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Abstract. Let G be an abelian group, C be the field of complex numbers, and 0 
6= α ∈ G be a fixed element. In this paper, we determine the general solution

f, g : G → C of the functional equation f(x−y+α)+g(x+y+α) = 2 f(x) f(y) for 
all x, y ∈ G.
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1. Introduction

Let R be the field of real numbers and C be the field of complex numbers. Let
G be an abelian group and α be a fixed nonzero element of G. Let 0 ∈ G be the
identity element of G. A mapping h from the group G into the multiplicative group
of nonzero complex numbers is said to be a multiplicative homomorphism if and
only if h(x + y) = h(x)h(y) for all x, y ∈ G. It is known that if h(0) = 0, then
h(x) = 0 for all x ∈ G. It is easy to see that if h 6= 0, then h(−x) = h(x)−1 for all
x ∈ G. Similarly, a mapping a from the group G into the additive group of complex
numbers is said to be an additive homomorphism if and only if a(x+y) = a(x)+a(y)
for all x, y ∈ G.

In 1910, Van Vleck [6] (see also [10] and [5]) proved the following result: The
continuous function f : R→ R satisfies the functional equation

(1) f(x− y + α)− f(x+ y + α) = 2f(x)f(y)

for all x, y ∈ R, if and only if f is given by either f ≡ 0 or

f(x) = cos
( π

2α
(x− α)

)
, ∀x ∈ R.

In [2], Kannappan considered the functional equation

(2) f(x− y + α) + f(x+ y + α) = 2f(x)f(y),

and proved the following result: The general solution f : R → C of the functional
equation (2) is either f ≡ 0 or f(x) = g(x− α), where g is an arbitrary solution of
the cosine functional equation g(x+ y) + g(x− y) = 2g(x)g(y) for all x, y ∈ R with
period 2α.

Other similar functional equations solved in literature are

(3) f(x+ y + α) f(x− y + α) = f(x)2 − f(y)2
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and

(4) f(x+ y + α) f(x− y + α) = f(x)2 + f(y)2 − 1,

for all x, y ∈ R. The functional equation (3) was considered by Kannappan in [3]
while (4) was considered by Etigson in [1]. These functional equations are examples
of functional equations with restricted argument where at least one of the variables
is restricted to a certain discrete subset of the domain of the other variable(s). In
particular, the subset may consist of a single element.

The goal of this paper is to determine the general solutions f, g : G→ C of the
functional equation

(5) f(x− y + α) + g(x+ y + α) = 2 f(x) f(y)

for all x, y ∈ G. The functional equation (1) is a special case of the above functional
equation (5) where g = −f and G = R. If G = R and g = f , then the equation (5)
reduces to the functional equation (2) studied by Kannappan in [2].

2. Preliminary results

The following results can be found in [5] and will be instrumental in proving the
main result of this paper.

Lemma 1. The function f : G→ C satisfies the functional equation

(6) f(x+ y) + f(x− y) = f(x) [f(y) + f(−y)]

for all x, y ∈ G if and only if

(7) f(x) = c

or

(8) f(x) = aψ(x) + b ψ(x)−1, ψ(x) 6= ψ(x)−1

or

(9) f(x) = [A(x) + 1]ψ(x), ψ(x) = ψ(x)−1

where A : G → C is a additive homomorphism from G into the additive group of
complex numbers, the function ψ : G→ C? is a multiplicative homomorphism from
G into the multiplicative group of nonzero complex numbers, and a, b, c are complex
constants satisfying c(c− 1) = 0 and a+ b = 1.

3. Main result

Now we are ready to prove our main result.

