ON STRONGLY CEZ ARO SUMMABLE SEQUENCES

AHMAD H. A. BATAINEH

Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan

Received November, 14, 2016, Accepted November, 25, 2017

2000 Mathematics Subject Classification. 40A05,40C05, 40A45. E-mail address: ahabf2003@yahoo.ca ABSTRACT. The object of this paper is to study the sequence spaces : $\Delta W(A, M, \overline{q}, p, u, s)$, $\Delta W_0(A, M, \overline{q}, p, u, s)$ and $\Delta W_{\infty}(A, M, \overline{q}, p, u, s)$ associated with strongly Cezàro summable sequences and discuss some topological properties of these spaces and other related results.

1. Definitions and notations

Let w denote the set of all sequences $x = (x_n)$, real or complex, let $p = (p_n)$, $q = (q_n)$ and $\overline{q} = (\overline{q}_n)$ denote the sequences of positive real numbers and the sequence $\overline{Q} = (\overline{Q}_n)$ is such that :

$$\overline{Q}_n = \overline{q}_1 + \overline{q}_2 + \overline{q}_3 + \dots + \overline{q}_n \neq 0.$$

For a sequence $x = (x_n)$, we write

$$\overline{t}_n(x) = \frac{1}{\overline{Q}_n} \sum_{k=1}^n \overline{q}_k \mid x_k \mid^{p_k}$$

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, nondecreasing, and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$, as $x \to \infty$, (see Krasnoselskii and Rutickii [6]).

If convexity of M is replaced by $M(x+y) \leq M(x) + M(y)$, then it is called a modulus function, defined and studied by Nakano [10], Ruckle [12], Maddox [9] and others.

An Orlicz function M is said to satisfy the Δ_2 -condition for all values of l, if there exist a constant K > 0 such that $M(2l) \leq KM(l)(l \geq 0)$ (see Krasnoselskii and Rutickii [6]).

Lindenstrauss and Tzafriri [7] defined the Orlicz sequence space :

$$l_M = \{ x \in w : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty, \text{ for some } \rho > 0 \},\$$

which is a Banach space with the norm :

$$||x||_M = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \le 1\}.$$

Key words and phrases. Difference sequence, infinite matrix, Cez`aro sequence space, Orlicz function.

Different Orlicz sequence spaces were studied by several mathematicians as Bilgen [1], Güngör et al [4], Tripathy and Mahanta [14], Esi and Et [2], Parashar and Choudhary [11] and many others.

A paranorm on a linear topological space X is a function $g:X\to\mathbb{R}$ which satisfies the following axioms :

for any $x, y, x_0 \in X$ and $\lambda, \lambda_0 \in \mathbb{C}$, (i) $g(\theta) = 0$, where $\theta = (0, 0, 0, \cdots)$, the zero sequence, (ii) g(x) = g(-x), (iii) $g(x+y) \leq g(x) + g(y)$ (subadditivity), and (iv) the scalar multiplication is continuous, that is,

$$\lambda \to \lambda_0, x \to x_0$$
 imply $\lambda x \to \lambda_0 x_0$;

in other words,

$$|\lambda - \lambda_0| \to 0, g(x - x_0) \to 0 \text{ imply } g(\lambda x - \lambda_0 x_0) \to 0.$$

A paranormed space is a linear space X with a paranorm g and is written (X, g).

Any function g which satisfies all the conditions (i)-(iv) together with the condition :

(v) g(x) = 0 if and only if $x = \theta$,

is called a total paranorm on X, and the pair (X, g) is called a total paranormed space, (see Maddox [8]).

Let $A = (a_{ik})$ be an infinite matrix of complex numbers and let $(E, \| \cdot \|)$ be a Banach space over the complex field. We write $A(\Delta_x^u) = (A_i(\Delta_x^u))$ where $A_i(\Delta_x^u) = A_i(u_k\Delta x_k) = \sum_{k=1}^{\infty} a_{ik}(u_kx_k - u_{k+1}x_{k+1})$ which converges for each *i*.

