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1 Introduction

Here, we need to recall the definition of the weighted Sobolev space. The

symbol Hℓ = W 2
2,β(0, 1)

ℓ (ℓ-times) denotes the space of vector functions

u(t) = (u1(t), . . . , uℓ(t)) defined on (0, 1) with the finite norm

|u|s = (
∫ 1

0
(ω2β(t)|du(t)

dt
|2Cℓdt+

∫ 1

0
|u(t)|2Cℓ)1/2.

Here, 0 ≤ β < 1, and the notations |du(t)
dt

|2Cℓ , |u(t)|2Cℓ stand for the

norm in space Cℓ. We use from the notation
◦
Hℓ to define the clo-

sure of C∞
0 (0, 1)ℓ with respect to the above norm (i.e.,

◦
Hℓ is the clo-

sure of C∞
0 (0, 1)ℓ in Hℓ). C∞

0 (0, 1) denotes the space of infinitely dif-

ferentiable functions with compact support in (0, 1). If ℓ = 1, then

H = H1, H = H1, and
◦
H=

◦
H1. To get a feeling for the history of the

subject under study, refer to papers [1-3]. In this paper, we consider the

differential operator (Pu)(t) = − d
dt

(
ω2β(t)A(t)du(t)

dt

)
, (1.1) be a degen-

erate non- selfadjoint differential operator on Hilbert spaceHℓ = L2(0, 1)ℓ

with Dirichlet-type boundary conditions. Here, 0 ≤ β < 1, and A(t) ∈

C2([0, 1], End Cℓ) denotes for each t ∈ [0, 1] the matrix function A(t).

Assume that A(t) has ℓ− simple non-zero eigenvalues µ1(t), . . . , µℓ(t) in

the complex plane, arranged in different locations in view of Φφ ⊂ C,

where

Φφ = {z ∈ C : |arg z| ≤ φ, φ ∈ (0, π)}.
1Key words and phrases: resolvent, asymptotic spectrum, distribution of eigenval-

ues, non- selfadoint, m-sectorial operator.
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Abstract

In this paper, we first consider a non - selfadjoint differen-tial operator on Hilbert 
space Hℓ = L2(0, 1)ℓ with Dirichlet-type (                              )
boundary conditions in form (Pu)(t) = − d ω2β (t)A(t)du(t) .                                                                            dt                       dt 

Here, 0 ≤ β < 1, t ∈ [0, 1] and the matrix function A(t) has distinct eigenvalues 

µ1(t), . . . , µℓ(t) which are different from zero and located in the complex plane in 

veiw of Φφ, where Φφ = {z ∈ C : |arg z| < φ, φ ∈ (0, π)}. Finally, we investigate 

some spec-tral properties of the degenerate non-selfadjoint elliptic differential

operators P acting on Hℓ. In particular, we will determine the resolvent estimate of 

the operator P that satisfies Dirichlet-type boundary conditions in spaces H1 and Hℓ.



(i) If µ1(t), . . . , µν(t) lie on the positive real line inside of the sector Φφ,

then it is simple to see that P is self-adjoint. Thus, for every λ ∈ Φφ,ψ,

the estimate

∥(P − λI)−1∥ ≤MΦφ,ψ |λ|−1,

holds, where

Φφ,ψ = {z ∈ C : ψ ≤ |arg z| ≤ φ, φ ∈ (0, π), ψ ∈ (0, φ)}.

(ii) Let µν+1(t), . . . , µℓ(t) lie outside of the sector Φφ. In this paper, we in-

vestigate some spectral properties of the degenerate non-selfadjoint ellip-

tic differential operators P acting on Hℓ. In particular, we will determine

the resolvent estimate of the operator P which satisfies Dirichlet-type

boundary conditions in spaces Hℓ and H. Now, the domain of operator

P is defined as follows:

D(P) = {u ∈
◦
Hℓ ∩W 2

2,loc(0, 1)
ℓ
:
d

dt

(
ω2β(t)A

du

dt

)
∈ Hℓ}

(see [7]). Here W 2
2, loc(0, 1)

ℓ = W 2
2, loc(0, 1)× · · · ×W 2

2, loc(0, 1) (ℓ− times)

where W 2
2, loc(0, 1) the space of functions u(t) (0 < t < 1) satisfying the

condition
2∑
i=0

∫ 1−ε

ε
|u(i)(t)|2dt <∞, ∀ε ∈ (0,

1

2
).