Theorem 1. Let G be an abelian group and 0 6= α ∈ G be a fixed element. Suppose
the functions f, g : G→ C satisfy the functional equation

(10) f(x− y + α) + g(x+ y + α) = 2 f(x) f(y)

for all x, y ∈ G. Then there exist multiplicative homomorphisms h1, h2 : G → C?

such that the solutions f and g are given by

(11) f(x) = c, g(x) = c (2c− 1)
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(12) f(x) =
h1(x)− h1(x)−1

2h1(α)
, g(x) = −h1(x)− h1(x)−1

2h1(α)
,

(13)



f(x) =

 f(0)h2(x) if h2(x) = h2(x)−1

1
2

[
h2(x− α) + h2(x− α)−1

]
if h2(x) 6= h2(x)−1,

g(x) =

 f(0)
[
2f(0)h2(α)−1 − 1

]
h2(x) if h2(x) = h2(x)−1

1
2

[
a
bh2(x− α) + b

ah2(x− α)−1
]
, if h2(x) 6= h2(x)−1,

where h1(α) = −h1(−α), and γ, a, b ∈ C are arbitrary constants satisfying a+b = 1
together with ah2(α) = bh2(−α) = 2abf(0).

Moreover, if f(0) = 0, then f and g are periodic functions of period 4α.

Proof. If f is a constant function, say f(x) = c for all x ∈ G, then using the
functional equation (10) we have g(x) = c(2c− 1) for any arbitrary constant c ∈ C.
This yields the asserted solution (11). Hence from now on we assume f(x) is a
non-constant function.

Letting y = 0 in (10), we have

f(x+ α) + g(x+ α) = 2f(x)f(0).

Hence

(14) g(x) = 2f(x− α) f(0)− f(x)

for all x ∈ G. Using (14) in (10), we obtain

(15) f(x− y + α)− f(x+ y + α) = 2f(x) f(y)− 2f(0) f(x+ y)

for all x, y ∈ G.

Case 1. Suppose f(0) = 0. Then (15) reduces to

(16) f(x− y + α)− f(x+ y + α) = 2f(x) f(y)

for all x, y ∈ G.

Replacing y with −y in (16), we get

(17) f(x+ y + α)− f(x− y + α) = 2f(x) f(−y)

for all x, y ∈ G. Adding (16) and (17), we have

(18) f(x) [f(y) + f(−y)] = 0

for all x, y ∈ G. Since f is non-constant, from (18), we get

(19) f(−y) = −f(y), ∀y ∈ G.

That is f is an odd function. Interchanging x with y in (16), we see that

(20) f(y − x+ α)− f(y + x+ α) = 2f(y) f(x)

for all x, y ∈ G. Comparing (16) and (20), we obtain

(21) f(x− y + α) = f(y − x+ α)
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Therefore, using (19) and (21), we see that

f(x− y + α) = f(y − x+ α) = f(−(x− y − α)) = −f(x− y − α).

Hence

(22) f(x− y + α) = −f(x− y − α)

for all x, y ∈ G. Letting y = 0 in (22), we have

(23) f(x+ α) = −f(x− α).

Hence, replacing x by x+ α in (23), we obtain

(24) f(x+ 2α) = −f(x)

and

(25) f(x+ 3α) = −f(x+ α).

Using (23) and (25), we have

(26) f(x+ 4α) = f(x)

for all x ∈ G. From (26) and (14), we see that

(27) g(x+ 4α) = −f(x+ 4α) = −f(x) = g(x)

for all x ∈ G. This proves that f and g are periodic functions of period 4α.

Replacing x with x+ α and y with y + α in (16), we obtain

(28) f(x− y + α)− f(x+ y + 3α) = 2f(x+ α)f(y + α)

for all x, y ∈ G. Using (25) in (28), we see that

(29) f(x− y + α) + f(x+ y + α) = 2f(x+ α)f(y + α)

for all x, y ∈ G. Defining ` : G→ C by

(30) `(x) = f(x+ α) ∀x ∈ G

and using it in (29), we obtain

(31) `(x+ y) + `(x− y) = 2 `(x) `(y)

for all x, y ∈ G. The general solution of (31) can be obtained from Lemma 1 as

(32) `(x) =
1
2
[
h1(x) + h1(x)−1

]
,

where h1 : G→ C? is a homomorphism. Hence from (30) and (32), we get

(33) f(x) =
1
2
[
h1(x− α) + h1(x− α)−1

]
.

Using (14), we have

(34) g(x) = −1
2
[
h1(x− α) + h1(x− α)−1

]
.