Now, Let $u = (u_i)$ be any sequence such that $u_i \neq 0$ for each *i* and *s* is any real number such that $s \geq 0$, then we define the following sequence spaces :

$$\Delta W(A, M, \overline{q}, p, u, s) = \{x \in w : \frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u - L_i e_i \parallel)}{\rho})]^{p_k} \to 0,$$

as $n \to \infty$, for some $\rho > 0, L = (L_1, L_2, L_3, \cdots) \in E, L_i \in \mathbb{C}\},$

$$\begin{split} \Delta W_0(A, M, \overline{q}, p, u, s) &= \{ x \in w : \frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u \parallel)}{\rho})]^{p_k} \to 0 \\ \text{as } n &\to \infty, \text{ for some } \rho > 0 \}, \end{split}$$

and

Tamsui Oxford Journal of Informational and Mathematical Sciences 31(2) (2017) Aletheia University

$$\Delta W_{\infty}(A, M, \overline{q}, p, u, s) = \{x \in w : \sup_{n} \frac{1}{\overline{Q}_{n}} \sum_{k=1}^{n} k^{-s} \overline{q}_{k}[M(\frac{\|A(\Delta_{x}^{u}\|)}{\rho})] < \infty$$
, for some $\rho > 0\}$

where

$$e_i = \begin{cases} 1, & \text{at the i-th place} \\ 0, & \text{otherwise} \end{cases}$$

For more details on Cezàro sequences, one may see (Khan and Rahman[5], Etgin[3] and Shiue[13]).

2. Main results

In this section, we prove the following theorems :

Theorem 2.1. Let $p = (p_n)$ be bounded. Then $\Delta W(A, M, \overline{q}, p, u, s), \Delta W_0(A, M, \overline{q}, p, u, s)$ and $\Delta W_{\infty}(A, M, \overline{q}, p, u, s)$ are linear spaces over the complex field \mathbb{C} .

Proof. Let $x, y \in \Delta W(A, M, \overline{q}, p, u, s)$ and $\alpha, \beta \in \mathbb{C}$. Then there exists some positive numbers ρ_1 and ρ_2 such that :

$$\frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u - L_i e_i \parallel)}{\rho_1})]^{p_k} \to 0, \text{ as } n \to \infty,$$

where $L = (L_1, L_2, L_3, \cdots) \in E, L_i \in \mathbb{C}\},$

and

$$\frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_y^u - l_i e_i \parallel)}{\rho_2})]^{p_k} \to 0, \text{ as } n \to \infty,$$

where $l = (l_1, l_2, l_3, \cdots) \in E, l_i \in \mathbb{C} \}.$

Define $\rho_3 = \max(2 \mid \alpha \mid \rho_1, 2 \mid \beta \mid \rho_2)$. Then since *M* is nondecreasing and convex, we see that :

$$\begin{split} &\frac{1}{\overline{Q}_n}\sum_{k=1}^n k^{-s}\overline{q}_k[M(\frac{\parallel A(\alpha\Delta_x^u + \beta\Delta_y^u - (L_ie_i + l_ie_i)\parallel)}{\rho_3})]^{p_k} \\ &\leq \frac{1}{\overline{Q}_n}\sum_{k=1}^n k^{-s}\overline{q}_k[M(\frac{\parallel A(\alpha\Delta_x^u - L_ie_i)\parallel)}{\rho_3})]^{p_k} \\ &+ \frac{1}{\overline{Q}_n}\sum_{k=1}^n k^{-s}\overline{q}_k[M(\frac{\parallel A(\alpha\Delta_y^u - l_ie_i)\parallel)}{\rho_3})]^{p_k} \\ &\leq \frac{1}{\overline{Q}_n}\sum_{k=1}^n \frac{1}{2}k^{-s}\overline{q}_k[M(\frac{\parallel A(\alpha\Delta_x^u - L_ie_i)\parallel)}{\rho_1})]^{p_k} \\ &+ \frac{1}{\overline{Q}_n}\sum_{k=1}^n \frac{1}{2}k^{-s}\overline{q}_k[M(\frac{\parallel A(\beta\Delta_y^u - l_ie_i)\parallel)}{\rho_2})]^{p_k} \\ &\to 0, \text{ as } n \to \infty. \end{split}$$

This shows that $\alpha x + \beta y \in \Delta W(A, M, \overline{q}, p, u, s)$.

Similarly, it can be proved that $\Delta W_0(A, M, \overline{q}, p, u, s)$ and $\Delta W_\infty(A, M, \overline{q}, p, u, s)$ are also linear spaces.

