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ABSTRACT. Let G be an abelian group, C be the field of complex numbers, and 0
# a € (G be a fixed element. In this paper, we determine the general solution

f, g: G — C of the functional equation f(z—y+a)+g(z+y+a) =2 f(x) f(y) for
allz,y € G.
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1. INTRODUCTION

Let R be the field of real numbers and C be the field of complex numbers. Let
G be an abelian group and « be a fixed nonzero element of G. Let 0 € G be the
identity element of G. A mapping h from the group G into the multiplicative group
of nonzero complex numbers is said to be a multiplicative homomorphism if and
only if h(x + y) = h(z)h(y) for all z,y € G. It is known that if h(0) = 0, then
h(z) =0 for all x € G. Tt is easy to see that if h # 0, then h(—z) = h(z)~! for all
x € G. Similarly, a mapping a from the group G into the additive group of complex
numbers is said to be an additive homomorphism if and only if a(z+y) = a(x)+a(y)
for all z,y € G.

In 1910, Van Vleck [6] (see also [10] and [5]) proved the following result: The
continuous function f : R — R satisfies the functional equation
(1) fle—y+a) = fle+y+a)=2f(z)f(y)
for all z,y € R, if and only if f is given by either f =0 or

f(x) = cos (%(m — a)) , VzeR.

In [2], Kannappan considered the functional equation

(2) flx—y+a)+ flx+y+a)=2f(z)f(y),

and proved the following result: The general solution f : R — C of the functional
equation (2) is either f =0 or f(x) = g(z — «), where g is an arbitrary solution of
the cosine functional equation g(z +y) + g(z —y) = 2g(x)g(y) for all z,y € R with
period 2a.

Other similar functional equations solved in literature are

3) fl@+y+a)flx—y+a)=f(x)’— fy)?*
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and

(4) f@+y+a)flx—y+a)=fx)’+ fly)* -1,

for all z,y € R. The functional equation (3) was considered by Kannappan in [3]
while (4) was considered by Etigson in [1]. These functional equations are examples
of functional equations with restricted argument where at least one of the variables
is restricted to a certain discrete subset of the domain of the other variable(s). In
particular, the subset may consist of a single element.

The goal of this paper is to determine the general solutions f,g : G — C of the
functional equation

() fl@—y+a)+g(@+y+a)=2f()f(y)
for all z, y € G. The functional equation (1) is a special case of the above functional
equation (5) where g = —f and G =R. If G =R and g = f, then the equation (5)
reduces to the functional equation (2) studied by Kannappan in [2].

2. PRELIMINARY RESULTS

The following results can be found in [5] and will be instrumental in proving the
main result of this paper.

Lemma 1. The function f : G — C satisfies the functional equation

(6) fet+y)+fl@—y) =Ff=)[fy) + f(-y)]
for all x,y € G if and only if

(7) fl@)=c

(8) fl@) =ay(@) +by(e)t,  Pla) #¢(a)™
(9) f(@) = [Alz) + 1] (), () = ()

where A : G — C is a additive homomorphism from G into the additive group of
complex numbers, the function v : G — C* is a multiplicative homomorphism from
G into the multiplicative group of nonzero complex numbers, and a,b, c are complex
constants satisfying c(c—1) =0 and a +b = 1.

3. MAIN RESULT
Now we are ready to prove our main result.

Theorem 1. Let G be an abelian group and 0 # o € G be a fized element. Suppose
the functions f,g : G — C satisfy the functional equation

(10) flx—y+a)+glz+y+a)=2f(z)f(y)

for all z,y € G. Then there exist multiplicative homomorphisms hi,hy : G — C*
such that the solutions f and g are given by

(11) fl@)=¢, g(@)=c2c-1)
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ha(x) — b ()~

I -
f(:L-) _ f(O) hg(x) Zf hg(x) = hg(ﬂ?)_l
3[ha(z — @) + ha(z — )] if ha(x) # ha(x) ™",

{ FO)2£(0)ha(@) ™ = 1|ha(x)  if ho(z) = ha(z)~!
%[%hz(x —a)+ 2h2(x — a)’l], if ho(z) # ha(x)™1,

where hi(a) = —hi(—a), and v,a,b € C are arbitrary constants satisfying a+b =1
together with ahz(a) = bha(—a) = 2abf(0).