Since h1 6= 0, h1(−x) = h1(x)−1 for all x ∈ G, and hence (33) simplifies to

(35) f(x) =
1
2
[
h1(x)h1(α)−1 + h1(x)−1h1(α)

]
.
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Hence

(36) f(−x) =
1
2
[
h1(x)−1h1(α)−1 + h1(x)h1(α)

]
.

Since f is an odd function on G, using (35) and (36), we get

(37)
[
h1(x) + h1(x)−1

] [
h1(α) + h1(α)−1

]
= 0

for all x ∈ G. Since h 6= 0, we have

(38) h1(α) + h1(α)−1 = 0

which implies

(39) h1(α)2 = −1.

Using (39) in (33), we have

(40) f(x) =
1

2h1(α)
[
h1(x)− h1(x)−1

]
.

From (39) and (34), we get

(41) g(x) = − 1
2h1(α)

[
h1(x)− h1(x)−1

]
.

Next, we verify that (40) and (41) are the solution of the functional equation (10)
in the case f(0) = 0. Inserting (40) and (41) into (10) and using the fact that
h1(α)2 = −1, we get

f(x− y + α) + g(x+ y + α)− 2 f(x) f(y)

=
1
2
[
h1(x− y) + h1(x− y)−1

]
− 1

2
[
h1(x+ y) + h1(x+ y)−1

]
− 1

2
[
h1(x− α) + h1(x− α)−1

] [
h1(y − α) + h1(y − α)−1

]
=

1
2
[
h1(x)h1(y)−1 + h1(x)−1h1(y)

]
− 1

2
[
h1(x)h1(y) + h1(x)−1h1(y)−1

]
− 1

2
[
h1(x)h1(α)−1 + h1(x)−1h1(α)

] [
h1(y)h1(α)−1 + h1(y)−1h1(α)

]
= −1

2
[
h1(x)− h1(x)−1

] [
h1(y)− h1(y)−1

]
− 1

2h1(α)2
[
h1(x)− h1(x)−1

] [
h1(y)− h1(y)−1

]
= −1

2
[
h1(x)− h1(x)−1

] [
h1(y)− h1(y)−1

]
+

1
2
[
h1(x)− h1(x)−1

] [
h1(y)− h1(y)−1

]
= 0.

Hence (40) and (41) are the solution of (10) in the case f(0) = 0. This is exactly
what asserted in the solution (12).

Case 2. Next suppose f(0) 6= 0. Interchanging y with −y in (15), we obtain

(42) f(x+ y + α)− f(x− y + α) = 2f(x) f(−y)− 2f(0) f(x− y)
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for all x, y ∈ G. Adding (42) to (15), we see that

(43) f(0) [f(x+ y) + f(x− y)] = f(x) [f(y) + f(−y)]

for all x, y ∈ G. Define φ : G→ C by

(44) φ(x) =
f(x)
f(0)

, ∀x ∈ G.

Then (43) and (44) yield

(45) φ(x+ y) + φ(x− y) = φ(x) [φ(y) + φ(−y)]

for all x, y ∈ G. The general nontrivial solution of (45) is given by

(46) φ(x) =

{
a h2(x) + b h2(x)−1, if h2(x) 6≡ h2(x)−1

h2(x) [A(x) + 1] , if h2(x) ≡ h2(x)−1,

where h2 : G → C? is a homomorphism from the group G into the multiplicative
group of nonzero complex numbers C?, A : G → C is an additive homomorphism,
and a, b ∈ C are constants with a+ b = 1.

Note that φ = 0 is also a solution of (45). But in this case f = 0 and consequently
g = 0. This is the trivial solution of (10).

Using (44) in (46), we see that

(47) f(x) =

{
f(0)

[
a h2(x) + b h2(x)−1

]
, if h2(x) 6≡ h2(x)−1

f(0)h2(x) [A(x) + 1] , if h2(x) ≡ h2(x)−1,

where a and b are complex numbers with a+ b = 1.

