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Abstract

In this paper, we defined subclasses of p—valent meromorphic functions defined by using
integral operator. We investigate several interesting subordination properties for this
subclasses of multivalent meromorphic functions. Relevant connections of the results which
are presented in this paper with various known results are also considered.
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1 Introduction

Let X, ,, denote the class of multivalent meromorphic functions of the form:

f(2) :Z—lp—{—Zakzk (peN={1,2,3,...}; n> —p), (1)
k=n

which are analytic in the punctured unit disk U* = {2z : z € C, and 0 < |z| < 1} = U\{0}.
For convenience, we write X, 11 = X,.

Definition 1.1 For two functions f(z) and g(z), analytic in U, we say that the function
f(2) is subordinate to g(z) in U, written f < g or f(z) < g(2), if there exists a Schwarz
function w(z) which is analytic in U, satisfying the following conditions:

w(0) =0 and lw(z)| <1; (2 €,

such that
f(z) = g(w(z)); (2 €T).
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Indeed it is known that

f(z)=g(z) (zel) = f(0)=g(0) and f(U)Cg(U).

In particular, if the function g(z) is univalent in U, we have the following equivalence (see
[10], [15], [16]):

f(z)=g(z) (z€l) <= [f(0)=g(0) and [(U)Cg(U).

For > 0, a, ¢ € R be such that (¢ —a) > 0,a > up(p € N) and f(z) € ¥,, given by
(1), the modified an Erdelyi-Kober type integral operator J3:¢ : ¥, , — ¥, (see [9]).

e For (¢ —a) >0 by

['(c— pup) /1 -1 —a—1
“ef(z) = 71— ) L (2t d: 2
Tl () = s [t peryar 2
e For a = c by
JEOF() = £(2). 3)
Using (2) and (3), the operator J3¢f(2) can be expressed as follows
o T(e—pp) =T(a+ uk *
Jac — 2P 4 4
o (2) = 2 a_ﬂpz et uh)" (4)

=n

where 1 >0, a, c € R, (c—a) > 0,a > up(p € N).
It is readily verified from (4) that

AR = R ) = SR @), (= a=1)>0) o)
A(eef()y = SR et gy - CERZ L ae )y (c—a—1) > 0). (6)

I

We also note that the operator Jg:f(z) generalizes several previously studied familiar
operators, and we will show some of the interesting particular cases as follows

(1) Ji.f(z) = Lu(a,c)f(2)(a,c € C, 1> 0, Re(a) > p, Re(c — a) > 0)(see [6]),

(ii) Joi"Pf(2) = ly(a,c) f(z)(a € R,c € R\Zg, Zy ={0,1,2,...},p € N)(see [13]),
(iii) J TP f(2) = D"P7Lf(z) (n is an integer, n > —p,p € N) (see [1], [3], [23]).
(iV) i f(z) = Jgf(2) (Re(a) > p, p € N) (see [11]).

Now, we introduce a new subclasses of functions in ¥, ,, by making use of the linear
operator J;»0 as follows.
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Definition 1.2 A function f € ¥, is said to be in the class $.5,%(a; A, B), if it satisfies
—1 [(2(J25f(2)) 1+ A
R, Y 1A
p—a \ Jpuf(z) 1+ Bz
(a,c€R; u>0;(c—a)>0;a>up; 0<a<p, —1<B<A<LI1;zel).

In particular, for A =1 and B = —1, then
2yt (2)
NS0y 1, —1) = {fe Ypnt —Re (W >a, z€Up.
Definition 1.3 For fized parameters A and B (—1 < B < A < 1), we say that a function
f €%y, isin the class NC5w (A, B) if it satisfies the following subordination condition:

AR , 1+ Az
p el G = g (7)

(a,c€R; u>0;(c—a)>0;a>pup; 0 <a<p; zel).

In view of the definition of differential subordination, (7) is equivalent to the following

condition:
Pl +p |
Bzrt(Jpyif(2)) + pA '

We note that C7 (1 - 2?0‘, - ) =XCpri(a), (0 < a<p).

Meromorphically multivalent functions have been extensively studied by Liu and Srivas-
tava [13], Cho and Kim [4], Cho et al. [5], El-Ashwah et al. [8] and others (see [2], [20],
21)).

In this paper, we investigate some properties of subclasses of multivalent meromorphic
functions which are defined by the linear operator J-\.

2 Preliminary lemmas

To prove our results, we need the following lemmas.

