ON STRONGLY CEZ ARO SUMMABLE SEQUENCES

AHMAD H. A. BATAINEH
Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan

Received November, 14, 2016, Accepted November, 25, 2017

2000 Mathematics Subject Classification. 40A05,40C05, 40A45.
E-mail address: ahabf2003@yahoo.ca

Abstract

The object of this paper is to study the sequence spaces: $\Delta W(A, M, \bar{q}, p, u, s)$, $\Delta W_{0}(A, M, \bar{q}, p, u, s)$ and $\Delta W_{\infty}(A, M, \bar{q}, p, u, s)$ associated with strongly Cezàro summable sequences and discuss some topological properties of these spaces and other related results.

1. Definitions and notations

Let w denote the set of all sequences $x=\left(x_{n}\right)$, real or complex, let $p=\left(p_{n}\right), q=\left(q_{n}\right)$ and $\bar{q}=\left(\bar{q}_{n}\right)$ denote the sequences of positive real numbers and the sequence $\bar{Q}=\left(\bar{Q}_{n}\right)$ is such that:

$$
\bar{Q}_{n}=\bar{q}_{1}+\bar{q}_{2}+\bar{q}_{3}+, \cdots+\bar{q}_{n} \neq 0 .
$$

For a sequence $x=\left(x_{n}\right)$, we write

$$
\bar{t}_{n}(x)=\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} \bar{q}_{k}\left|x_{k}\right|^{p_{k}} .
$$

An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, nondecreasing, and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$, (see Krasnoselskii and Rutickii [6]).
If convexity of M is replaced by $M(x+y) \leq M(x)+M(y)$, then it is called a modulus function, defined and studied by Nakano [10], Ruckle [12], Maddox [9] and others.

An Orlicz function M is said to satisfy the Δ_{2}-condition for all values of l, if there exist a constant $K>0$ such that $M(2 l) \leq K M(l)(l \geq 0)$ (see Krasnoselskii and Rutickii [6]).

Lindenstrauss and Tzafriri [7] defined the Orlicz sequence space :

$$
l_{M}=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

which is a Banach space with the norm :

$$
\|x\|_{M}=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\} .
$$

Key words and phrases. Difference sequence, infinite matrix, Cez`aro sequence space, Orlicz function.

Different Orlicz sequence spaces were studied by several mathematicians as Bilgen [1], Güngör et al [4], Tripathy and Mahanta [14], Esi and Et [2], Parashar and Choudhary [11] and many others.

A paranorm on a linear topological space X is a function $g: X \rightarrow \mathbb{R}$ which satisfies the following axioms :
for any $x, y, x_{0} \in X$ and $\lambda, \lambda_{0} \in \mathbb{C}$,
(i) $g(\theta)=0$, where $\theta=(0,0,0, \cdots)$, the zero sequence,
(ii) $g(x)=g(-x)$,
(iii) $g(x+y) \leq g(x)+g(y)$ (subadditivity),
and
(iv) the scalar multiplication is continuous, that is,

$$
\lambda \rightarrow \lambda_{0}, x \rightarrow x_{0} \text { imply } \lambda x \rightarrow \lambda_{0} x_{0}
$$

in other words,

$$
\left|\lambda-\lambda_{0}\right| \rightarrow 0, g\left(x-x_{0}\right) \rightarrow 0 \text { imply } g\left(\lambda x-\lambda_{0} x_{0}\right) \rightarrow 0
$$

A paranormed space is a linear space X with a paranorm g and is written (X, g).
Any function g which satisfies all the conditions (i)-(iv) together with the condition :
(v) $g(x)=0$ if and only if $x=\theta$,
is called a total paranorm on X, and the pair (X, g) is called a total paranormed space, (see Maddox [8]).

Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers and let $(E,\|\|$.$) be a Banach$ space over the complex field. We write $A\left(\Delta_{x}^{u}\right)=\left(A_{i}\left(\Delta_{x}^{u}\right)\right)$ where $A_{i}\left(\Delta_{x}^{u}\right)=A_{i}\left(u_{k} \Delta x_{k}\right)=$ $\sum_{k=1}^{\infty} a_{i k}\left(u_{k} x_{k}-u_{k+1} x_{k+1}\right)$ which converges for each i.