Here, and in the sequel, the value of the function arg z ∈ (−π, π] and

∥P∥ denotes the norm of the bounded arbitrary operator P acting on H

or Hℓ.

2 Results

In this section, we give some theorems that estimate resolvent of an

differential operator on a Hilbert space.
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2.1 Resolvent Estimate of P in H = L2(0.1)

Theorem 2.1. Let Φφ ⊂ C be some closed sector with the vertex at 0,

and set P = q, A(t) = µ(t) in (1.1) in Section 1. Then, we obtain

(qv)(t) = − d
dt

(
ω2β(t)µ(t)dv(t)

dt

)
, acting on H = L2(0, 1). Assume that

µ(t) ∈ C2[0, 1], µ(t) ∈ C\Φφ, ∀t ∈ [0, 1], (2.1)

|arg{µ(t1)µ−1(t2)}| ≤
π

8
, (∀ t1, t2 ∈ [0, 1]). (2.2)

Then, for sufficiently large numbers in modulus λ ∈ Φφ,ψ, the inverse

operator (q − λI)−1 exists and is continuous in the space H = L2(0, 1),

and the following estimates hold

∥(q − λI)−1∥ ≤MΦφ,ψ |λ|−1 (λ ∈ Φφ,ψ, |λ| > CΦφ,ψ), (2.3)

∥ω2β(t)
d

dt
(q − λI)−1∥ ≤M ′

Φ|λ|−
1
2 (λ ∈ Φφ,ψ, |λ| > CΦφ,ψ), (2.4)

where the numbers MΦφ,ψ , M
′
Φϕ,ψ

and CΦϕ,ψ > 0 are sufficiently large

numbers depending on Φφ where Φφ = {z ∈ C : |arg z| ≤ φ, φ ∈

(0, π)}.

Proof. Here, to establish Theorem 2.1, we will first prove the asser-

tion of Theorem 2.1 together with estimate (2.3). As in Section 1, for the

closed extension of the operator q, (for more explanations, see chapter 6

of [7]), we need to extend its domain to the

D(q) = {v ∈
◦
H ∩W 2

2,loc(0, 1) :
(
ω2β(t)µv′

)′
∈ H}.

Let the operator A now satisfy (2.1) and (2.2), then, there exists a real

γ ∈ (−π, π], such that for the complex number eiγ we have |eiγ| = 1, and

so

c′ ≤ Re{eiγµ(t)}, c′|λ| ≤ −Re{eiγλ}, c′ > 0 ∀ t ∈ [0, 1], λ ∈ Φφ,ψ.

(2.5)
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For v ∈ D(q) we will have

c′
∫ 1

0
ω2β(t)|v′(t)|2dt ≤ Re

∫ 1

0
eiγω2βµ|v′(t)|2 dt = Re{eiγ(qv , v)}.

(2.6)

Here the symbol (,) denotes the inner product in H. Notice that the

equality in (2.6) above obtains by the well-known theorem of the m-

sectorial operators, (For further explanations see the well-known Theo-

rem 2.1, chapter 6 of [7].) By (2.5), we have c′|λ| ≤ −Re{eiγλ}, c′ >

0, ∀λ ∈ Φφ,ψ. Multiplying the latter inequality by
∫ 1
0 |v(t)|2 dt =

(v , v) = ∥v∥2 > 0, then

c′|λ|
∫ 1

0
|v(t)|2 dt ≤ −Re{eiγλ}(v , v).

By the latter inequality and (2.6), and by considering c′ = 1/M , it follows

that

∫ 1

0
ω2β(t)|v′(t)|2dt+ |λ|

∫ 1

0
|v(t)|2dt ≤ MRe{eiγ(q, v)− eiγλ(v, v)}

= MRe{eiγ((q − λI)v, v)}

≤ M∥eiγ∥∥v∥∥(q − λI)v∥

= M∥v∥∥(q − λI)v∥. (2.7)

Or

∫ 1

0
ω2β(t)|v′(t)|2dt+ |λ|

∫ 1

0
|v(t)|2 dt ≤M∥v∥ ∥(q − λ I)v∥.

