A FUNCTIONAL EQUATION WITH RESTRICTED ARGUMENT RELATED TO COSINE FUNCTION

PRASANNA SAHOO

Department of Mathematics, University of Louisville, Louisville, Kentucky 40292 USA

Received August, 4, 2014, Accepted August, 24, 2017

2000 Mathematics Subject Classification. Primary 39B52

E-mail address: sahoo@louisville.edu

ABSTRACT. Let G be an abelian group, \mathbb{C} be the field of complex numbers, and $0 \neq \alpha \in G$ be a fixed element. In this paper, we determine the general solution

 $f,g:G\to\mathbb{C}$ of the functional equation $f(x-y+\alpha)+g(x+y+\alpha)=2$ f(x) f(y) for all $x,y\in G.$

Keywords and phrases. Abelian group, cosine functional equation, functional equation with restricted arguments, homomorphism.

1. INTRODUCTION

Let \mathbb{R} be the field of real numbers and \mathbb{C} be the field of complex numbers. Let G be an abelian group and α be a fixed nonzero element of G. Let $0 \in G$ be the identity element of G. A mapping h from the group G into the multiplicative group of nonzero complex numbers is said to be a multiplicative homomorphism if and only if h(x + y) = h(x)h(y) for all $x, y \in G$. It is known that if h(0) = 0, then h(x) = 0 for all $x \in G$. It is easy to see that if $h \neq 0$, then $h(-x) = h(x)^{-1}$ for all $x \in G$. Similarly, a mapping a from the group G into the additive group of complex numbers is said to be an additive homomorphism if and only if a(x+y) = a(x)+a(y) for all $x, y \in G$.

In 1910, Van Vleck [6] (see also [10] and [5]) proved the following result: The continuous function $f : \mathbb{R} \to \mathbb{R}$ satisfies the functional equation

(1)
$$f(x-y+\alpha) - f(x+y+\alpha) = 2f(x)f(y)$$

for all $x, y \in \mathbb{R}$, if and only if f is given by either $f \equiv 0$ or

$$f(x) = \cos\left(\frac{\pi}{2\alpha}(x-\alpha)\right), \quad \forall x \in \mathbb{R}.$$

In [2], Kannappan considered the functional equation

(2)
$$f(x-y+\alpha) + f(x+y+\alpha) = 2f(x)f(y),$$

and proved the following result: The general solution $f : \mathbb{R} \to \mathbb{C}$ of the functional equation (2) is either $f \equiv 0$ or $f(x) = g(x - \alpha)$, where g is an arbitrary solution of the cosine functional equation g(x + y) + g(x - y) = 2g(x)g(y) for all $x, y \in \mathbb{R}$ with period 2α .

Other similar functional equations solved in literature are

(3)
$$f(x+y+\alpha) f(x-y+\alpha) = f(x)^2 - f(y)^2$$

and

(4)
$$f(x+y+\alpha) f(x-y+\alpha) = f(x)^2 + f(y)^2 - 1$$

for all $x, y \in \mathbb{R}$. The functional equation (3) was considered by Kannappan in [3] while (4) was considered by Etigson in [1]. These functional equations are examples of functional equations with restricted argument where at least one of the variables is restricted to a certain discrete subset of the domain of the other variable(s). In particular, the subset may consist of a single element.

The goal of this paper is to determine the general solutions $f,g:G\to \mathbb{C}$ of the functional equation

(5)
$$f(x-y+\alpha) + g(x+y+\alpha) = 2f(x)f(y)$$

for all $x, y \in G$. The functional equation (1) is a special case of the above functional equation (5) where g = -f and $G = \mathbb{R}$. If $G = \mathbb{R}$ and g = f, then the equation (5) reduces to the functional equation (2) studied by Kannappan in [2].

2. Preliminary results

The following results can be found in [5] and will be instrumental in proving the main result of this paper.