Moreover, if f(0) =0, then f and g are periodic functions of period 4.

Proof. If f is a constant function, say f(x) = ¢ for all x € G, then using the
functional equation (10) we have g(z) = ¢(2¢— 1) for any arbitrary constant ¢ € C.
This yields the asserted solution (11). Hence from now on we assume f(z) is a
non-constant function.

Letting y = 0 in (10), we have
f@+a) +9(z+a) =2f(2)f(0).

Hence
(14) 9(x) =2f(z — a) f(0) - f(x)
for all x € G. Using (14) in (10), we obtain
(15) fle—y+a)=fle+y+a)=2f(z)f(y) - 2f(0) f(z +y)
for all z,y € G.
Case 1. Suppose f(0) = 0. Then (15) reduces to
(16) fle—y+a)—fle+ty+a)=2f(z)f(y)
for all z,y € G.

Replacing y with —y in (16), we get

(17) f@+y+a) = fle—y+a)=2f(z)f(-y)

for all 2,y € G. Adding (16) and (17), we have

(18) f@) [fy)+ f(=p]=0

for all 2,y € G. Since f is non-constant, from (18), we get

(19) f(=y)=—fly), Wed.

That is f is an odd function. Interchanging x with y in (16), we see that
(20) fly—z+a) = fly+az+a)=2f(y) f(z)

for all z,y € G. Comparing (16) and (20), we obtain
(21) fe—y+a)=fly—z+0a)



Tamsui Oxford Journal of Informational and Mathematical Sciences 31(2) (2017)
Aletheia University

Therefore, using (19) and (21), we see that
f@—y+a)=fly—r+a)=f-(z—y—a)) =—flz-—y—a)

Hence

(22) f@—y+a)=—fle—y—a)
for all z,y € G. Letting y = 0 in (22), we have

(23) fleta)=—fz—a)
Hence, replacing x by x + « in (23), we obtain

(24) flz+2a) = —f(z)

and

(25) fx+3a)=—f(z +a).
Using (23) and (25), we have

(26) f(z+4a) = f(x)

for all x € G. From (26) and (14), we see that

(27) g(z +4a) = —f(z +4a) = —f(z) = g(x)

for all x € G. This proves that f and g are periodic functions of period 4a.
Replacing  with z + « and y with y + « in (16), we obtain

(28) flz—y+a)— fl@+y+3a) = 2f(z+a) fly +a)

for all z,y € G. Using (25) in (28), we see that

(20) fz—y+a)+ flz+y+a)=2f(z+a)f(y+a)

for all z,y € G. Defining ¢ : G — C by

(30) Uz) = f(z+ a) Ve e G

and using it in (29), we obtain

(31) U +y) + Uz — y) = 20(x) ((y)

for all 2,y € G. The general solution of (31) can be obtained from Lemma 1 as

(32) ) = 3 () + @)™,

where by : G — C* is a homomorphism. Hence from (30) and (32), we get
(33) @) :% [h(z — @) + hi(z — a) Y]

Using (14), we have

(34) o) = 3 [ —a) + ha(e —0) ]

Since hy # 0, hi(—z) = hy(z)~! for all x € G, and hence (33) simplifies to

(35) Fa) = 3 [na@)ha(a) ™ + () hi0)]
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Hence

(36) F=a) = 5 @) Pa(e) ™ + ha()ha(0)]
Since f is an odd function on G, using (35) and (36), we get
(37) [ha(2) + ha(2)7'] [ha(@) + hi(a) 7] =0
for all = € G. Since h # 0, we have

(38) hi(a) +hi(a)™t =0

which implies
(39) hi(a)? = —1.
Using (39) in (33), we have

(10) @) = gy [1a(0) = (o).
From (39) and (34), we get
(a) o) =~z (@) = (o)),

Next, we verify that (40) and (41) are the solution of the functional equation (10)
in the case f(0) = 0. Inserting (40) and (41) into (10) and using the fact that
hi(a)? = —1, we get

flx—y+a)+glz+y+a)—2f(x)f(y)

_1 [hi(z —y) +hi(z—y)'] - % [hi(z +y) + hi(z+y) "]

2
- % (e — o) + hu(e — )] [y — o) + by — a) ']
= 5 (@ h )™ + 2 @) )] = 5 (@) + ) ()]
— 5 I (@)ha(@)™ 4 ha(e) ™ (@)] [ ()ha(@) ™+ ha(y) ™ A (o)
= 5 [ (@) = @)™ [aly) — )]
- i @ = @)™ ) = ()]

*%ma@fhmm*]wmofmqu
+ 5 @) —m@) ] )~ )]
=0.