Lemma 2.1 ([15]) Let a function h be analytic and convez (univalent) in U with h(0) = 1.
Suppose that the function ¢ given by

¢(Z) =1 + bn+pzn+p + bn+p+1zn+p+1 + ... (8)
1s analytic in U. If
2¢/(2)
o(z) + i h(z) (Re{v} >0,v #0), (9)
then
v

6(:) < v() =

where 1 is the best dominant of (9).

zw/ s Th(t)dt < h(z),
0
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Lemma 2.2 ([19]) Let the function ¢ given by (8) be in the class P(vy). Then

2(1 —)
1+ 2|

Re{op(2)} > 2y —1+ 0<~y<1,z€l).

Lemma 2.3 ([22]) For 0 <y <y <1,

P(m) * P(y2) C P(v3), where 43 =1 —2(1 —7)(1 — 72).

The result is the best possible.

For any real or complex numbers a, b and ¢ (¢ # Z, := {0,—1,-2,...}), the Gaussian
hypergeometric function is defined by
abz ala+1)b(b+1) 2?

Flabes) =14+ 22 .
2hilabiez) =14 ot =y

Lemma 2.4 ([24]) For any real or complex numbers a, b, ¢ (¢ # Zy ), we have

1 T(b)(c —
/ 1 =) (1 = 2t) %t = Wﬂﬂ(a,b; c;2), (Re(c)> Re(b) >0),
0
oFi(a,bc;2) = (1—2)""2F (Cbac—b;c; ﬁ)a
oF1(a,b5c;2) = oFi(a,b—1;¢2) +%2F1(a+17b;c+1;’2)7
c
a+b+1 1 VD (et
of1 | a0 ————i5 ) = atl b1y’
22 L ()T (%)
z z
Fi(1,1;2; = In(1 .
21<a7az+1) Z+1n(+2)

Lemma 2.5 [17] Let ¢ be analytic in U with ¢(0) =1 and ¢(z) # 0 for 0 < |z| < 1 and let
A,BeCuwith A+ B, |B| <1.

(i) Let B#0 and 7 € C* = C\ {0} satisfy either
¢ satisfies

7(A—B)
-5 1’ S 1 or

B ] <1

2¢'(z) 1+ Az
TP(2) =1 + Bz’

1+ (10)

then s
¢(z) < (14 B2)705),

and this is best dominant.

(ii) Let B=0 and 7 € C* = C\ {0} be such that |TA| < . If ¢ satisfies (10), then
Qb(Z) = eTAZ

and this is the best dominant.
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Lemma 2.6 ([12]) Let X # 0 be a real number, § > 0 and 0 < B < 1. Let g(z) =
1+ cp2™ + cpp12™ + ..., be analytic in U and

where N
P ) N Ry

1= X+ A8+ /14 (14 22)2

a

If P(2) =1+ d,2" + dpy12"™ + ... is analytic in U and satisfies the subordination relation
91 = A+ A[(1 = B)P(2) + B]} < 1+ Mz,

then Re(P(z)) > 0 for z € U.

3 Subordination properties of Jg:;

Unless otherwise mentioned, we assume throughout this paper that § > 0, a,c € R, a > up,
w>0 (c—1—a)>0,-1<B<A<I1, peN.

Theorem 3.1 Let =1 < B; < A; <1, j=1,2. If f; € ¥,,,, satisfy the following subordina-
tion condition

1+ A,
(1= BIehi(2) + BT ) < T (1)
then 14 (1—26
{1 = B)JpiF(2) + BTy F(2)} < %
where = J3e(f1 * fa) and
. 4(A1—Bl)<A2—B2) 1 c—,up—l 1
P=1- (1= Bi)(1 - B,) (1_§2F1(1’1’ B +1’2)>' 1)

The result is the best possible when By = By = —1.
Proof. Let f; € ¥£,,, j = 1,2, satisfy the subordination condition (11). Then, by setting

1+Aj2

65(2) = (1= BIEEHE) + I () < T g G = 1.2 (13)
we have 1A
¢; € P(v;), v = 1_BJ, j=12