Since
∫ 1
0 ω

2β(t)|v′(t)|2dt is positive, we will have

|λ|∥v(t)∥2 = |λ|
∫ 1

0
|v(t)|2 dt ≤M∥v∥∥(q − λ I)v∥, (2.8)

i.e.,

|λ|∥v∥ ≤M∥(q − λ I)v∥.
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The above relation ensures that the operator (q − λ I) is a one- to-

one operator, which implies that ker(q − λ I) = 0. Therefore, the

inverse operator (q − λI)−1 exists, and its continuity follows from the

proof of the estimate (2.3) of Theorem 2.1. To prove (2.3), we set v =

(q − λI)−1f, f ∈ H in (2.8), so that

|λ|
∫ 1

0
|(q − λI)−1f |2 dt ≤M∥(q − λI)−1f∥∥(q − λI)(q − λI)−1f∥.

Since (q − λ I)(q − λI)−1f = I(f) = f , it follows that

|λ|
∫ 1

0
|(q − λI)−1f |2 dt ≤M∥(q − λI)−1f∥|f |.

Therefore,

|λ|∥(q − λI)−1(f)∥2 ≤M∥(q − λI)−1(f)∥|f |.

By canceling the positive term ∥(q − λI)−1(f)∥ from both sides of the

latter inequality, we will find

|λ|∥(q − λI)−1(f)∥ ≤M |f |,

and since λ ̸= 0, we imply that ∥(q − λI)−1(f)∥ ≤ M |λ|−1|f |. The end

result is

∥(q − λI)−1∥ ≤MΦφ,ψ |λ|−1.

This completes the proof of the estimate (2.3) from Theorem 2.1.

To prove the estimate (2.4) of Theorem 2.1. As in the first argu-

ments to prove estimate (2.3) above, here, we drop the positive term

|λ|
∫ 1
0 |v(t)|2 dt from∫ 1

0
ω2β(t)|v′(t)|2dt+ |λ|

∫ 1

0
|v(t)|2 dt ≤M |v| ∥(q − λ I)v∥.

It follows that ∫ 1

0
ω2β(t)|v′(t)|2dt ≤M |v| ∥(q − λ I)v∥.
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Set v = (q − λI)−1f, f ∈ H in the latter inequality, and as above, by

proceeding with similar calculations, we then obtain:

∫ 1

0
ω2β(t)| d

dt
(q−λI)−1f(t)|2dt ≤M∥(q−λI)−1f∥∥(q − λ I)(q−λI)−1f∥.

Since (q − λ I)(q − λI)−1f = f , and

∫ 1

0
ω2β(t)| d

dt
(q − λI)−1f(t)|2dt ≤M∥(q − λI)−1f∥|f |,

consequently by (2.3) we have ∥(q − λI)−1f∥ ≤M |f ||λ|−1. Then,

∫ 1

0
ω2β(t)| d

dt
(q − λI)−1f(t)|2dt ≤M∥(q − λI)−1f∥|f | ≤MM |λ|−1|f |2.

Therefore,

∫ 1

0
ω2β(t)| d

dt
(q − λI)−1f(t)|2dt ≤MΦφ,ψ |λ|−1|f |2;

i.e., ∥ωβ(t) d
dt
(q − λI)−1f∥2 ≤MΦ|λ|−1|f |2. i.e.,

∥ωβ(t) d

dt
(q − λI)−1f∥ ≤M ′

Φφ,ψ
|λ|−

1
2 |f |.

Consequently,

∥ωβ(t) d

dt
(q − λI)−1∥ ≤M ′

Φφ,ψ
|λ|−

1
2 .

This estimate completes the proof of (2.4); Theorem 2.1 is thereby proved.

2.2 Resolvent Estimate of P in H = L2(0, 1) in Gen-

eral Case

In this section, we will derive a new general theorem by dropping as-

sumption (2.2) from Theorem 2.1 in Section (2.1).