Now, Let $u=\left(u_{i}\right)$ be any sequence such that $u_{i} \neq 0$ for each i and s is any real number such that $s \geq 0$, then we define the following sequence spaces :

$$
\begin{aligned}
\Delta W(A, M, \bar{q}, p, u, s) & =\left\{x \in w: \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\| A\left(\Delta_{x}^{u}-L_{i} e_{i} \|\right)}{\rho}\right)\right]^{p_{k}} \rightarrow 0,\right. \\
\text { as } n & \left.\rightarrow \infty, \text { for some } \rho>0, L=\left(L_{1}, L_{2}, L_{3}, \cdots\right) \in E, L_{i} \in \mathbb{C}\right\}, \\
\Delta W_{0}(A, M, \bar{q}, p, u, s) & =\left\{x \in w: \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\| A\left(\Delta_{x}^{u} \|\right)}{\rho}\right)\right]^{p_{k}} \rightarrow 0\right. \\
\text { as } n & \rightarrow \infty, \text { for some } \rho>0\},
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta W_{\infty}(A, M, \bar{q}, p, u, s) & =\left\{x \in w: \sup _{n} \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\| A\left(\Delta_{x}^{u} \|\right)}{\rho}\right)\right]<\infty\right. \\
, \text { for some } \rho & >0\}
\end{aligned}
$$

where

$$
e_{i}= \begin{cases}1, & \text { at the i-th place } \\ & 0, \quad \text { otherwise }\end{cases}
$$

For more details on Cezàro sequences, one may see (Khan and Rahman[5], Etgin[3] and Shiue[13]).

2. Main Results

In this section, we prove the following theorems :
Theorem 2.1. Let $p=\left(p_{n}\right)$ be bounded. Then $\Delta W(A, M, \bar{q}, p, u, s), \Delta W_{0}(A, M, \bar{q}, p, u, s)$ and $\Delta W_{\infty}(A, M, \bar{q}, p, u, s)$ are linear spaces over the complex field \mathbb{C}.

Proof. Let $x, y \in \Delta W(A, M, \bar{q}, p, u, s)$ and $\alpha, \beta \in \mathbb{C}$. Then there exists some positive numbers ρ_{1} and ρ_{2} such that:

$$
\begin{aligned}
\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\| A\left(\Delta_{x}^{u}-L_{i} e_{i} \|\right)}{\rho_{1}}\right)\right]^{p_{k}} & \rightarrow 0, \text { as } n \rightarrow \infty \\
\text { where } L & \left.=\left(L_{1}, L_{2}, L_{3}, \cdots\right) \in E, L_{i} \in \mathbb{C}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\| A\left(\Delta_{y}^{u}-l_{i} e_{i} \|\right)}{\rho_{2}}\right)\right]^{p_{k}} & \rightarrow 0, \text { as } n \rightarrow \infty \\
\text { where } l & \left.=\left(l_{1}, l_{2}, l_{3}, \cdots\right) \in E, l_{i} \in \mathbb{C}\right\} .
\end{aligned}
$$

Define $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Then since M is nondecreasing and convex, we see that:

$$
\begin{aligned}
& \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\| A\left(\alpha \Delta_{x}^{u}+\beta \Delta_{y}^{u}-\left(L_{i} e_{i}+l_{i} e_{i}\right) \|\right)}{\rho_{3}}\right)\right]^{p_{k}} \\
\leq & \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\alpha \Delta_{x}^{u}-L_{i} e_{i}\right)\right\|\right)}{\rho_{3}}\right)\right]^{p_{k}} \\
& +\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\beta \Delta_{y}^{u}-l_{i} e_{i}\right)\right\|\right)}{\rho_{3}}\right)\right]^{p_{k}} \\
\leq & \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} \frac{1}{2} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\alpha \Delta_{x}^{u}-L_{i} e_{i}\right)\right\|\right)}{\rho_{1}}\right)\right]^{p_{k}} \\
& +\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} \frac{1}{2} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\beta \Delta_{y}^{u}-l_{i} e_{i}\right)\right\|\right)}{\rho_{2}}\right)\right]^{p_{k}} \\
\rightarrow & 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

This shows that $\alpha x+\beta y \in \Delta W(A, M, \bar{q}, p, u, s)$.
Similarly, it can be proved that $\Delta W_{0}(A, M, \bar{q}, p, u, s)$ and $\Delta W_{\infty}(A, M, \bar{q}, p, u, s)$ are also linear spaces.

