e1 ∧ en+2) +˙̇+̇K(e1 ∧ e2n) +K(e1 ∧ e2n+1)]

= [τ(R)−
∑

2≤i<j≤n+1

K(ei ∧ ej)] + [τ(N⊥)−
∑

n+2≤i<j≤2n+1

K(ei ∧ ej)]

= τ(R)−τ(N)+τ(N⊥)−τ(R⊥) = [τ(R)−τ(N)]+[τ(N)+α−τ(R)−β] = α−β.

Therefore, S(V1, V1) = α − β, for any unit vector V1 ∈ TpM , orthogonal to U
and V . Then we can write for any 1 ≤ i ≤ 2n + 1, S(ei, ei) = α − β, since
S(V1, V1) = (α − β)g(V1, V1). It follows that S(X,X) = (α − β)g(X,X) and
S(Y, Y ) = (α−β)g(Y, Y )+K1A(Y )B(Y )+K2B(Y )A(Y ) for any X ∈ [span{U}]⊥
and Y ∈ [span{V }]⊥, where A, B are the dual forms of U and V with respect to
g, respectively and K1, K2 are scalars, such that K1 6= 0, K2 6= 0.

Now from the above equations, we get from symmetry that S with tensors (α−β)g
and (α−β)+K1(A⊗B)+K2(A⊗B) must coincide on the complement of U and V ,
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respectively, that is S(X, Y ) = (α− β)g(X, Y ) +K1A(X)B(Y ) +K2B(X)A(Y ),
for any X, Y ∈ [span{U, V }]⊥ . Since U and V are eigenvector fields of Q, we
also have S(X,U) = 0 and S(Y, V ) = 0 for any X, Y ∈ TpM orthogonal to U and
V . Thus, we can extend the above equation to

S(X,Z) = (α− β)g(X,Z) +K1A(X)B(Z) +K2A(Z)B(X) (2.8)

, for any X ∈ [span{U, V }]⊥ and Z ∈ TpM , where K1, K2, are scalars and K1 6=
0, K2 6= 0,. Now, let us consider the n-plane section P and (n+ 1)-plane section
R in TpM as follows P = span {e1, e2, . . . , en} and R = span {e1, e2, . . . , en, U}.
Then we have P⊥ = span {U, en+2, . . . , e2n+1} andR⊥ = span {en+2, . . . , e2n, e2n+1}
respectively. Now

S(U,U) = [K(U ∧ e1) +K(U ∧ e2) + · · ·+K(U ∧ en)]

+[K(U ∧ en+2) + · · ·+K(U ∧ e2n) +K(e1 ∧ e2n+1)]

= [τ(R)−
∑

1≤i<j≤n

K(ei ∧ ej)] + [τ(P⊥)−
∑

n+2≤i<j≤2n+1

K(ei ∧ ej)]

= τ(R)−τ(P )+τ(P⊥)−τ(R⊥) = [τ(R)−τ(P )]+ [α+τ(P )−β−τ(R)] = α−β.

Therefore we can write

S(U,U) = (α− β)g(U,U). (2.9)

Analogously, let us consider the n-plane section P and N ∈ TpM as follows
P = span {e1, e2, . . . , en} and N = span {en+1, en+2, . . . , e2n} respectively. Then
we have P⊥ = span {en+1, en+2, . . . , e2n, V } and N⊥ = span {e1, . . . , en, V } re-
spectively. Now, we have

S(V, V ) = [K(V ∧ e1) +K(V ∧ e2) + · · ·+K(V ∧ en)]

+[K(V ∧ en+1) +K(V ∧ en+2) + · · ·+K(e2 ∧ e2n)]

= [τ(N⊥)−
∑

1≤i<j≤n

K(ei ∧ ej)] + [τ(P⊥)−
∑

n+1≤i<j≤2n

K(ei ∧ ej)]

= τ(N⊥)− τ(P ) + τ(P⊥)− τ(N) = [τ(N) +α− τ(P )] + [α+ τ(P )− τ(N)] = 2α.

Then, we get

S(V, V ) = 2αg(V, V ) +K1A(V )B(V ) +K2A(V )B(V ). (2.10)

Now from (2.8), (2.9) and (2.10) we can write the Ricci tensor by

S(X, Y ) = λ1g(X, Y ) +K1A(X)B(Y ) +K2B(X)A(Y ), (2.11)

for any X, Y ∈ TpM . From (2.11) it follows that M is a N(k)-mixed quasi-
Einstein manifold, where λ1, K1, K2, are scalars and K1 6= 0, K2 6= 0,. Hence the
theorem is proved.
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Theorem 2.2. A Riemannian manifold of dimension 2n with n ≥ 2 is N(k)-
mixed quasi-Einstein manifold if and only if the Ricci operator Q has eigen vector
fields U and V such that at any point p ∈M , satisfying

τ(P ) = τ(P⊥); U, V ∈ TpP⊥,

τ(N) = τ(N⊥); U ∈ TpN, V ∈ TpN⊥,
τ(R) = τ(R⊥); U ∈ TpR, V ∈ TpR⊥,

for any n-plane section P,N and (n+ 1)-plane section R where P⊥, N⊥ and R⊥

denote the orthogonal complements of P,N and R in TpM respectively.

Proof. Let P and R be n-plane sections and N be an (n − 1)-plane section
such that, P = span{e1, e2, . . . , en}, R = span{en+1, en+2, . . . , e2n} and N =
span{e2, e3, . . . , en} respectively. Therefore the orthogonal complements of these
sections can be written as P⊥ = span{en+1, en+2, . . . , e2n}, R⊥ = span{e1, e2, . . . , en}
and N⊥ = span{e1, en+1, . . . , e2n}.
Then rest of the proof is similar to the proof of Theorem 2.1.

3. N(k)−MQEn with the parallel vector field generators

Theorem 3.1. A N(k)- mixed quasi-Einstein manifold is semi-mixed quasi-
Einstein manifold if either of generators is parallel vector field.

Proof. By the definition of the Riemannian curvature tensor, if U is parallel
vector field, then we find that

R(X, Y )U = ∇X∇YU −∇Y∇XU −∇[X,Y ]U = 0,

and consequently we get

S(X,U) = 0. (3.1)

Again, putting Y = U in the equation (1.8) and applying (1.9) , we have

S(X,U) = ag(X,U) + cg(X, V ).

So, if U is a parallel vector field, by (3.1), we get

ag(X,U) + cg(X, V ) = 0. (3.2)

Now, putting X = V in the equation (3.2) and using (1.9) we get c = 0. So, if
U is parallel vector field in a mixed-quasi-Einstein manifold, then the manifold is
semi-mixed quasi Einstein manifold.

Again, if V is parallel vector field, then R(X, Y )V = 0. Contracting, we get

S(Y, V ) = 0. (3.3)

Putting X = V in the equation (1.8) and applying (1.9), we obtain

S(Y, V ) = ag(Y, V ) + bg(Y, U).
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If, V is a parallel vector field, by (3.3), we get

ag(Y, V ) + bg(Y, U) = 0. (3.4)

Putting Y = U and using (3.4), (1.9), we obtain b = 0, i.e., the manifold is semi
mixed quasi-Einstein manifold.
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[24] Mikeš, J: Geodesic mappings of Einstein spaces, Math. Notes, 28(1981), 922-923.
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