Hence (40) and (41) are the solution of (10) in the case f(0) = 0. This is exactly
what asserted in the solution (12).

Case 2. Next suppose f(0) # 0. Interchanging y with —y in (15), we obtain
(42) fle+y+a) = fle—y+a)=2f(z)f(-y) - 2/(0) f(z —y)
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for all z,y € G. Adding (42) to (15), we see that

(43) FO) [f@+y)+ flz—y)] = f@) [f(y) + f(=y)]
for all z,y € G. Define ¢ : G — C by

@,
(44) o(x) = 70y’ Vr € G.

Then (43) and (44) yield

(45) Pz +y) + oz —y) = o(z) [6(y) + ¢(—y)]

for all z,y € G. The general nontrivial solution of (45) is given by

(46) o(z) = { ahg(z) + bha(x)~1, 'if hg(x)ié hg(x):ll
hao(x) [A(x) + 1], if ho(x) = ho(z) ™1,

where hy : G — C* is a homomorphism from the group G into the multiplicative
group of nonzero complex numbers C*, A : G — C is an additive homomorphism,
and a,b € C are constants with a +b = 1.

Note that ¢ = 0 is also a solution of (45). But in this case f = 0 and consequently
g = 0. This is the trivial solution of (10).

Using (44) in (46), we see that
f(O) [a hQ(CL') + bhg(l')il} s if hQ(l') 7_é hQ(ZL')il
£(0) ha(x) [A(x) +1], if ho(z) = ho(z)~!

where a and b are complex numbers with a + b = 1.

(47) fz) = {

(x

)

Interchanging = with y in (15), we obtain

(48) fly—z+a) = fle+y+a)=2f(y) f(z) = 2f(0) f(z +y)
for all 2,y € G. Comparing (15) and (48), we conclude that

(49) fle—y+a)=fly-z+a)

for all x,y € G. Hence letting z = 0 in the above relation, we have
(50) fla—y)=fla+y)

for all y € G. Letting y = « in (50), we have

(51) f(0)=fQ2a).

Now we consider two subcases.
Subcase 2.1. Suppose ha(z) = ha(x)~1. From (47), we get
(52) F() = £(0) ha(x) [A(z) +1].
Substituting (52) in (50), we see that
£(0) ha(e) ha()[A() — Aly) +1] = £(0) ha(a) ha(y)[A(a) + A(y) + 1]
Since hy # 0, from the above equality, we get
2A(y) =0



Tamsui Oxford Journal of Informational and Mathematical Sciences 31(2) (2017)
Aletheia University

for all y € G. Hence A = 0. Thus (52) reduces to

(53) f(@) = f(0) ha(2).
Using (53) in (14), we get
(54) g9(x) =2 f(0) f(z —a) - f(z)

=2 f(0)* ha(z) ha(ar) — f(0) ha()
= f(0) ha(x) [2£(0) ha(e) — 1] .
Next we check (53) and (54) are solution of (10) for this sub case. First, we compute
fla—y+a)+g(@+y+a)-2f(z)f(y)
= £(0) ha (@) ha(y) " o)
4 F(0) ha(w) hay) ha(@) [2 £(0) ha@) — 1] — 2 F(0)% ha(a) ha(y)]
= f(0) ha(x) ha(y) ha(a)
+.£(0) ha(x) ha(y) ha(a) [2 £(0) ha(a) — 1] = 2 f(0)? ha() ha(y)
=2 f(0)? ha(x) ha(y) ha(e)® = 2 f(0)* ha(x) ha(y)
= 2f(0)* ha(x) ha(y) [ha(a)? —1] .
Hence
(55) flz —y+a)+gz+y+a)=2f(x)fly) =2F(0)*ha(z) ha(y) [ha(a)® - 1]
for all z,y € G. Since f(0) = f(2«), using this with (53), we have

(56) f(0) h2(0) = f(0) ha(20).
The relation (56) yields
(57) ha(e)? = 1.

