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ABSTRACT. The object of this paper is to study the sequence spaces : AW (A, M,q, p,u, s),
AWy (A, M,q,p,u,s) and AW (A, M,q,p,u,s) associated with strongly Cezaro summa-
ble sequences and discuss some topological properties of these spaces and other related
results.

1. DEFINITIONS AND NOTATIONS

Let w denote the set of all sequences x = (z,,), real or complex, let p = (p,,),q = (¢n)
e =(Q,)is

and g = (g,,) denote the sequences of positive real numbers and the sequence Q
such that :

Qn=T+T+ s+, +7, #0.

For a sequence x = (x,,), we write

n

1 _
=D T | @ [
Qn k=1

An Orlicz function is a function M : [0, 00) — [0, c0) which is continuous, nondecreasing,
and convex with M(0) = 0, M(xz) > 0 for x > 0 and M(z) — oo, as © — oo, ( see
Krasnoselskii and Rutickii [6] ).

If convexity of M is replaced by M (z +y) < M(z) + M (y), then it is called a modulus
function, defined and studied by Nakano [10], Ruckle [12], Maddox [9] and others.

An Orlicz function M is said to satisfy the As—condition for all values of [, if there exist
a constant K > 0 such that M (2l) < KM(1)(l > 0) ( see Krasnoselskii and Rutickii [6] ).

Lindenstrauss and Tzafriri [7] defined the Orlicz sequence space :

lM:{a:Ew:ZM(lxpk |) < 00, for some p > 0},
k=1

which is a Banach space with the norm :

. > X
| 2 ||ar=inf{p > 0 : ZM('—[)’“I) <1}
k=1
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Different Orlicz sequence spaces were studied by several mathematicians as Bilgen [1],
Giingor et al [4], Tripathy and Mahanta [14], Esi and Et [2], Parashar and Choudhary [11]
and many others.

A paranorm on a linear topological space X is a function g : X — R which satisfies the
following axioms :

for any x,y,zo € X and A\, \g € C,

(i) g(#) = 0, where 6 = (0,0,0,---), the zero sequence,
(ii) g(x) = g(—x),

(ili) g(z +y) < g(z) + g(y) ( subadditivity ),

and

(iv) the scalar multiplication is continuous, that is,

A — Ao, — o imply Az — A\gxg ;

in other words,

| A= Xo |— 0, g9(z — z9) — 0 imply g(Az — X\gzo) — 0.
A paranormed space is a linear space X with a paranorm g and is written (X, g).
Any function g which satisfies all the conditions (i)-(iv) together with the condition :
(v) g(x) = 0 if and only if z = 0,

is called a total paranorm on X, and the pair (X, g) is called a total paranormed space,
( see Maddox [8] ).

Let A = (a;;) be an infinite matrix of complex numbers and let (E, || . ||) be a Banach
space over the complex field. We write A(AY) = (A;(AY)) where A;(AY) = A;(upAzy) =
Y ooy @ik (upTr — Ugp12g+1) which converges for each i.

Now, Let u = (u;) be any sequence such that u; # 0 for each ¢ and s is any real number
such that s > 0, then we define the following sequence spaces :

H A(AY — Lie; |))

AW (A, M,q,p,u,s) = {x€w: —Zk U 5
@n 1o

asn — oo, for some p >0, L = (Ly, Ly, L3,---) € E,L; € C},

)P — 0,

H A(AZ D

AW, (A, M,q,p,u,s) = {z€w: —st— )P — 0

@ 15 P
asn — oo, for some p > 0},

and
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1 O A(AY
AWL(AM ) = foewssw S kg A0 <o
TN p—1

, for some p > 0}

where

) at the i-th place
“= 0, otherwise

For more details on Cezaro sequences, one may see (Khan and Rahman[5], Etgin[3] and

Shiue[13]).

2. MAIN RESULTS

In this section, we prove the following theorems :
Theorem 2.1. Letp = (p,) be bounded. Then AW (A, M,q,p,u,s), AWy(A, M,q,p,u, s)and
AW (A, M, G, p,u,s) are linear spaces over the complex field C.

Proof. Let z,y € AW(A, M,q,p,u,s) and a,3 € C. Then there exists some positive
numbers p; and p, such that :

1 & A(AY — Lie;
= k_sqk[M(H ( x € ||>)]Pk — 0,as n — o0,
Qn = P
where L = (L, Ly, L3,--+) € E,L; € C},
and
Ly R Dy g s,
@n 1 P2

where | = (ly,ls,l3,---) € E,|l; € C}.

Define p3 = max(2 | a | p1,2 | 8| p2). Then since M is nondecreasing and convex, we
see that :
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= Z k=g, [ M( . )
Qn k=1 P3
1 “ s A O{A; — Liei
< Ly kg A Dy
Qn k=1 P3
1 e g TABAY = lies) )
+= ) kg, [M( > )]
Q. 1 P3
1 ~ 1 AlaA¥ — Lie,-
< L3 gl A L) D,
@Qn 5 1
1 1 | A(BAY — Le:) |)
+= §k? q, [ M ( . )P
Qn k=1 P2
— 0, asn — oo.

This shows that ax + By € AW (A, M,q,p,u, s).