By making use of (5) and (13), we obtain

a.c C—Mp— 1 o c—up—1 z c—pp—1 3
Tyiti(e) = S / R ()t g = 1,2, (14)
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Now, if we let ' = Jy:(f1 * fa2), then by using (14) and the fact that
Syl (2) = Ty fi(z) = Iy fa(2),

a simple computation shows that

— -1 c—pp— ? e pup—
JoeF(z) = LR e / £ E o (bt
’ Bu 0

where

do(2) = 2P{(1 — B)J2eF(2) + B F(2)}

— —1 c—up—1 z c—up—1 15
TP -h /t S (g % ) (£)dt. (15)
Bu 0

Since ¢; € P(v;), j = 1,2, it follows from Lemma 2.3 that

¢1 % @2 € P(73), where 93 =1 —2(1 — 1) (1 = 72),

and the bound 73 is the best possible. Using Lemma 2.2 in (15), we obtain that

C — — 1 1 c—pp—1 __
Re{¢po(2)} = %/ w B 1Re(q§1 % ¢9)(uz)du
0

c—pp—1 ' w1y 2(1 —3)
> — B 293 — 1 4+ ———2 ] d
= T B /“ (”3 NEED A

c—pp—1 [ w1y 2(1 - 3)

B /0 ! ( T T !

c—up—1 —1

_4(’41_31)(142—32) _c—pp—1 - B
LT Ao B By <1 o /0 o du)_(s,

where § is given by (12).
When B; = B, = —1, we consider the functions f; € 3,, (j = 1,2) which satisfy the
hypothesis (11) and are given by

e e =1 e [F w14 A
Jp,’ufj(z):sz Bu /Ot Bu 1< 1_5 dt, j=1,2.

Since

(1+Alz) . (1+A22) (At A+ (1+A1)(1+A2)’
1—=2 1—=2 1—=z2

it follows from (15) that

1 1
dolz) = —"’"‘p‘l/ W (1—<1+A1><1+A2>+
0

B
= 1—-(14+A)(1+A)+ 1+ 1411)_(124‘ Ao)

(1+A1)(1+A2))du
1 —uz
c—up—1 z
Fi(1,1; 1 )
X 9 1(7; ﬁﬂ/ + 72_1)
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Therefore

1 c—pup—1 1
G0(z) = 1= (L4 AD)(L+ Ag) + S(1+ AD)(L+ Ao Fi (L1 % +1i5)
as z — —1, which evidently completes the proof of Theorem 3.1. m
In its special case when A; =1—2v; (0 <~; < 1), B; = —1, j = 1,2, Theorem 3.1 yields
the following corollary.

Corollary 3.1 If f; € X,,, satisfy the following condition:

- BIER () + A () < UE0E o1 e )
then
#{(1- B)F(E) + BT By < L2

where F = Je(fi+ f2), 0 = 1= 2(1 = m)(1 = 32) x [2=2F (1, =52 + 1), (2 € D),

Letting A; =1—-2¢ (0<(;<p), Bj=-1,(j=1,2),a=c and A = C_i)“_l in Theorem
3.1, yeilds the following corollary.

Corollary 3.2 If f;(z) € X,,, satisfies
Re (2" {(1+pA) fi(2) + A=(f5(2)}) > & (1=1,2),

then
Re (2P {(L+pA)(fi * f2)(2) + Az(fr* fo) (2)}) >m (1 =1,2),

werea($) ) b ool

In the next theorem, we have determined the sufficient condition for the functions 2P J3:¢ f(2),
to be a member of the class P(p).

where

Theorem 3.2 If f € ¥,,, satisfy the following subordination condition

a,Cc a,cC— 1+ AZ

P = IS (2) + BT F)} < T (16)

then
Re (XT3 f(2)) > p (2 €U,
where
. { A4 (1—2)1 - B)‘12F1(11, L gty + Lig),  if B#O, -
_ c—pp— e
1 c—l—up+(n+p)uﬁA’ if B=0.

The result is the best possible.
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Proof. Set
h(z) = 2 Iy f(2) for f € X, (18)

then the function h is of the form (8). Differentiating (18) with respect to z and using the
identity (5), we obtain

a,c—1 _ M
By using (16), (18) and (19), we obtain

1+ Az
n )
: (Z)<1+Bz

/T
c—up—1

h(z) +
Now, applying Lemma 2.1, we get

c—up—1 _e—pp— ? e—pp—1 11+ At
h < = — '~ Bulntp) 1 Bu(n+p) dt.
@) <ote) = Gty [ ()