Theorem 2.2. Let Φφ and P be defined as in Theorem 2.1, and let

that except for assumption (2.2) of Theorem 2.1, all other assumptions
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are satisfied: Let the differential operator (qv)(t) = − d
dt

(
ω2β(t)µ(t)dv(t)

dt

)
,

acting on H = L2(0, 1). Assume that

µ(t) ∈ C2[0, 1], µ(t) ∈ C\Φφ, ∀t ∈ [0, 1]. (2.9)

Then, for a sufficiently large number in modulus λ ∈ Φφ,ψ, the inverse

operator (q − λI)−1 exists and is continuous in space H = L2(0, 1), and

the following estimate holds:

∥(q − λI)−1∥ ≤MΦφ,ψ |λ|−1 (2.10)

where MΦφ,ψ, CΦφ,ψ > 0 are sufficiently large numbers depending on

Φφ,ψ and |λ| > CΦφ,ψ.

Proof. To prove the Theorem 2.2, we need to construct the functions

φ(1)(t), . . . , φ(ρ)(t), µ(1)(t), . . . , µ(ρ)(t) so that each one of the functions

µ(j)(t) j = 1, . . . , ρ (t ∈ supp φ(j)), as the function µ(t) in Theorem 2.1

satisfies (2.2). Therefore, let

µ(1)(t), . . . , µ(ρ)(t), φ(1)(t), . . . , φ(ρ)(t) ∈ C∞[0, 1]

satisfy

0 ≤ φ(j)(t), j = 1, . . . , ρ, φ2
(1)(t) + . . .+ φ2

(ρ)(t) ≡ 1 (0 ≤ t ≤ 1)

d

dt
φ(j)(t) ∈ C∞

0 (0, 1), µ(j)(t) = µ(t), ∀t ∈ supp φ(j)

µ(j)(t) ∈ C\Φφ ∀t ∈ [0, 1], j = 1, . . . , ρ.

| arg{µ(j)(t1)µ
−1
(j)(t2)}| ≤

π

8
, (∀ t1, t2 ∈ supp φ(j)), j = 1, . . . , ρ.

In view of Theorem 2.1, and by (2.3) and (2.4) set (q(j)v)(t) = q(t), we

will have the differential operator

(q(j)v)(t) = − d

dt

(
ω2β(t)µ(j)(t)

dv(t)

dt

)
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acting on H = L2(0, 1) where

D(q(j)) = {v ∈
◦
H ∩W 2

2,loc(0, 1),
(
ω2β(t)µ(j)v

′
)′

∈ H}.

Due to the assertion of Theorem 2.1, for 0 ̸= λ ∈ Φφ the inverse operator

(q − λI)−1 exists and is continuous in space H = L2(0, 1) and satisfies

∥(q(j) − λI)−1∥ ≤M1|λ|−1, ∥ωβ(t) d

dt
(q(j) − λI)−1∥ ≤M1|λ|−

1
2 ,

(0 ̸= λ ∈ Φφ,ψ). (2.11)

Let us introduce

T (λ) =
ρ∑
j=1

φ(j)(q(j) − λI)−1φ(j). (2.12)

Here φ(j) is the multiplication operator in H by the function φ(j)(t).

Consequently,

(q − λI)T (λ)v = I1 + I2 + I3 + I4

where

I1 = −
ρ∑
j=1

[ω2β(t)µ(φ(j))
′
t]
′
t
(q(j) − λI)−1φ(j)v,

I2 = −
ρ∑
j=1

ω2β(t)µ(φ(j))
′
t

d

dt
(q(j) − λI)−1φ(j)v,

I3 = −
ρ∑
j=1

φ(j)[ω
2β(t)µ

d

dt
(q(j) − λI)−1φ(j)v]

′
t,

I4 = −λ
ρ∑
j=1

φ(j)(q(j) − λI)−1φ(j)v.

As µ(j)(t) = µ(t) (∀t ∈ supp φ(j)), replace µ(t) by µ(j)(t) in the sum I3.