Lemma 1. The function $f: G \to \mathbb{C}$ satisfies the functional equation

(6)
$$f(x+y) + f(x-y) = f(x) [f(y) + f(-y)]$$

for all $x, y \in G$ if and only if

$$(7) f(x) = c$$

or

(8)
$$f(x) = a \psi(x) + b \psi(x)^{-1}, \quad \psi(x) \neq \psi(x)^{-1}$$

or

(9)
$$f(x) = [A(x) + 1] \psi(x), \qquad \psi(x) = \psi(x)^{-1}$$

where $A: G \to \mathbb{C}$ is a additive homomorphism from G into the additive group of complex numbers, the function $\psi: G \to \mathbb{C}^*$ is a multiplicative homomorphism from G into the multiplicative group of nonzero complex numbers, and a, b, c are complex constants satisfying c(c-1) = 0 and a + b = 1.

3. MAIN RESULT

Now we are ready to prove our main result.

Theorem 1. Let G be an abelian group and $0 \neq \alpha \in G$ be a fixed element. Suppose the functions $f, g: G \to \mathbb{C}$ satisfy the functional equation

(10)
$$f(x - y + \alpha) + g(x + y + \alpha) = 2 f(x) f(y)$$

for all $x, y \in G$. Then there exist multiplicative homomorphisms $h_1, h_2 : G \to \mathbb{C}^*$ such that the solutions f and g are given by

(11)
$$f(x) = c, \quad g(x) = c(2c-1)$$

(12)
$$f(x) = \frac{h_1(x) - h_1(x)^{-1}}{2h_1(\alpha)}, \qquad g(x) = -\frac{h_1(x) - h_1(x)^{-1}}{2h_1(\alpha)},$$

(13)
$$\begin{cases} f(x) = \begin{cases} f(0) h_2(x) & \text{if } h_2(x) = h_2(x)^{-1} \\ \frac{1}{2} [h_2(x-\alpha) + h_2(x-\alpha)^{-1}] & \text{if } h_2(x) \neq h_2(x)^{-1}, \end{cases}$$

$$g(x) = \begin{cases} f(0) [2f(0)h_2(\alpha)^{-1} - 1]h_2(x) & \text{if } h_2(x) = h_2(x)^{-1} \\ \frac{1}{2} [\frac{a}{b}h_2(x-\alpha) + \frac{b}{a}h_2(x-\alpha)^{-1}], & \text{if } h_2(x) \neq h_2(x)^{-1}, \end{cases}$$

where $h_1(\alpha) = -h_1(-\alpha)$, and $\gamma, a, b \in \mathbb{C}$ are arbitrary constants satisfying a+b=1 together with $ah_2(\alpha) = bh_2(-\alpha) = 2abf(0)$.

Moreover, if f(0) = 0, then f and g are periodic functions of period 4α .

Proof. If f is a constant function, say f(x) = c for all $x \in G$, then using the functional equation (10) we have g(x) = c(2c-1) for any arbitrary constant $c \in \mathbb{C}$. This yields the asserted solution (11). Hence from now on we assume f(x) is a non-constant function.

Letting y = 0 in (10), we have

$$f(x + \alpha) + g(x + \alpha) = 2f(x)f(0).$$

Hence

(14)
$$g(x) = 2f(x - \alpha) f(0) - f(x)$$

for all $x \in G$. Using (14) in (10), we obtain

(15)
$$f(x-y+\alpha) - f(x+y+\alpha) = 2f(x)f(y) - 2f(0)f(x+y)$$

for all $x, y \in G$.

Case 1. Suppose
$$f(0) = 0$$
. Then (15) reduces to

(16)
$$f(x - y + \alpha) - f(x + y + \alpha) = 2f(x)f(y)$$

for all $x, y \in G$.