Applying Lemma 2.4, we get

S+ 0 =2) 1+ B2) LR S + 1 525),  if B#0,
9(2) = 14—l 4, if B=0 (20)
e=l—pp+(ntp)us”= """ '
Now, we will show that
inf{Re(9(2)) : [2] < 1} = g(~1). 1)
We have Re{1342} > =2 |z| = r < 1, and setting
1+ Azs c—pup—1 c—pp—1_,
h = 0 < < 1 d d = —— g Bu(ntp) d
(s,2) " Bs (0<s<1)and d(s) Bu(n—i‘p)s s,
which is a positive measure on the closed interval [0, 1], we get
1
o(z) = [ his)d(s),
0
so that . p
1— Asr
R > d(s) = g(— =r <l 22
02 > [ T gds) =gl=r) =1 (22)

As r — 17 in (22), we obtain (21).
Now, by using (20) and (21), we get

Re{2 I3 f(2)} > .

where p is given by (17).
To show the estimate (17) is the best possible, we consider the following function f € ¥, ,

defined b
S c—pup—1 (1 o 1+ Auz
ijg’; (2) — —/ uBu(ner)il (—) du’
’ Bu(n+p) Jo 1+ Buz
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For the above function, we find that

B 14+ Az

U= BT f () + B (@)} = 5,

and

1
c—pup—1 c—pp—1_1 (1 — Au
p ja.c SR A S— Bu(n+p) d
# ol (2) Bu(n + p) /0 ! (1 —BU> !

p:{ %—i—(l—%)(1—3)_12F1(11,1;%+15%)7 if B#0,
. Cmpp—l 1 =
1 c—l—up+(n+p)uﬁA’ if B =0,

which completes the proof of Theorem 3.2. m
In its special case when A=1—2v, (0 <y < 1) B=—1and =1, Theorem 3.2 yields
the following corollary.

Corollary 3.3 If f € X, ,, satisfy the following condition:

1+ (1—2v)z

sz]‘f”l‘j_lf(z) =< T (z € U),

then . .
%—1—1;—)—1 (z € U).

p Ja.c 1— Fi(1,1;
Re(z o (z)) >~v+( v) [2F1(1, 1 (n +p) 9

The result is the best possible.

Theorem 3.3 If f € ¥,,, satisfies the following subordination:

Zp+1 a,c a,c—1 1 + Az
A= B + B ] < s (€T, (23)
then
Zp+1 a,c i
= (S (2)) = C(2), (24)
where
q@_{%+ﬂ—%0+3ﬁ%59hﬁﬁﬁ+Lﬁﬁh B+#0,
- c—pup— —
1+ c—1—pp+pB(n+p) Az, B =0,
is the best dominant of (24). Furthermore,
Zp+1 a,Cc /
Re{ =)'} > (25)
where
[\ { 44 (1—-2)(1 - B) R (L1 Sk 1, 2, B #0,
1 — c—up—1 _
TR B=0,

The result is best possible.
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Proof. Set

h(z) = - " (pif )5 € Zpn, (26)

then the function h(z) is of the form (8) and is analytic in U. Differentiating (26) with
respect to z and using the identity (6), we obtain

puB 2 ae a1 14+ Az
h(z) + C—MTZM(Z) = (1= B) (T f(2)) + BTt f(2)] < 1+ Bs
Applying Lemma 2.1 and Lemma 2.4, we have
Zp+1 a,Cc /
—T(Jp,’# (2)) =< ((2)
_ E:;HBLLEZ:B&:$L/'t:B$:$1 L4 4
nB(n + p) 0 1+ Bt

:{§+wy—@u+B@*J¥LL%$$+¢HgJ B # 0,

C—pUp— _
1+ c—1—pp+uB(n+p) Az, B=0.

This proves the assertion (24) of Theorem 3.3. Now, we will show that
inf {Re(((2))} = ¢(=1).

|z|<1

We have Re{ }ig’z} > =40 |z| = r < 1, and setting

14+ Azs

B c—pup—1 e
1+ Bzs

—1
S Bu(n+p) ds,
puB(n + p)

9(s, 2) (0<s<1)and dv(s) =

which is a positive measure on the closed interval [0, 1], we get

((z) = / 9(s, 2)dv(s),

so that

Re(g(2) > | Lo Asr

o 1— Bsr

dv(s) =C((—=r) |z]=r< 1. (27)

Letting » — 17 in the above inequality, we obtain the assertion (25). Finally, the estimate
(25) is the best possible as ((z) is the best dominant of (24), using arguments similar to
those detailed above with Theorem 3.2. m

Taking 5 = w in Theorem 3.3, we obtain the following corollary.