Hence using (57) in (55), we have
(58) f@—y+a)+gz+y+a)—2f(z)fly) =0

Thus for this sub case
(59) { f(@) = f(0) ha(@),

g(x) = f(0) ha(z) [2(0) ha(a) — 1]
is the solution of (10) with h(«) satisfies ha(a)? = 1.

Subcase 2.2. Suppose h(z) # h(x)~! for all z € G. From (47), the form of f is
given by

(60) f(x) = f(0) [aha(x) +bho(z)'],
where a, b are complex numbers with @ + b = 1. From (50), we have
fla—2z)= fla+z) Vo e G.
Computing f(«a — x), we get
(61) fla—2) = f(0) [ahe(a—2) + bho(a — )]
= f(0) [aho(a)ho(z) ™" + bhe(a) " ha(z)] .
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Next, we compute f(a + ) to get
(62) fla+2) = f(0) [ahe(a+z) +bho(a+z)"]
= f(0) [aho(a)ho(z) + bho(a) " ha(z) '] .
From (50), (61) and (62), we get
aho(a) ha(z) +bha(a) thy(z) ™ = aho(a) ha(z) ™' + bhy(a) thy(z)

which yields

[ahg( )—bhg( )71} [hg( ) hg(ﬁb)il] :0
for all z € G. Since ha(x) # ho(x)~1, we have

(63) aha(a) =bhy(a)™!

Letting (60) into (15) and simplifying resulting expression using (63) and then using
the fact that a + b =1, we get

fle—y+a)-flz+y+a)
£(0) [aha(@) ha(y) ™ ha(ar) + bha(z) hz(y)hz(a)_l]
(

- 1(0) [ahz( ) ( ) ha Of)+bh2(w) ha(y) ™" ha(a)™']
= —£(0) [ha(y) y) '] [aha(z) ha(a) = bha(x)” ha(a) ']
= —£(0) [ha(y) — ha(y)~'] [aha(x) ho(a) — aho(z)~ ha(a)]
= —f(0) aha(a) [ ( ) ha(2)™1] [ha(y) — ha(y)~'] .

Hence, we have
(64)
fla—y+a)= flz+y+a)=—f(0)ahs(a) [ha(z) = ha(x) "] [ha(y) — ha(y) ']
Similarly, next we compute 2f(z)f(y) — 2f(0)f(z + y) to get
2f(x)f(y) = 2f(0) f(z +y)
= 2f(0)? [aha(z) 4 bho(z) '] [aha(y) + bha(y ) ']
—2£(0) [aha(2)ha(y) + bha(z) " ha(y) ']
= 2£(0)*[a®ha(2)ha(y) + abha(z) " ha(y) ™" + abha ()™ ha(y)
+ b%ho(x) " tho(y) ™t —
= 2f(0)*[(a® — @)ha(2)ha(y)
+ (6% = b)ha(x) Thaly) ™! + abha(z)ha(y) ' + abha(z) " ha(y)]
= —2f(0)*[abha(x)hs(y) 4+ abho(x) hy(y)
— abhy(x)ha(y) " — abha(x) ™ ha(y)]
= —2f(0)%ab [ha(w) — ha(x) '] [ha(y) — hay) ']
Thus, we have
(65) 2/(@)(y) — 2(0)(a +) = ~2f(0)%abha(x) — ha(w)~"] [haly) — haly) ]
Hence, from (64) and (65), we see that

flz—y+a)= fle+y+a)=2f(2)f(y) —2f(0)f(z +y)

aha(x)ha(y) — bha(z) tha(y) Y]
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implies
(66) F(0) aha(a) = 2 f(0)* ab.
Hence
(67) ha(@) =2 £(0)b.
Since by (63), a ha(a) = bha(a)™t, (67) yields
ahs(a) =2 f(0)ab

which is

bhy(a) ™t =2f(0)ab
Hence
(68) ha(a)™' =2 f(0)a.
From (67) and (68), we obtain
(69) J0? =