Theorem 2.2. Let M be an Orlicz function which satisfies the Δ_2 -condition. Then

 $\Delta W(A, \overline{q}, u, s) \subseteq \Delta W(A, M, \overline{q}, u, s),$ $\Delta_0 W(A, \overline{q}, u, s) \subseteq \Delta_0 W(A, M, \overline{q}, u, s)$ and $\Delta_\infty W(A, \overline{q}, u, s) \subseteq \Delta_\infty W(A, M, \overline{q}, u, s).$

Proof. Let $x \in \Delta W(A, \overline{q}, u, s)$. Then

$$\frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [\| A(\Delta_x^u - L_i e_i \|] \to 0, \text{ as } n \to \infty,$$

where $L = (L_1, L_2, L_3, \cdots) \in E, L_i \in \mathbb{C} \}.$

Now, if $\epsilon > 0$ is given, one can choose δ such that $0 < \delta < 1$ and $M(t) < \epsilon$, for $0 \le t \le \delta$. Let $y_k = \parallel A(\Delta_x^u - L_i e_i \parallel \text{ and } \sum_{k=1}^n \overline{q}_k[M(\frac{y_k}{\rho})] = \sum_1 + \sum_2$, where $\sum_1 \text{ over } y_k \le \delta$ and $\sum_2 \text{ is over } y_k > \delta$. Then using the continuity of M we get that $\sum_1 < \overline{Q}_n \epsilon$ and for $y_k > \delta$ we use the inequality $y_k < \frac{y_k}{\delta} < 1 + \frac{y_k}{\delta}$.

But M is nondecreasing and convex which implies that :

$$M(\frac{y_k}{\rho}) < M(1 + \frac{y_k}{\delta}) < \frac{1}{2}M(2) + \frac{1}{2}M(\frac{2y_k}{\delta}).$$

Since M satisfies the Δ_2 -condition, we see that :

Tamsui Oxford Journal of Informational and Mathematical Sciences 31(2) (2017) Aletheia University

$$M(\frac{y_k}{\rho}) < \frac{1}{2}L(\frac{y_k}{\delta})M(2) + \frac{1}{2}L(\frac{y_k}{\delta})M(2) = L(\frac{y_k}{\delta})M(2).$$

This yields that :

$$\sum_{2} \overline{q}_{k} M(\frac{y_{k}}{\delta}) \leq \frac{L}{\delta} M(2) \overline{Q}_{n} \left[\frac{1}{\overline{Q}_{n}} \sum_{k=1}^{n} k^{-s} \overline{q}_{k} \left(\frac{\parallel A(\Delta_{x}^{u} - L_{i}e_{i}) \parallel)}{\rho}\right)\right]$$

Hence $\Delta W(A, \overline{q}, u, s) \subseteq \Delta W(A, M, \overline{q}, u, s)$. A similar proof can be done for the other two inclusions.

Theorem 2.3. (i) Let $0 < \inf_k p_k \le p_k < 1$. Then

 $\Delta W(A, M, \overline{q}, p, u, s) \subseteq \Delta W(A, M, \overline{q}, u, s).$ (*ii*) Let $1 \le p_k \le \sup_k p_k < \infty$. Then $\Delta W(A, M, \overline{q}, u, s) \subseteq \Delta W(A, M, \overline{q}, p, u, s).$

Proof. (i) Let $x \in \Delta W(A, M, \overline{q}, p, u, s)$. Then since $0 < \inf_k p_k \le p_k < 1$ we conclude that :

$$\frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u - L_i e_i) \parallel)}{\rho})]$$

$$\leq \frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u - L_i e_i) \parallel)}{\rho})]^{p_k}.$$

Therefore $x \in \Delta W(A, M, \overline{q}, u, s)$.

(ii) Let $x \in \Delta W(A, M, \overline{q}, u, s)$. Then for all ϵ such that $0 < \epsilon < 1$, there exists a positive integer N such that :

$$\frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u - L_i e_i) \parallel)}{\rho})] \le \epsilon < 1, \text{ for all } n \ge N.$$

Now since $1 \le p_k \le \sup_k p_k < \infty$, we have :

$$\frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u - L_i e_i) \parallel)}{\rho})]^{p_k}$$

$$\leq \frac{1}{\overline{Q}_n} \sum_{k=1}^n k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u - L_i e_i) \parallel)}{\rho})].$$

Therefore $x \in \Delta W(A, M, \overline{q}, p, u, s)$ and this completes the proof.