Corollary 3.4 If f € X,,, satisfies

o (oo + DTEF ) + o2 (2)) < 11227

then
—zP 1+ Az

(Jpif (2)) < ga(2) <

28
P ) 1+ B2’ (28)
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where the function go(2) given by

A4 (1-4) 1+ Bz)*lgFl (1,1 ), 22 ) (B #0)
14+ ——=Az (B=0),

92(2) =
1+U(n+p

is the best dominant of (28). Furthermore,

Zp—i—l

——(Lf(2) > & (2€0),

where

‘oo { 44 (1-4) (1= B) R (1,11, ) (B #0)

1
L - 140 (n+p)

the result is the best possible.
Taking A =1— 2?5 (0<do<p),B=-1,0= C_“lf_l, n = 2 —p in Theorem 3.3 and using
(6), we obtain the following corollary.

Corollary 3.5 If f € ¥, 2, satisfies
Re{ =" ((2+p) (T f(2)) + 2(Jpif(2))") } > 6,

then
Re{ =" (T f(2)} > 6+ (p=0)(5—1) 0<é<p,

the result is the best possible.

Taking § = —4— in Corollary 3.5, we obtain the following corollary.
Corollary 3.6 If f € X,,_, satisfies
=2
Re{—=2""1 ((2+p)(Jyif(2)) + 2(Joe f(2)") } > —%, (0<0<p),

then
Re{—=2"*1(Jof(2))'} > 0,

the result is the best possible.

Remark 3.1 For a = ¢, Corollary 3.6 reduces to the result of Pap [18].

Taking A =1— 2?5 (0<do<p),B=-10= C_“lf_l, n = 1—p in Theorem 3.3 and using
(6), we obtain the following corollary.

Corollary 3.7 If f € ¥, 1_, satisfies
Re{ =" (2 +p) (T f(2)) + 2(Jpf(2))") } > 6,

then
Re{—2""1(Jocf(2))} > 0+2(p—6)(In2—-1) 0<6<p,

the result is the best possible.
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Theorem 3.4 Let f € XCi(a), (0 < a <p,) then

Re {1 [(1= B)(J3sf (2)) + BIe " F(2)]} > @ (2] < B,

where )
8 > B "
u u
R = 1 _— - . 29
¢+(&#m_1@+n0 ) (29)
Proof. Let f € XC}(a), then we write
=P f(2)) = a+(p—a)(z), (z€D), (30)

where ¢(z) is of the form (8) and is analytic in U. Differentiating (30) with respect to z, we
have

1 1¢ gac 1¢ ya,c—1 Bu
_p — [(1 — ﬁ)zp"‘ (Jp,,u (z))’ + ﬂzp‘i‘ (Jp,,u f(;;))’ + Og} = q(z) + qu/(z) (31)
Applying the following well knowing estimate [14]:
2¢'(2)| _ 2(p+n)r™ _
Re(g(z)) = 1-porm =<1
in (31), we have
1 _
ot (L= B)2" (T f () + BP T (g™ f(2)) + @
(32)

2Bu(p + nrt
> Re{q(2)} {1 T e upu—pl)(l — r2e) } |

such that the right hand side of (32) is positive if r < R, where R given by (29). In order to
show that the bound R is best possible, we consider the function f € X, , defined by

p+1/ ya,c I 1+ 2P
— (@) =atp-a);——m, 0<a<p 2el).
Note that
1 a,C a,C—
R— (1= B)2P (T f(2)) + B2 (T f(2) + o

1 — 22+ 4 2(}52&1 (p+ n)zPt"

(1— z)2+n) :

for z = Rep%, the proof of Theorem 3.4 is completed. m
Putting 8 = 1 in Theorem 3.4, we deduce the following corollary.
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Corollary 3.8 If f(z) € XCpi(a) (0 < a < p), then f(z) € BCi (a) for |z| < R, where

R= \/1+ (C_M%(p—l—n)) —C_M%(p—irn)

The result is the best possible.

1
p+n

Theorem 3.5 Let 7 € C*=C\ {0} and A, B € C with A # B and |B| < 1. Suppose that

T(c—pp—1)(A— B) 7(c—pup—1)(A— B)
uB uB

+11 <1 if B#0,

—1‘§1 or

and

MA‘<W if B=0
f - '