Interchanging x with y in (15), we obtain

(48) f(y − x+ α)− f(x+ y + α) = 2f(y) f(x)− 2f(0) f(x+ y)

for all x, y ∈ G. Comparing (15) and (48), we conclude that

(49) f(x− y + α) = f(y − x+ α)

for all x, y ∈ G. Hence letting x = 0 in the above relation, we have

(50) f(α− y) = f(α+ y)

for all y ∈ G. Letting y = α in (50), we have

(51) f(0) = f(2α).

Now we consider two subcases.

Subcase 2.1. Suppose h2(x) ≡ h2(x)−1. From (47), we get

(52) f(x) = f(0)h2(x) [A(x) + 1] .

Substituting (52) in (50), we see that

f(0)h2(α)h2(y)[A(α)−A(y) + 1] = f(0)h2(α)h2(y)[A(α) +A(y) + 1].

Since h2 6= 0, from the above equality, we get

2A(y) = 0
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for all y ∈ G. Hence A = 0. Thus (52) reduces to

(53) f(x) = f(0)h2(x).

Using (53) in (14), we get

g(x) = 2 f(0) f(x− α)− f(x)(54)

= 2 f(0)2 h2(x)h2(α)− f(0)h2(x)

= f(0)h2(x) [2f(0)h2(α)− 1] .

Next we check (53) and (54) are solution of (10) for this sub case. First, we compute

f(x− y + α) + g(x+ y + α)− 2 f(x) f(y)

= f(0)h2(x)h2(y)−1 h2(α)

+ f(0)h2(x)h2(y)h2(α)
[
2 f(0)h2(α)− 1]− 2 f(0)2 h2(x)h2(y)

]
= f(0)h2(x)h2(y)h2(α)

+ f(0)h2(x)h2(y)h2(α) [2 f(0)h2(α)− 1]− 2 f(0)2 h2(x)h2(y)

= 2 f(0)2 h2(x)h2(y)h2(α)2 − 2 f(0)2 h2(x)h2(y)

= 2 f(0)2 h2(x)h2(y)
[
h2(α)2 − 1

]
.

Hence

(55) f(x− y + α) + g(x+ y + α)− 2 f(x) f(y) = 2 f(0)2 h2(x)h2(y)
[
h2(α)2 − 1

]
for all x, y ∈ G. Since f(0) = f(2α), using this with (53), we have

(56) f(0)h2(0) = f(0)h2(2α).

The relation (56) yields

(57) h2(α)2 = 1.

Hence using (57) in (55), we have

(58) f(x− y + α) + g(x+ y + α)− 2 f(x) f(y) = 0

Thus for this sub case

(59)

{
f(x) = f(0)h2(x),

g(x) = f(0)h2(x) [2f(0)h2(α)− 1]

is the solution of (10) with h(α) satisfies h2(α)2 = 1.

Subcase 2.2. Suppose h(x) 6= h(x)−1 for all x ∈ G. From (47), the form of f is
given by

(60) f(x) = f(0)
[
a h2(x) + b h2(x)−1

]
,

where a, b are complex numbers with a+ b = 1. From (50), we have

f(α− x) = f(α+ x) ∀x ∈ G.

Computing f(α− x), we get

f(α− x) = f(0)
[
a h2(α− x) + b h2(α− x)−1

]
(61)

= f(0)
[
a h2(α)h2(x)−1 + b h2(α)−1h2(x)

]
.
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Next, we compute f(α+ x) to get

f(α+ x) = f(0)
[
a h2(α+ x) + b h2(α+ x)−1

]
(62)

= f(0)
[
a h2(α)h2(x) + b h2(α)−1h2(x)−1

]
.

From (50), (61) and (62), we get

a h2(α)h2(x) + b h2(α)−1h2(x)−1 = a h2(α)h2(x)−1 + b h2(α)−1h2(x)

which yields [
a h2(α)− b h2(α)−1

] [
h2(x)− h2(x)−1

]
= 0

for all x ∈ G. Since h2(x) 6= h2(x)−1, we have

(63) a h2(α) = b h2(α)−1.