Replacing y with -y in (16), we get

(17)
$$f(x+y+\alpha) - f(x-y+\alpha) = 2f(x) f(-y)$$

for all $x, y \in G$. Adding (16) and (17), we have

(18)
$$f(x) [f(y) + f(-y)] = 0$$

for all $x, y \in G$. Since f is non-constant, from (18), we get

(19)
$$f(-y) = -f(y), \quad \forall y \in G.$$

That is f is an odd function. Interchanging x with y in (16), we see that

(20)
$$f(y - x + \alpha) - f(y + x + \alpha) = 2f(y)f(x)$$

for all $x, y \in G$. Comparing (16) and (20), we obtain

(21) $f(x - y + \alpha) = f(y - x + \alpha)$

Therefore, using (19) and (21), we see that

$$f(x-y+\alpha)=f(y-x+\alpha)=f(-(x-y-\alpha))=-f(x-y-\alpha)$$

Hence

(22) $f(x-y+\alpha) = -f(x-y-\alpha)$

for all
$$x, y \in G$$
. Letting $y = 0$ in (22), we have

(23)
$$f(x+\alpha) = -f(x-\alpha).$$

Hence, replacing x by $x + \alpha$ in (23), we obtain

(24)
$$f(x+2\alpha) = -f(x)$$

and

(25)
$$f(x+3\alpha) = -f(x+\alpha).$$

Using (23) and (25), we have

(26)
$$f(x+4\alpha) = f(x)$$

for all $x \in G$. From (26) and (14), we see that

(27)
$$g(x+4\alpha) = -f(x+4\alpha) = -f(x) = g(x)$$

for all $x \in G$. This proves that f and g are periodic functions of period 4α .

Replacing x with $x + \alpha$ and y with $y + \alpha$ in (16), we obtain

(28)
$$f(x-y+\alpha) - f(x+y+3\alpha) = 2f(x+\alpha)f(y+\alpha)$$

for all $x, y \in G$. Using (25) in (28), we see that

(29)
$$f(x-y+\alpha) + f(x+y+\alpha) = 2f(x+\alpha)f(y+\alpha)$$

for all $x, y \in G$. Defining $\ell : G \to \mathbb{C}$ by

(30)
$$\ell(x) = f(x+\alpha) \qquad \forall x \in G$$

and using it in (29), we obtain

(31)
$$\ell(x+y) + \ell(x-y) = 2\,\ell(x)\,\ell(y)$$

for all $x, y \in G$. The general solution of (31) can be obtained from Lemma 1 as

(32)
$$\ell(x) = \frac{1}{2} \left[h_1(x) + h_1(x)^{-1} \right],$$

where $h_1: G \to \mathbb{C}^*$ is a homomorphism. Hence from (30) and (32), we get

(33)
$$f(x) = \frac{1}{2} \left[h_1(x-\alpha) + h_1(x-\alpha)^{-1} \right].$$

Using (14), we have

(34)
$$g(x) = -\frac{1}{2} \left[h_1(x-\alpha) + h_1(x-\alpha)^{-1} \right]$$

Since $h_1 \neq 0$, $h_1(-x) = h_1(x)^{-1}$ for all $x \in G$, and hence (33) simplifies to

(35)
$$f(x) = \frac{1}{2} \left[h_1(x)h_1(\alpha)^{-1} + h_1(x)^{-1}h_1(\alpha) \right].$$

Hence

(36)
$$f(-x) = \frac{1}{2} \left[h_1(x)^{-1} h_1(\alpha)^{-1} + h_1(x) h_1(\alpha) \right].$$