Theorem 2.2. Let M be an Orlicz function which satisfies the Δ_{2}-condition. Then
$\Delta W(A, \bar{q}, u, s) \subseteq \Delta W(A, M, \bar{q}, u, s)$,
$\Delta_{0} W(A, \bar{q}, u, s) \subseteq \Delta_{0} W(A, M, \bar{q}, u, s)$
and $\Delta_{\infty} W(A, \bar{q}, u, s) \subseteq \Delta_{\infty} W(A, M, \bar{q}, u, s)$.
Proof. Let $x \in \Delta W(A, \bar{q}, u, s)$. Then

$$
\left.\begin{array}{r}
\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[\| A\left(\Delta_{x}^{u}-L_{i} e_{i} \|\right] \rightarrow 0, \text { as } n \rightarrow \infty\right. \\
\text { where } L
\end{array}=\left(L_{1}, L_{2}, L_{3}, \cdots\right) \in E, L_{i} \in \mathbb{C}\right\} .
$$

Now, if $\epsilon>0$ is given, one can choose δ such that $0<\delta<1$ and $M(t)<\epsilon$, for $0 \leq t \leq \delta$. Let $y_{k}=\| A\left(\Delta_{x}^{u}-L_{i} e_{i} \|\right.$ and $\sum_{k=1}^{n} \bar{q}_{k}\left[M\left(\frac{y_{k}}{\rho}\right)\right]=\sum_{1}+\sum_{2}$,
where \sum_{1} over $y_{k} \leq \delta$ and \sum_{2} is over $y_{k}>\delta$. Then using the continuity of M we get that $\sum_{1}<\bar{Q}_{n} \epsilon$ and for $y_{k}>\delta$ we use the inequality $y_{k}<\frac{y_{k}}{\delta}<1+\frac{y_{k}}{\delta}$.

But M is nondecreasing and convex which implies that:

$$
M\left(\frac{y_{k}}{\rho}\right)<M\left(1+\frac{y_{k}}{\delta}\right)<\frac{1}{2} M(2)+\frac{1}{2} M\left(\frac{2 y_{k}}{\delta}\right) .
$$

Since M satisfies the Δ_{2}-condition, we see that:

$$
M\left(\frac{y_{k}}{\rho}\right)<\frac{1}{2} L\left(\frac{y_{k}}{\delta}\right) M(2)+\frac{1}{2} L\left(\frac{y_{k}}{\delta}\right) M(2)=L\left(\frac{y_{k}}{\delta}\right) M(2) .
$$

This yields that:

$$
\sum_{2} \bar{q}_{k} M\left(\frac{y_{k}}{\delta}\right) \leq \frac{L}{\delta} M(2) \bar{Q}_{n}\left[\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left(\frac{\left.\left\|A\left(\Delta_{x}^{u}-L_{i} e_{i}\right)\right\|\right)}{\rho}\right)\right.
$$

Hence $\Delta W(A, \bar{q}, u, s) \subseteq \Delta W(A, M, \bar{q}, u, s)$. A similar proof can be done for the other two inclusions.

Theorem 2.3. (i) Let $0<\inf _{k} p_{k} \leq p_{k}<1$. Then
$\Delta W(A, M, \bar{q}, p, u, s) \subseteq \Delta W(A, M, \bar{q}, u, s)$.
(ii) Let $1 \leq p_{k} \leq \sup _{k} p_{k}<\infty$. Then
$\Delta W(A, M, \bar{q}, u, s) \subseteq \Delta W(A, M, \bar{q}, p, u, s)$.
Proof. (i) Let $x \in \Delta W(A, M, \bar{q}, p, u, s)$.Then since $0<\inf _{k} p_{k} \leq p_{k}<1$ we conclude that:

$$
\begin{aligned}
& \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\Delta_{x}^{u}-L_{i} e_{i}\right)\right\|\right)}{\rho}\right)\right] \\
\leq & \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\Delta_{x}^{u}-L_{i} e_{i}\right)\right\|\right)}{\rho}\right)\right]^{p_{k}} .
\end{aligned}
$$