Letting (60) into (15) and simplifying resulting expression using (63) and then using
the fact that a+ b = 1, we get

f(x− y + α)− f(x+ y + α)

= f(0)
[
a h2(x)h2(y)−1h2(α) + b h2(x)−1 h2(y)h2(α)−1

]
− f(0)

[
a h2(x)h2(y)h2(α) + b h2(x)−1 h2(y)−1 h2(α)−1

]
= −f(0)

[
h2(y)− h2(y)−1

] [
a h2(x)h2(α)− b h2(x)−1h2(α)−1

]
= −f(0)

[
h2(y)− h2(y)−1

] [
a h2(x)h2(α)− a h2(x)−1h2(α)

]
= −f(0) a h2(α)

[
h2(x)− h2(x)−1

] [
h2(y)− h2(y)−1

]
.

Hence, we have
(64)
f(x− y+α)− f(x+ y+α) = −f(0) a h2(α)

[
h2(x)− h2(x)−1

] [
h2(y)− h2(y)−1

]
.

Similarly, next we compute 2f(x)f(y)− 2f(0)f(x+ y) to get

2f(x)f(y)− 2f(0)f(x+ y)

= 2f(0)2
[
ah2(x) + bh2(x)−1

] [
ah2(y) + bh2(y)−1

]
− 2f(0)2

[
ah2(x)h2(y) + bh2(x)−1h2(y)−1

]
= 2f(0)2[a2h2(x)h2(y) + abh2(x)−1h2(y)−1 + abh2(x)−1h2(y)

+ b2h2(x)−1h2(y)−1 − ah2(x)h2(y)− bh2(x)−1h2(y)−1]

= 2f(0)2[(a2 − a)h2(x)h2(y)

+ (b2 − b)h2(x)−1h2(y)−1 + abh2(x)h2(y)−1 + abh2(x)−1h2(y)]

= −2f(0)2[abh2(x)h2(y) + abh2(x)−1h2(y)−1

− abh2(x)h2(y)−1 − abh2(x)−1h2(y)]

= −2f(0)2ab
[
h2(x)− h2(x)−1

] [
h2(y)− h2(y)−1

]
.

Thus, we have

(65) 2f(x)f(y)− 2f(0)f(x+ y) = −2f(0)2ab
[
h2(x)− h2(x)−1

][
h2(y)− h2(y)−1

]
.

Hence, from (64) and (65), we see that

f(x− y + α)− f(x+ y + α) = 2f(x)f(y)− 2f(0)f(x+ y)
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implies

(66) f(0) a h2(α) = 2 f(0)2 ab.

Hence

(67) h2(α) = 2 f(0) b.

Since by (63), a h2(α) = b h2(α)−1, (67) yields

a h2(α) = 2 f(0) ab

which is
b h2(α)−1 = 2 f(0) a b.

Hence

(68) h2(α)−1 = 2 f(0) a.

From (67) and (68), we obtain

(69) f(0)2 =
1

4ab
.

Using (69) in (66), we see that

(70) f(0) a h2(α) =
1
2
.

From (63), (70) and (60), we have

(71) f(x) =
1

2 b
[
a h2(x) + b h2(x)−1

]
h2(α).

Using (14), we get

g(x) = 2 f(0) f(x− α)− f(x)

= 2 f(0)2
[
a h2(x)h2(α)−1 + b h2(x)−1 h2(α)

]
− f(0)

[
a h2(x) + b h2(x)−1

]
=

2
4ab

[
a h2(x)h2(α)−1 + b h2(x)−1 h2(α)

]
− a h2(α)

2ab
[
a h2(x) + b h2(x)−1

]
=

1
2ab

[
a h(x)h(α)−1 + b h2(x)−1 h2(α)− a2h2(x)h2(α)− abh2(x)−1h2(α)

]
=

1
2ab

[
a h2(x)

{
h2(α)−1 − a h2(α)

}
+ b h2(x)−1 {h2(α)− a h2(α)}

]
=

1
2ab

[
a h2(x)

{
h2(α)−1 − b h2(α)−1

}
+ b h2(x)−1 {h2(α)− a h2(α)}

]
=

1
2ab

[
a2 h2(x)h2(α)−1 + b2 h2(x)−1h2(α)

]
.