Theorem 2.4. Let $H = \sup_k p_k \leq p_k$. Then $\Delta W_0(A, M, \overline{q}, p, u, s)$ is a linear topological space paranormed by h defined as :

26

Tamsui Oxford Journal of Informational and Mathematical Sciences 31(2) (2017) Aletheia University

$$h(x) = \inf_{n} \{ \rho^{\frac{p_{n}}{H}} : \left(\frac{1}{\overline{Q}_{n}} \sum_{k=1}^{n} k^{-s} \overline{q}_{k} [M(\frac{\| A(\Delta_{x}^{u})) \|}{\rho})]^{p_{k}} \right)^{\frac{1}{H}} \le 1, n = 1, 2, 3, \cdots \}$$

Proof. Clearly h(-x) = h(x). For $\alpha = \beta = 1$ and using the linearity of $\Delta W_0(A, M, \overline{q}, p, u, s)$, we get that :

Then since $0 < \inf_k p_k \le p_k < 1$ we conclude that :

$$h(\Delta_x^u + \Delta_y^u) \le h(\Delta_x^u) + h(\Delta_y^u).$$

Since M(0) = 0, we see that $\inf_n \rho^{\frac{p_n}{H}} = 0$, for x = 0. Conversely, suppose that h(x) = 0, then

$$(\inf_{n} \{ \rho^{\frac{p_{n}}{H}} : (\frac{1}{\overline{Q}_{n}} \sum_{k=1}^{n} k^{-s} \overline{q}_{k} [M(\frac{\| A(\Delta_{x}^{u})) \|}{\rho})]^{p_{k}})^{\frac{1}{H}} \le 1) = 0.$$

This yields that for a given $\epsilon > 0$, there exists some $\rho_{\epsilon}(0 < \rho_{\epsilon} < \epsilon)$ such that :

$$(\frac{1}{\overline{Q}_n}\sum_{k=1}^n k^{-s}\overline{q}_k[M(\frac{\parallel A(\Delta_x^u))\parallel}{\rho_\epsilon})]^{p_k})^{\frac{1}{H}} \leq 1.$$

Therefore

$$\left(\frac{1}{\overline{Q}_n}\sum_{k=1}^n k^{-s}\overline{q}_k[M(\frac{\parallel A(\Delta_x^u))\parallel}{\epsilon})]^{p_k}\right)^{\frac{1}{H}}$$

$$\leq \left(\frac{1}{\overline{Q}_n}\sum_{k=1}^n k^{-s}\overline{q}_k[M(\frac{\parallel A(\Delta_x^u))\parallel}{\rho_{\epsilon}})]^{p_k}\right)^{\frac{1}{H}} \leq 1.$$

Suppose $x_{n_m} \neq 0$, for some *m*. Let $\epsilon \to 0$, then $\| \frac{A_i(u_{n_m}\Delta x_{n_m})}{\rho} \| \to \infty$, which is a contradiction.

Hence $x_{n_m} \neq 0$, for each *m*. Finally, we prove that scalar multiplication is continuous. Let λ be any number. Then

$$h(\lambda x) = \inf_{n} \{ \rho^{\frac{p_{n}}{H}} : (\frac{1}{\overline{Q}_{n}} \sum_{k=1}^{n} k^{-s} \overline{q}_{k} [M(\frac{\| A(\lambda \Delta_{x}^{u})) \|}{\rho})]^{p_{k}} \}^{\frac{1}{H}} \le 1, n = 1, 2, 3, \cdots \}$$

and therefore

$$h(\lambda x) = \inf_{n} \{ (\lambda r)^{\frac{p_{n}}{H}} : (\frac{1}{\overline{Q}_{n}} \sum_{k=1}^{n} k^{-s} \overline{q}_{k} [M(\frac{\| A(\lambda \Delta_{x}^{u})) \|}{\rho})]^{p_{k}})^{\frac{1}{H}} \le 1, n = 1, 2, 3, \cdots \}$$

where $r = \frac{\rho}{\lambda}$.

Since $|\lambda|^{p_k} \leq \max(1, |\lambda|^H)$, we get that $|\lambda|^{p_H^k} \leq (\max(1, |\lambda|^H))^1_H$. This implies that :

$$\begin{aligned} h(\lambda x) &\leq (\max(1, |\lambda|^{H})) \frac{1}{H} \inf_{n} \{ (r)^{\frac{p_{n}}{H}} : (\frac{1}{\overline{Q}_{n}} \sum_{k=1}^{n} k^{-s} \overline{q}_{k} [M(\frac{\|A(\lambda \Delta_{x}^{u}))\|}{\rho})]^{p_{k}})^{\frac{1}{H}} \\ &\leq 1, n = 1, 2, 3, \cdots \} \to 0 \text{ as } h(x) \to 0 \text{ in } \Delta W_{0}(A, M, \overline{q}, p, u, s). \end{aligned}$$