If [ € Xy, with J5if(2) # 0 for all z € U, then
T f() 14 Az
Jpf(2) 1+ Bz

mmplies
(2P Iy f(2))" < ha(z),

where

(1+ BZ)MLB(C—MP—U(A—B) B +#0,

hl(Z) = T(e=pp=1) 4.
e n B =0,
1s the best dominant.
Proof. Let
h(z) = (2" Iy f(2)" (2 € 1), (33)

then h(z) is analytic in U, h(0) = 1 and h(z) # 0. Taking the logarithmic differentiation on
both sides of (33) and using the identity (5), we obtain

o W (z) I f(2) 1+ Az

1+ = ‘b =< .
T(c—pp—1) h(z)  Jpuf(z) 1+ Bz

Now the assertions of Theorem 3.5 follows from Lemma 2.5. m
Taking B=—1and A =1-26,0 < § < 1in Theorem 3.5, we get the following corollary:

Corollary 3.9 Let 7 € C* satisfies either

27(c —pup —1)(1 - 9)
1

If f € Xy, with J30f(2) # 0 for all z € U, then

o Jg;g;l ()] | 14 (1-20):
I f(2) 1-—=z2

27(c —pp — 1)(1 = 9)
1

+ 1| < 1.

—1‘§1 or
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mmplies
(2P T f(2))7 < ha(2),

where .
(z) = (1= 2)F 0,

1s the best dominant.

Remark 3.2 Putp=pu=1 and a = c=p+2 in Theorem 3.5 we obtain the result obtained
by Obradovic and Owa [17] (see also [7]).

4 Sufficient conditions for the class ¥X5;9(a)

In this section, we obtain the sufficient condition for the function f to be a member of the
class ¥.5;%%(a).
Theorem 4.1 If f € ¥,,, satisfy the following subordination condition:

P (1= B) Ty f(2) + BTyt f(2)} < 1+ Mz, (34)

where

M, = ¢n
11—+ /1 + ¢

with ( = W and n = Ciﬁﬁfl(a —p). Then f € ZS;f}f(a).

Proof. Set

g(z) = LI (2), (35)
then g is of the form (8) and is analytic in U. From Theorem 3.2 with A = M, and B = 0,
we have

c—up—1
) c—1—pp+m+pus "
which is equivalent to
M
|g(z)—1|<T1:N<1; (z € U). (36)
If we set (o< ()
-1 2(J¥Cf(z
P(z) = s +0z> , 37
(=) p—a( Jpuf(2) (37)
then by using the identity (5) followed by (35), we obtain
P fE) = (14 ——(p—a) - —— (- a)P(2) | g(2).  (38)
Pt c—up—1 c—pp—1

In view of (38), the hypothesis (34) can be written as follows:

(T =n)g(z) +nP(2)g9(z) — 1| < My = (N, (2 €U). (39)
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We need to show that (39) yields
Re(P(z)) > 0. (40)

Suppose that this is false. Since P(0) = 1, there exists a point zy € U such that P(z) = iz
for some z € R. To prove (40), it is sufficient to obtain a contradiction from the inequality

W = [(1 = n)g(z0) + nP(z0)g(20) — 1| = M. (41)
Let g(z9) = u + iv, then by using (36) and the triangle inequality, we obtain that

W2 = |(1 = n)g(z0) + nP(20)g(20) — 1|
= (u? +0*)()* + 2van + (1 = 1)g(z0) — 1
> (u* + 0*)n’a® + 2ven + (n — [1 = n|N)?,
then
O(x) = W2 = MP > (u? +0)iiPa® + 2van + (n — |1 = 9| N)” = N*¢?,
then (41) holds true if ®(z) > 0, for any z € U. Since (u? + v?)n* > 0, The inequality
®(z) > 0, holds true if the discriminant A < 0, that is
A =dip? {v* = (u* +0*)[(n — [1 = n|N)* = N*¢*]} <0,
which is equivalent to
V{1 == [L=nIN)* + N*¢C*]} < {(n — |1 = nIN)* = N*C*}.
Putting ®(z9) — 1 = pe' for some real § € R, we get
v? p?sin? 0
u? (14 pcosh)?’

since the above expression attains its maximum value at cos = —p, by using (36), we obtain
2 2 2
v P N
u?> ~ 1—p?> ~ 1—N?
(n — |1 —n|N)? — N*¢?
= T= (=1 9[NP+ N2’
which yields A < 0. Therefore, W > M;, which contradicts (39). Hence, Re(P(z)) > 0. This

proves that f € ¥.57%¢, which completes the proof of Theorem 4.1. =

Taking 8 =1 in Theorem 4.1, we obtain the following corollary:

Corollary 4.1
P{I8 f(2)} < 14 Moz,
where ¢
N
My =
11—+ /1 + ¢

with ¢ = =L and = —E— (0 — p). Then f € S;%(a).

c—up—1 c—up—1
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