Then, in view of
∑ρ
j=1 φ(j)

2(t) ≡ 1, we will have

I3 + I4 = −
ρ∑
j=1

φ(j)[ω
2β(t)

d

dt
(q(j) − λI)−1φ(j)v)

′
t

+ λ(q(j) − λI)−1φ(j)v]

=
ρ∑
j=1

φ(j)(q(j) − λI)[qj − λI)−1]φ(j)v =
ρ∑
j=1

φ(j)
2v = v.
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i.e., I3 + I4 = v. When considering I1 + I2 = G(λ)v, then

(q − λI)T (λ)v = v +G(λ)v. Or equivalently

(q − λI)T (λ) = I +G(λ). (2.13)

using the fact that φ(j)
′
t
∈ C∞(0, 1), and by (2.11), we can estimate I1,

I2 as follows:

|I1| ≤M
ρ∑
j=1

|(q(j) − λI)−1φ(j)v| ≤M |λ|−1|v|,

|I2| ≤M
ρ∑
j=1

| d
dt
(q(j) − λI)−1φ(j)v| ≤M”|λ|−

1
2 |v|.

Using these estimates, and in view of G(λ) above, we will have

∥G(λ)(v)∥ ≤ |I1|+ |I2| ≤M |λ|−1|v|+M”|λ|− 1
2 |v|,

λ is a sufficiently large number, implying that |λ|−1 ≤ |λ|− 1
2 then

∥G(λ)∥ ≤M ′
Φφ,ψ

|λ|−
1
2 . (2.14)

By this λ, we can also have ∥G(λ)∥ ≤ 1
2
< 1, where λ ∈ Φφ,ψ. Now, by

this, and using the well-known theorem in operator theory, we conclude

that I+G(λ) and hence, by (2.13), (q−λI)T (λ) are invertible. Therefore

((q − λI)T (λ))−1 exists, and by (2.13)

(T (λ))−1(q − λI)−1 = (I + G(λ))−1. (2.15)

Adding +I and −I to the right side of (2.15) it follows that

(T (λ))−1(q − λI)−1 = (I + G(λ))−1 − I + I.

Setting F (λ) = (I + G(λ))−1 − I implies that

(T (λ))−1(q − λI)−1 = I + F (λ).
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In view of ∥G(λ)∥ ≤ 1
2
< 1, and (2.14), by applying the geometric series

for F (λ):

∥F (λ)∥ ≤
+∞∑
i=1

∥Gk(λ)∥ ≤ ∥G(λ)∥(1 + ∥Gk(λ)∥+ ∥Gk(λ)∥2 + . . .)

≤ ∥G(λ)∥(1 + 1/2 + 1/4 + . . .)

≤ 2M ′
Φφ,ψ|λ|−1/2

i.e.,

∥F (λ)∥ ≤M1Φφ,ψ |λ|−1.

Now, by (2.11) and (2.12),

∥T (λ)∥ = ∥
ρ∑
j=1

φ(j)(q(j) − λI)−1φ(j)∥

≤ M”Φφ,ψ∥(q(j) − λI)−1∥

≤ M”Φφ,ψMΦφ,ψ |λ|−1 =M2Φφ,ψ |λ|−1;

i.e.,

∥T (λ)∥ ≤M2Φφ,ψ |λ|−1.

By this and (2.15), it follows that

∥(A− λI)−1∥ = ∥T (λ)∥∥I + F (λ)∥

≤M2Φφ,ψ |λ|−1∥(1 +M1Φφ,ψ |λ|−1)

≤M2Φφ,ψ |λ|−1 +M1Φφ,ψM2Φφ,ψ |λ|−2.

Since |λ|−2 ≤ |λ|−1, then,

∥(A− λI)−1∥ ≤MΦφ,ψ |λ|−1, (|λ|≥CΦφ,ψ
, λ∈Φφ,ψ).

This estimate completes the proof of (2.10); Theorem 2.2 is thereby

proved.
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2.3 Asymptotic resolvent of degenerate elliptic dif-

ferential operators in Lℓ(0, 1)

Let P and A be as defined in Section 1. Suppose that there exists some

closed sector Φφ,ψ ⊂ C, with the origin at zero, free from eigenvalues of

the matrix A(t), (0 ≤ t ≤ 1). Consider those eigenvalues µ1(t), . . . , µℓ(t)

of the matrix A(t), such that µj(t) ∈ C2[0, 1], and convert the matrix A(t)

to the form

A(t) = U(t)Λ(t)U−1(t), where U(t), U−1(t) ∈ C2([0, 1], End Cℓ)

and

Λ(t) = diag{µ1(t), . . . , µℓ(t)}.