Therefore $x \in \Delta W(A, M, \bar{q}, u, s)$.
(ii) Let $x \in \Delta W(A, M, \bar{q}, u, s)$.Then for all ϵ such that $0<\epsilon<1$, there exists a positive integer N such that:

$$
\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\Delta_{x}^{u}-L_{i} e_{i}\right)\right\|\right)}{\rho}\right)\right] \leq \epsilon<1, \text { for all } n \geq N .
$$

Now since $1 \leq p_{k} \leq \sup _{k} p_{k}<\infty$, we have :

$$
\begin{aligned}
& \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\Delta_{x}^{u}-L_{i} e_{i}\right)\right\|\right)}{\rho}\right)\right]^{p_{k}} \\
\leq & \frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\left\|A\left(\Delta_{x}^{u}-L_{i} e_{i}\right)\right\|\right)}{\rho}\right)\right] .
\end{aligned}
$$

Therefore $x \in \Delta W(A, M, \bar{q}, p, u, s)$ and this completes the proof.
Theorem 2.4. Let $H=\sup _{k} p_{k} \leq p_{k}$. Then $\Delta W_{0}(A, M, \bar{q}, p, u, s)$ is a linear topological space paranormed by h definrd as:

$$
h(x)=\inf _{n}\left\{\rho^{\frac{p_{n}}{H}}:\left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1, n=1,2,3, \cdots\right\}
$$

Proof. Clearly $h(-x)=h(x)$. For $\alpha=\beta=1$ and using the linearity of $\Delta W_{0}(A, M, \bar{q}, p, u, s)$, we get that:

Then since $0<\inf _{k} p_{k} \leq p_{k}<1$ we conclude that:

$$
h\left(\Delta_{x}^{u}+\Delta_{y}^{u}\right) \leq h\left(\Delta_{x}^{u}\right)+h\left(\Delta_{y}^{u}\right) .
$$

Since $M(0)=0$, we see that $\inf _{n} \rho^{\frac{p_{n}}{H}}=0$, for $x=0$.
Conversely, suppose that $h(x)=0$, then

$$
\left(\inf _{n}\left\{\rho^{\frac{p_{n}}{H}}:\left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1\right)=0 .\right.
$$

This yields that for a given $\epsilon>0$, there exists some $\rho_{\epsilon}\left(0<\rho_{\epsilon}<\epsilon\right)$ such that:

$$
\left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\rho_{\epsilon}}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1 .
$$

Therefore

$$
\begin{aligned}
& \left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\epsilon}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\
\leq & \left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\rho_{\epsilon}}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1 .
\end{aligned}
$$

Suppose $x_{n_{m}} \neq 0$, for some m. Let $\epsilon \rightarrow 0$, then $\left\|\frac{A_{i}\left(u_{n_{m}} \Delta x_{n_{m}}\right)}{\rho}\right\| \rightarrow \infty$, which is a contradiction.

Hence $x_{n_{m}} \neq 0$, for each m. Finally, we prove that scalar multiplication is continuous. Let λ be any number. Then

$$
h(\lambda x)=\inf _{n}\left\{\rho^{\frac{p_{n}}{H}}:\left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\lambda \Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1, n=1,2,3, \cdots\right\}
$$

and therefore

$$
h(\lambda x)=\inf _{n}\left\{(\lambda r)^{\frac{p_{n}}{H}}:\left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\lambda \Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1, n=1,2,3, \cdots\right\},
$$

where $r=\frac{\rho}{\lambda}$.