Since f is an odd function on G, using (35) and (36), we get

(37)
$$\left[h_1(x) + h_1(x)^{-1}\right] \left[h_1(\alpha) + h_1(\alpha)^{-1}\right] = 0$$

for all $x \in G$. Since $h \neq 0$, we have

(38)
$$h_1(\alpha) + h_1(\alpha)^{-1} = 0$$

which implies

(39)
$$h_1(\alpha)^2 = -1$$

Using (39) in (33), we have

(40)
$$f(x) = \frac{1}{2h_1(\alpha)} \left[h_1(x) - h_1(x)^{-1} \right].$$

From (39) and (34), we get

(41)
$$g(x) = -\frac{1}{2h_1(\alpha)} \left[h_1(x) - h_1(x)^{-1} \right].$$

Next, we verify that (40) and (41) are the solution of the functional equation (10) in the case f(0) = 0. Inserting (40) and (41) into (10) and using the fact that $h_1(\alpha)^2 = -1$, we get

$$\begin{split} f(x-y+\alpha) + g(x+y+\alpha) &- 2 f(x) f(y) \\ &= \frac{1}{2} \left[h_1(x-y) + h_1(x-y)^{-1} \right] - \frac{1}{2} \left[h_1(x+y) + h_1(x+y)^{-1} \right] \\ &- \frac{1}{2} \left[h_1(x-\alpha) + h_1(x-\alpha)^{-1} \right] \left[h_1(y-\alpha) + h_1(y-\alpha)^{-1} \right] \\ &= \frac{1}{2} \left[h_1(x)h_1(y)^{-1} + h_1(x)^{-1}h_1(y) \right] - \frac{1}{2} \left[h_1(x)h_1(y) + h_1(x)^{-1}h_1(y)^{-1} \right] \\ &- \frac{1}{2} \left[h_1(x)h_1(\alpha)^{-1} + h_1(x)^{-1}h_1(\alpha) \right] \left[h_1(y)h_1(\alpha)^{-1} + h_1(y)^{-1}h_1(\alpha) \right] \\ &= -\frac{1}{2} \left[h_1(x) - h_1(x)^{-1} \right] \left[h_1(y) - h_1(y)^{-1} \right] \\ &- \frac{1}{2h_1(\alpha)^2} \left[h_1(x) - h_1(x)^{-1} \right] \left[h_1(y) - h_1(y)^{-1} \right] \\ &= -\frac{1}{2} \left[h_1(x) - h_1(x)^{-1} \right] \left[h_1(y) - h_1(y)^{-1} \right] \\ &+ \frac{1}{2} \left[h_1(x) - h_1(x)^{-1} \right] \left[h_1(y) - h_1(y)^{-1} \right] \\ &= 0. \end{split}$$

Hence (40) and (41) are the solution of (10) in the case f(0) = 0. This is exactly what asserted in the solution (12).

Case 2. Next suppose $f(0) \neq 0$. Interchanging y with -y in (15), we obtain (42) $f(x+y+\alpha) - f(x-y+\alpha) = 2f(x)f(-y) - 2f(0)f(x-y)$ for all $x, y \in G$. Adding (42) to (15), we see that

(43)
$$f(0) [f(x+y) + f(x-y)] = f(x) [f(y) + f(-y)]$$

for all $x, y \in G$. Define $\phi : G \to \mathbb{C}$ by

(44)
$$\phi(x) = \frac{f(x)}{f(0)}, \quad \forall x \in G.$$

Then (43) and (44) yield

(45)
$$\phi(x+y) + \phi(x-y) = \phi(x) \left[\phi(y) + \phi(-y)\right]$$

for all $x, y \in G$. The general nontrivial solution of (45) is given by

(46)
$$\phi(x) = \begin{cases} a h_2(x) + b h_2(x)^{-1}, & \text{if } h_2(x) \neq h_2(x)^{-1} \\ h_2(x) [A(x) + 1], & \text{if } h_2(x) \equiv h_2(x)^{-1} \end{cases}$$

where $h_2: G \to \mathbb{C}^*$ is a homomorphism from the group G into the multiplicative group of nonzero complex numbers \mathbb{C}^* , $A: G \to \mathbb{C}$ is an additive homomorphism, and $a, b \in \mathbb{C}$ are constants with a + b = 1.

Note that $\phi = 0$ is also a solution of (45). But in this case f = 0 and consequently g = 0. This is the trivial solution of (10).