Using (69) in (66), we see that

(70) F(0) aha(a) = %
From (63), (70) and (60), we have

(71) o) = % [0 ha(@) + bha(2) "] hala).
Using (14), we get
g(x) =2 f(0) f(z — a) — f(x)
=2f(0)? [aha(z) ha(a) ™! +bho(x) " ha(a)] = f(0) [aha(z) +bha(z) ']

= o [aha(e) ha(e) ™+ bha() ™ haf)] - a;;z(ba) (ahae) + bha(a)"
_ ﬁ [ah(x) h(a) ™" + bha(x) " ha(a) — a2hy(z) ha(a) — abha ()~ ha(a)]
— %ab [aha(z) {ha(a) ™" — aha(a)} + bho(z) ™ {ha(a) — aha(a)}]
_ ﬁ [ ha(@) {ha(a)™ — bha(a)™} + bha(z) ™ {hia(e) — aho(a)}]
= %‘b [a? ha(2) ha(a) ™" + b2 ha(2) " ha(a)] .
The function f(z) in (71) can be rewritten as
flx) = 2ib [aha(z) + bha(z) "] ha(a)
= ﬁ [0 ha(x) ha(a) + abha(z) " ha(a)]

= [ab ha(z) ha(a) ™" + abho(2) ™! ha(a)]

N — D
)
>

[ha(z) hao(a) ™" + ho(2) ™! ha(a)] .
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Thus the general solution for this case is given by

(72) F(@) = 5 [ra(@)ha(@) ™" + hae)ha(a)]

(73) o) = 5 |5 hal@hale) ™ + 2 ha(e) ha(e)

where a,b are complex numbers satisfying a + b = 1 and aha(a) = bha(a)™!, and
F(0)? = 155-
Now we verify that the solution (f,g) given in (72) and (73) satisfy

2f(x) fly) = flea—y+a)+glz+y+a).

For this let us compute

z — )+ ha(a— )] [ha(y — @) + ho(a — y)]
(@) + ha(@)ha(2) "] [ha(y)ha(0) ™ + ha(a)ha(y) ']
Y)ha(@) 72+ ha(@)ha(y) ™ + ha() " ha(y) + ha(2) " ha(y) " ha(@)?]

ha(x) ha(y) + ha(x) ha(y) ™" + ha(z) ™" ha(y) + ghz(ﬂc)_l ho(y) !

b
= ta(o) {§ halo) + )} 4 1als) ™ o) + L)}

>
[\
—~

=
[\

=3 hao(y) {aho(z) +bho(z) '} + %hg(y)fl {ahs(x) +bha(z)""}

_ % [aha(x) +bha(x) 1] [ahaly) + bha(y)~L] .

Thus we have

T 2f(@) fly) = ﬁ [aha(a) + bho(a) ] [ahaly) + bha(y)™]

for all z,y € G. Next we compute f(x —y+ a) + g(z + y + «) to get
fle—y+a)+g9(@+y+a)

- % [h2(x) ha(y) ™" ha(e) ha(e) ™" + ha(2) ™ ha(y) ha() ™" ha(a)]

i [‘Z () ho) (@) ha(0) ™+ () ()~ () hz<a>}

) o) )™ o)+ ha(o) )+ hale) o) |

a

:hz(:z:) {hg(y)*1 + % hz(y)} + ho(z) ™! {hg(y) 4o hz(y)IH

N~ N~ N~
r

_% hQ(Z) {b hg(y)71 + ahg(y)} + é hQ(iL’)il {a hg(y) + bhg(y)l}:|

= ﬁ [ahz(a})—l—th(x)—l] [ahg(y)—&—bhg(y)_l],

19
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Therefore

(75) fle—y+a)+g(z+y+a)= [aha(z) + bha(z) '] [aha(y) + bha(y) ']

2ab
From (74) and (75), we see that (f,g) given in (72) and (73) is a solution of the
equation (10) for this sub case.

Since there are no more cases left, this complete the proof of the theorem. [

4. AN OPEN PROBLEM

Let G be an abelian group and let 0 denote the identity element of G. Let
o : G — G be an involution, that is o(zy) = o(y) + o(z) and o(o(z)) = « for all
xz,y € G. Find all functions f, g : G — C satisfying

fletoly)+a)+glz+y+a)=2f(z)f(y)
for all z,y € G.
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