Consider the space Hℓ = H ⊕ · · · ⊕H (ℓ-times), and so consider in the

space Hℓ the operator 0

B(λ) = diag{(q1 − λI)−1, . . . , (qℓ − λI)−1}, (2.16)

where the operator qj satisfies (qjv)(t) = − d
dt

(
ω2β(t)µj

dv(t)
dt

)
,

D(qj) = {v ∈
◦
H ∩W 2

2, loc(0, 1) :
d

dt

(
ω2β(t)µj

du

dt

)
∈ H}. (2.17)

According to the results obtaining from Section 3, for sufficiently large

absolute values of λ ∈ Φφ,ψ, the operator B(λ) exists and is contin-

uous. Consider the operator Γ(λ) = UB(λ)U−1, in which (Uu)(t) =

U(t)u(t), (u ∈ Hℓ). We have

(P−λI)Γ(λ)u = − d

dt

(
ω2β(t)A(t)

d

dt
(U(t)B(λ)U−1(t)u(t))

)
= T1+T2+T3,

where, T1 is equal to the following:

− d

dt

(
ω2β(t)A(t)U(t)

d

dt
B(λ)U−1(t)u(t))

)
= − d

dt
(ω2β(t)U(t)Λ(t)

d

dt
B(λ)U−1u(t))

Tamsui Oxford Journal of Informational and Mathematical Sciences 31(2) (2017)
Aletheia University 77



= −U d

dt
(ω2β(t)Λ(t)

d

dt
B(λ)U−1u)− U ′(t)ω2β(t)Λ

d

dt
B(λ)U−1u

= λUB(λ)U−1u− U ′(t)ω2β(t)Λ
d

dt
B(λ)U−1u+ UU−1u,

T2 = − d

dt

(
ω2β(t)AU ′B(λ)U−1u

)
, T3 = −λU(t)B(λ)U−1u.

Here we use the equality

− d

dt
(ω2β(t)Λ

d

dt
B(λ)V ) = V + λB(λ)V, V = U−1u.

Since ω2β(t) ≤M ω2β(t), and from the above relations , we will have

(P − λI)Γ(λ) = I + T 0
1 + T 0

2 , where T 0
2 = ω2β(t)aijAU

′B(λ)U−1,

∥T 0
1 ∥ ≤M |λ|−1/2 (λ ∈ Φφ,ψ, |λ| ≥ c).

For estimates of the operator T 0
2 , the Hardy-type inequality is useful (see

[5]). Thus, for a sufficiently large absolute-value of λ ∈ Φφ,ψ, the estimate

∥T 0
2 ∥ ≤M ′|λ|−1/2 is true, and so we have

(P − λI)Γ(λ) = I + F(λ), ∥F(λ)∥ ≤M |λ|−
1
2 (λ ∈ Φφ,ψ, |λ| > c′).

(2.18)

According to the assumptions made for λ ∈ Φφ,ψ, |λ| > c, the range

of the operator P − λI coincides with Hℓ. The operator P∗ and its

domain D(P∗) have the same structures as P, D(P). Therefore, for a

sufficiently large absolute value of λ ∈ S, the range of the operator P∗−λI

coincides with Hℓ, and consequently, ker(P − λI) = 0. This equality by

(2.18) proves the existence of the continuous operator (P −λI)−1, which

satisfies

(P − λI)−1 = Γ(λ)(I + Y(λ)) (2.19)

in which the operational-function Y(λ) has the estimate

∥Y(λ)∥ ≤M |λ|−
1
2 (λ ∈ Φφ,ψ, |λ| > c0) (2.20)
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Recall that

Γ(λ) = UB(λ)U−1, B(λ) = diag{(q1 − λI)−1, . . . , (qℓ − λI)−1} (2.21)

By (2.19)-(2.21), we get

∥(qj−λI)−1∥ ≤M |λ−1, ∥ωβ(t) d
dt
(qj−λI)−1∥ ≤M |λ|−

1
2 (λ ∈ Φφ,ψ, |λ| ≥ c),

which proves Theorem 2.1.

3 Conclusion

This paper has argumented on the differential operators. In fact by diag-

onalizing matrix of eigenvalues and by utilizing of the first representation

theorem, we obtain a new way in estimating Spectral properties of the

differential operators.
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