Using (44) in (46), we see that

(47)
$$f(x) = \begin{cases} f(0) \left[a h_2(x) + b h_2(x)^{-1} \right], & \text{if } h_2(x) \neq h_2(x)^{-1} \\ f(0) h_2(x) \left[A(x) + 1 \right], & \text{if } h_2(x) \equiv h_2(x)^{-1}, \end{cases}$$

where a and b are complex numbers with a + b = 1.

Interchanging x with y in (15), we obtain

(48)
$$f(y - x + \alpha) - f(x + y + \alpha) = 2f(y)f(x) - 2f(0)f(x + y)$$

for all $x, y \in G$. Comparing (15) and (48), we conclude that

(49)
$$f(x-y+\alpha) = f(y-x+\alpha)$$

for all $x, y \in G$. Hence letting x = 0 in the above relation, we have

(50)
$$f(\alpha - y) = f(\alpha + y)$$

for all $y \in G$. Letting $y = \alpha$ in (50), we have

(51)
$$f(0) = f(2\alpha).$$

Now we consider two subcases.

Subcase 2.1. Suppose $h_2(x) \equiv h_2(x)^{-1}$. From (47), we get

(52)
$$f(x) = f(0) h_2(x) [A(x) + 1]$$

Substituting (52) in (50), we see that

$$f(0) h_2(\alpha) h_2(y)[A(\alpha) - A(y) + 1] = f(0) h_2(\alpha) h_2(y)[A(\alpha) + A(y) + 1].$$

Since $h_2 \neq 0$, from the above equality, we get

$$2A(y) = 0$$

Using (53) in (14), we get

(54)
$$g(x) = 2 f(0) f(x - \alpha) - f(x)$$
$$= 2 f(0)^{2} h_{2}(x) h_{2}(\alpha) - f(0) h_{2}(x)$$
$$= f(0) h_{2}(x) [2f(0) h_{2}(\alpha) - 1].$$

Next we check (53) and (54) are solution of (10) for this sub case. First, we compute

$$\begin{split} f(x - y + \alpha) + g(x + y + \alpha) &- 2 f(x) f(y) \\ &= f(0) h_2(x) h_2(y)^{-1} h_2(\alpha) \\ &+ f(0) h_2(x) h_2(y) h_2(\alpha) \left[2 f(0) h_2(\alpha) - 1 \right] - 2 f(0)^2 h_2(x) h_2(y) \right] \\ &= f(0) h_2(x) h_2(y) h_2(\alpha) \\ &+ f(0) h_2(x) h_2(y) h_2(\alpha) \left[2 f(0) h_2(\alpha) - 1 \right] - 2 f(0)^2 h_2(x) h_2(y) \\ &= 2 f(0)^2 h_2(x) h_2(y) h_2(\alpha)^2 - 2 f(0)^2 h_2(x) h_2(y) \\ &= 2 f(0)^2 h_2(x) h_2(y) \left[h_2(\alpha)^2 - 1 \right]. \end{split}$$

Hence

(55)
$$f(x - y + \alpha) + g(x + y + \alpha) - 2 f(x) f(y) = 2 f(0)^2 h_2(x) h_2(y) [h_2(\alpha)^2 - 1]$$

for all $x, y \in G$. Since $f(0) = f(2\alpha)$, using this with (53), we have
(56) $f(0) h_2(0) = f(0) h_2(2\alpha)$.

The relation (56) yields

(57)
$$h_2(\alpha)^2 = 1.$$

Hence using (57) in (55), we have

(58)
$$f(x - y + \alpha) + g(x + y + \alpha) - 2f(x)f(y) = 0$$

Thus for this sub case

(59)
$$\begin{cases} f(x) = f(0) h_2(x), \\ g(x) = f(0) h_2(x) [2f(0) h_2(\alpha) - 1] \end{cases}$$

is the solution of (10) with $h(\alpha)$ satisfies $h_2(\alpha)^2 = 1$.