The function f(x) in (71) can be rewritten as

f(x) =
1
2b
[
a h2(x) + b h2(x)−1

]
h2(α)

=
1

2ab
[
a2 h2(x)h2(α) + ab h2(x)−1 h2(α)

]
=

1
2ab

[
ab h2(x)h2(α)−1 + ab h2(x)−1 h2(α)

]
=

1
2
[
h2(x)h2(α)−1 + h2(x)−1 h2(α)

]
.
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Thus the general solution for this case is given by

(72) f(x) =
1
2
[
h2(x)h2(α)−1 + h2(x)−1h2(α)

]
(73) g(x) =

1
2

[
a

b
h2(x)h2(α)−1 +

b

a
h2(x)−1h2(α)

]
where a, b are complex numbers satisfying a + b = 1 and ah2(α) = bh2(α)−1, and
f(0)2 = 1

4ab .

Now we verify that the solution (f, g) given in (72) and (73) satisfy

2 f(x) f(y) = f(x− y + α) + g(x+ y + α).

For this let us compute

4 f(x) f(y)

= [h2(x− α) + h2(α− x)] [h2(y − α) + h2(α− y)]

=
[
h2(x)h2(α)−1 + h2(α)h2(x)−1

] [
h2(y)h2(α)−1 + h2(α)h2(y)−1

]
=
[
h2(x)h2(y)h2(α)−2 + h2(x)h2(y)−1 + h2(x)−1h2(y) + h2(x)−1h2(y)−1h2(α)2

]
=
a

b
h2(x)h2(y) + h2(x)h2(y)−1 + h2(x)−1 h2(y) +

b

a
h2(x)−1 h2(y)−1

= h2(y)
{a
b
h2(x) + h2(x)−1

}
+ h2(y)−1

{
h2(x) +

b

a
h2(x)−1

}
=

1
b
h2(y)

{
a h2(x) + b h2(x)−1

}
+

1
a
h2(y)−1

{
a h2(x) + b h2(x)−1

}
=

1
ab

[
a h2(x) + b h2(x)−1

] [
a h2(y) + b h2(y)−1

]
.

Thus we have

(74) 2 f(x) f(y) =
1

2ab
[
a h2(x) + b h2(x)−1

] [
a h2(y) + b h2(y)−1

]
for all x, y ∈ G. Next we compute f(x− y + α) + g(x+ y + α) to get

f(x− y + α) + g(x+ y + α)

=
1
2
[
h2(x)h2(y)−1 h2(α)h2(α)−1 + h2(x)−1 h2(y)h2(α)−1 h2(α)

]
+

1
2

[
a

b
h2(x)h2(y)h2(α)h2(α)−1 +

b

a
h2(x)−1 h2(y)−1 h2(α)−1 h2(α)

]
=

1
2

[
h2(x)h2(y)−1 + h2(x)−1 h2(y) +

a

b
h2(x)h2(y) +

b

a
h2(x)−1 h2(y)−1

]
=

1
2

[
h2(x)

{
h2(y)−1 +

a

b
h2(y)

}
+ h2(x)−1

{
h2(y) +

b

a
h2(y)−1

}]
=

1
2

[
1
b
h2(x)

{
b h2(y)−1 + a h2(y)

}
+

1
a
h2(x)−1

{
a h2(y) + b h2(y)−1

}]
=

1
2ab

[
a h2(x) + b h2(x)−1

] [
a h2(y) + b h2(y)−1

]
.
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Therefore

(75) f(x− y+α) + g(x+ y+α) =
1

2ab
[
ah2(x) + bh2(x)−1

] [
ah2(y) + bh2(y)−1

]
From (74) and (75), we see that (f, g) given in (72) and (73) is a solution of the
equation (10) for this sub case.

Since there are no more cases left, this complete the proof of the theorem. �

4. An open problem

Let G be an abelian group and let 0 denote the identity element of G. Let
σ : G → G be an involution, that is σ(xy) = σ(y) + σ(x) and σ(σ(x)) = x for all
x, y ∈ G. Find all functions f, g : G→ C satisfying

f(x+ σ(y) + α) + g(x+ y + α) = 2f(x) f(y)

for all x, y ∈ G.
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