Now, let $\lambda \to 0$ and $x \in \Delta W_0(A, M, \overline{q}, p, u, s)$, then for $\epsilon > 0$, let N be a positive integer such that :

$$\frac{1}{\overline{Q}_N} \sum_{k=1}^N k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u)) \parallel}{\rho})]^{p_k})^{\frac{1}{H}} < \frac{\epsilon}{2}, \text{ for some } \rho > 0.$$

Therefore

$$\frac{1}{\overline{Q}_N} \sum_{k=1}^N k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u)) \parallel}{\rho})]^{p_k})^{\frac{1}{H}} < \frac{\epsilon}{2}$$

Now, if $0 < |\lambda| < 1$ and using the convexity of M, we see that :

$$\frac{1}{\overline{Q}_N} \sum_{k=1}^N k^{-s} \overline{q}_k [M(\frac{\parallel A(\Delta_x^u)) \parallel}{\rho})]^{p_k} < \frac{1}{\overline{Q}_N} \sum_{k=1}^N k^{-s} \overline{q}_k [\parallel \lambda \mid M(\frac{\parallel A(\Delta_x^u)) \parallel}{\rho})]^{p_k} < (\frac{\epsilon}{2})^H.$$

Since M is continuous everywhere in $[0, \infty]$, we have $f(t) = \frac{1}{\overline{Q}_N} \sum_{k=1}^N k^{-s} \overline{q}_k [M(\frac{\|A(t\Delta_x^u))\|}{\rho})]$ is continuous at 0 and so there exists $\delta(0 < \delta < 1)$ such that $|f(t)| < \frac{\epsilon}{2}$, for $0 < t < \delta$.

Let K be such that $|\lambda_n| < \delta$, for n > K. Then for n > K,

$$\left(\frac{1}{\overline{Q}_n}\sum_{k=1}^n k^{-s}\overline{q}_k[M(\frac{\parallel A(\lambda_n\Delta_x^u))\parallel}{\rho})]^{p_k}\right)^{\frac{1}{H}} < \frac{\epsilon}{2}.$$

Thus

$$\left(\frac{1}{\overline{Q}_n}\sum_{k=1}^n k^{-s}\overline{q}_k[M(\frac{\parallel A(\lambda_n\Delta_x^u))\parallel}{\rho})]^{p_k}\right)^{\frac{1}{H}} < \epsilon, \text{ for } n > K.$$

This completes the proof of the theorem.

References

- [1] Bilgin, T., Some new difference sequence spaces defined by an Orlicz function, Filomat, 17(2003), 1-8.
- [2] Esi, A. and Et., M., Some new sequence spaces defined by a sequence of Orlicz functions, Indian J. Pure Appl. Math., 31(8)(2000), 967-972.
- [3] Etgin, M., On some generalized Cezàro difference sequence spaces, Istanbul Univ. fen. fak. Mat. Dergisi, 55-56(1996-1997), 221-229.

- [4] Güngör, M., Et., M. and Altin, Y., Strongly $(V_{\sigma}; \lambda; q)$ -summable sequences defined by Orlicz function, Appl. Math. Comput., 157(2004), 561-571.
- [5] Khan, F. M. and Rahman, M. F., Infinite matrices and Cezàro sequence spaces, Analysis Mathematica, 23(1997),3-11.
- [6] Krasnoselskii, M. A. and Rutickii, Ya. b., Convex Functions and Orlicz Spaces, Groning, the Netherlands, 1961 (Trnslated from the first Russian Edition, by : Leo F. Boron).
- [7] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., 10(3)(1971), 379-390.
- [8] Maddox, I. J., *Elements of functional analysis*, 2nd Edition, Cambridge University Press, 1970.
- [9] Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
- [10] Nakano, H., Concave modulus, J. Math. Soc. Japan 5(1953), 29-49.
- [11] Parashar, S. D. and Choudhary, B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(1994), 419-428.
- [12] Ruckle, W. H., FK space in which the sequenc of coordinate vectors is bounded, Can. J. Math., 25(5)(1973), 973-978.
- [13] Shiue, J. S., On the Cezàro sequence spaces, Tamkang J. Math., 1(1970), 19-25.
- [14] Tripathy, B. C. and Mahanta, S., On a class of sequences related to the space defined by Orlicz functions, Soochow J. Math., 29(4)(2003), 379-391.