Similarly, it can be proved that AWy(A, M, q, p,u, s) and AW (A, M,q,p,u,s) are also
linear spaces. O

Theorem 2.2. Let M be an Orlicz function which satisfies the As—condition. Then
AW(A,q,u,s) C AW (A, M,q,u,s),
AW (A, G, u,s) C AW (A, M,q,u,s)
and AW (A, G, u,s) C A W(A, M, q,u,s).

Proof. Let x € AW (A, q,u,s) . Then

1 - —85= u
@—Zk @l I A(AL — Lie; [[] — 0,a8 n — oo,
n k=1

where L. = (Ly, Ly, Ls,---) € E,L; € C}.
Now, if € > 0 is given, one can choose ¢ such that 0 < 6 < 1 and M (t) <€, for 0 <t <.
Let yy =|| A(AY ~ Lie: || and 32 3[M (%)) = =+ 3,
where > over yr < ¢ and > is over y; > . Then using the continuity of M we get that
21: < @neland for yp > 0 we u2$e the inequality y. < % <1+ 4.

But M is nondecreasing and convex which implies that :

Y (N 12y
M(p)<M(1+ 6)<2M(2)+2M( 5 ).

Since M satisfies the Ay—condition, we see that :
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This yields that :

n

n k=1 P

Hence AW (A,q,u,s) € AW(A, M,q,u,s). A similar proof can be done for the other
two inclusions. O

Theorem 2.3. (i) Let 0 < infy, pp < pp < 1. Then
AW(A, M,q,p,u,s) C AW(A, M,q,u,s).
(i) Let 1 < py < sup, pr < 0o. Then
AW (A, M,q,u,s) C AW (A, M,q,p,u,s).

Proof. (i) Let x € AW (A, M,q,p,u,s).Then since 0 < infy pr, < pr. < 1 we conclude that :

A _ Lee.
S'_Zk H( MWW
@ 1o P
Therefore z € AW (A, M,q,u, s).

(ii) Let z € AW (A, M,q,u,s). Then for all € such that 0 < € < 1, there exists a positive
integer N such that :

_Zk T H A(A7 — Lie:) H))] <e< 1, foralln>N.
nk 1 p

Now since 1 < pi, < supy, pr. < 00, we have :

_Zk% HM-%MWW

@n i P
A i€i
S__Zk% H( ewm
@n i P
Therefore © € AW (A, M,q, p,u, s) and this completes the proof. 0

Theorem 2.4. Let H = sup, pr. < pr. Then AWy(A, M,q,p,u,s) is a linear topological
space paranormed by h definrd as :
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be) = int{ (- S gl i < 10— 1,280
n k=1

Proof. Clearly h(—x) = h(x). For « = 8 = 1 and using the linearity of AWy (A, M, q, p, u, s),
we get that :
Then since 0 < infy, pr < pr. < 1 we conclude that :

(A% + AY) < h(AY) + h(AY).

Since M(0) = 0, we see that inf, p# = 0, for z = 0.
Conversely, suppose that h(z) = 0, then

1nf{p% : Zk Qs H A(Au)) ”)]pk)% < 1) —0.

”kl P

This yields that for a given € > 0, there exists some p(0 < p. < €) such that :

H AAD) |

| LS

23

”kl

Therefore

n

(—L Zk_sﬁk[M(M)]pk)%

Qn e ¢

Suppose x,, # 0, for some m. Let ¢ — 0,then || >

contradiction.

Hence z,, # 0, for each m. Finally, we prove that scalar multiplication is continuous.
Let A be any number. Then

. Pn 1 = —8§— || ‘1()\Ag)) ||
h(Az) =inf{p7 : (= kg, | M (——m—2—
( x) 12 {p <Qn £ Qk;[ ( P

and therefore

)]pk)% <1,n=123-}

|| AQAD) |l

)]pk)% <l,n=123,---1,
p

h(A\x) = 1nf{ (Ar) '

wM

where r = §.
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Since | A [P#< max(1, | A [7), we get that | A ‘pﬂkg (max(1, | A ’H))}{ This implies that :

on H AQAD) |

h(Az) < (max(l, ])\]H))%mf{ B Zk g ;

< 1,n=1,23,---} - 0as h($) — 0 in AWL(A, M,q,p,u,s).

)

Now, let A — 0 and = € AWy(A, M, q, p,u, s), then for e > 0, let N be a positive integer
such that :

N
1 s g FAQRD) ey €
— k~%q —=—)|PF)" < —, for some p > 0.
5 LR MEE I < 5, p
Therefore
N
1 _ A Au 1 €
QN k=1 p

Now, if 0 <| A |< 1 and using the convexity of M, we see that :

N

N
1 —s 1y LAAD) ~sg | A(AT)) |l €
g 2 v < 23k < ()
Qv k=1 P N = P
N A AU.
Since M is continuous everywhere in [0, 00], we have f(t) = 2= S* k—sg, [M (1212200 ))”)]
@y i3
is continuous at 0 and so there exists 6(0 < § < 1) such that | f(t) [< §, for 0 <t < 5
Let K be such that | A, |< d,for n > K. Then for n > K,
AN AY
LS (LA by
Qn i P
Thus
AN A
Zk’ °q —H (AA3)) “)]p’“)% <e¢, forn> K.
Qn i P
This completes the proof of the theorem. O
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