Since $|\lambda|^{p_{k}} \leq \max \left(1,|\lambda|^{H}\right)$, we get that $|\lambda|^{p} H^{k} \leq\left(\max \left(1,|\lambda|^{H}\right)\right)_{H}^{1}$. This implies that :

$$
\begin{aligned}
h(\lambda x) & \leq\left(\max \left(1,|\lambda|^{H}\right)\right) \frac{1}{H} \inf _{n}\left\{(r)^{\frac{p_{n}}{H}}:\left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\lambda \Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}}\right. \\
& \leq 1, n=1,2,3, \cdots\} \rightarrow 0 \text { as } h(x) \rightarrow 0 \text { in } \Delta W_{0}(A, M, \bar{q}, p, u, s) .
\end{aligned}
$$

Now, let $\lambda \rightarrow 0$ and $x \in \Delta W_{0}(A, M, \bar{q}, p, u, s)$, then for $\epsilon>0$, let N be a positive integer such that:

$$
\left.\frac{1}{\bar{Q}_{N}} \sum_{k=1}^{N} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\frac{\epsilon}{2}, \text { for some } \rho>0 .
$$

Therefore

$$
\left.\frac{1}{\bar{Q}_{N}} \sum_{k=1}^{N} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\frac{\epsilon}{2} .
$$

Now, if $0<|\lambda|<1$ and using the convexity of M, we see that:

$$
\frac{1}{\bar{Q}_{N}} \sum_{k=1}^{N} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}<\frac{1}{\bar{Q}_{N}} \sum_{k=1}^{N} k^{-s} \bar{q}_{k}\left[\| \left\lvert\, M\left(\frac{\left.\| A\left(\Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right.\right]^{p_{k}}<\left(\frac{\epsilon}{2}\right)^{H} .
$$

Since M is continuous everywhere in $[0, \infty]$, we have $f(t)=\frac{1}{\bar{Q}_{N}} \sum_{k=1}^{N} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(t \Delta_{\alpha}^{u}\right)\right) \|}{\rho}\right)\right]$ is continuous at 0 and so there exists $\delta(0<\delta<1)$ such that $|f(t)|<\frac{\epsilon}{2}$, for $0<t<\delta$.

Let K be such that $\left|\lambda_{n}\right|<\delta$,for $n>K$. Then for $n>K$,

$$
\left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\lambda_{n} \Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\frac{\epsilon}{2} .
$$

Thus

$$
\left(\frac{1}{\bar{Q}_{n}} \sum_{k=1}^{n} k^{-s} \bar{q}_{k}\left[M\left(\frac{\left.\| A\left(\lambda_{n} \Delta_{x}^{u}\right)\right) \|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\epsilon, \text { for } n>K .
$$

This completes the proof of the theorem.

References

[1] Bilgin, T., Some new difference sequence spaces defined by an Orlicz function, Filomat, 17(2003), 1-8.
[2] Esi, A. and Et., M., Some new sequence spaces defined by a sequence of Orlicz functions, Indian J. Pure Appl. Math., 31(8)(2000), 967-972.
[3] Etgin, M., On some generalized Cezàro difference sequence spaces, Istanbul Univ. fen. fak. Mat. Dergisi, 55-56(1996-1997), 221-229.
[4] Güngör, M. , Et., M. and Altin, Y., Strongly $\left(V_{\sigma} ; \lambda ; q\right)$-summable sequences defined by Orlicz function, Appl. Math. Comput., 157(2004), 561-571.
[5] Khan, F. M. and Rahman, M. F., Infinite matrices and Cezàro sequence spaces, Analysis Mathematica, 23(1997),3-11.
[6] Krasnoselskii, M. A. and Rutickii, Ya. b., Convex Functions and Orlicz Spaces, Groning, the Netherlands, 1961 (Trnslated from the first Russian Edition, by : Leo F. Boron).
[7] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., 10(3)(1971), 379-390.
[8] Maddox, I. J., Elements of functional analysis, 2nd Edition, Cambridge University Press, 1970.
[9] Maddox,I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161166.
[10] Nakano,H., Concave modulus, J. Math. Soc. Japan 5(1953), 29-49.
[11] Parashar, S. D. and Choudhary, B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(1994), 419-428.
[12] Ruckle, W. H., FK space in which the sequenc of coordinate vectors is bounded, Can. J. Math., 25(5)(1973), 973-978.
[13] Shiue, J. S., On the Cezàro sequence spaces, Tamkang J. Math., 1(1970), 19-25.
[14] Tripathy, B. C. and Mahanta, S., On a class of sequences related to the space defined by Orlicz functions, Soochow J. Math., 29(4)(2003), 379-391.