Subcase 2.2. Suppose $h(x) \neq h(x)^{-1}$ for all $x \in G$. From (47), the form of f is given by

(60)
$$f(x) = f(0) \left[a h_2(x) + b h_2(x)^{-1} \right],$$

where a, b are complex numbers with a + b = 1. From (50), we have

$$f(\alpha - x) = f(\alpha + x) \qquad \forall x \in G.$$

Computing $f(\alpha - x)$, we get

(61)
$$f(\alpha - x) = f(0) \left[a h_2(\alpha - x) + b h_2(\alpha - x)^{-1} \right]$$
$$= f(0) \left[a h_2(\alpha) h_2(x)^{-1} + b h_2(\alpha)^{-1} h_2(x) \right].$$

Next, we compute $f(\alpha + x)$ to get

(62)
$$f(\alpha + x) = f(0) \left[a h_2(\alpha + x) + b h_2(\alpha + x)^{-1} \right]$$
$$= f(0) \left[a h_2(\alpha) h_2(x) + b h_2(\alpha)^{-1} h_2(x)^{-1} \right].$$

From (50), (61) and (62), we get

$$a h_2(\alpha) h_2(x) + b h_2(\alpha)^{-1} h_2(x)^{-1} = a h_2(\alpha) h_2(x)^{-1} + b h_2(\alpha)^{-1} h_2(x)$$

which yields

$$\left[a h_2(\alpha) - b h_2(\alpha)^{-1}\right] \left[h_2(x) - h_2(x)^{-1}\right] = 0$$

for all $x \in G$. Since $h_2(x) \neq h_2(x)^{-1}$, we have

(63)
$$a h_2(\alpha) = b h_2(\alpha)^{-1}.$$

Letting (60) into (15) and simplifying resulting expression using (63) and then using the fact that a + b = 1, we get

$$\begin{aligned} f(x - y + \alpha) &- f(x + y + \alpha) \\ &= f(0) \left[a h_2(x) h_2(y)^{-1} h_2(\alpha) + b h_2(x)^{-1} h_2(y) h_2(\alpha)^{-1} \right] \\ &- f(0) \left[a h_2(x) h_2(y) h_2(\alpha) + b h_2(x)^{-1} h_2(y)^{-1} h_2(\alpha)^{-1} \right] \\ &= -f(0) \left[h_2(y) - h_2(y)^{-1} \right] \left[a h_2(x) h_2(\alpha) - b h_2(x)^{-1} h_2(\alpha)^{-1} \right] \\ &= -f(0) \left[h_2(y) - h_2(y)^{-1} \right] \left[a h_2(x) h_2(\alpha) - a h_2(x)^{-1} h_2(\alpha) \right] \\ &= -f(0) a h_2(\alpha) \left[h_2(x) - h_2(x)^{-1} \right] \left[h_2(y) - h_2(y)^{-1} \right]. \end{aligned}$$

Hence, we have

(64)

$$f(x - y + \alpha) - f(x + y + \alpha) = -f(0) a h_2(\alpha) \left[h_2(x) - h_2(x)^{-1}\right] \left[h_2(y) - h_2(y)^{-1}\right]$$

Similarly, next we compute $2f(x)f(y) - 2f(0)f(x + y)$ to get

$$\begin{split} & 2f(x)f(y)-2f(0)f(x+y) \\ &= 2f(0)^2 \left[ah_2(x)+bh_2(x)^{-1}\right] \left[ah_2(y)+bh_2(y)^{-1}\right] \\ &\quad -2f(0)^2 \left[ah_2(x)h_2(y)+bh_2(x)^{-1}h_2(y)^{-1}\right] \\ &= 2f(0)^2 [a^2h_2(x)h_2(y)+abh_2(x)^{-1}h_2(y)^{-1}+abh_2(x)^{-1}h_2(y) \\ &\quad +b^2h_2(x)^{-1}h_2(y)^{-1}-ah_2(x)h_2(y)-bh_2(x)^{-1}h_2(y)^{-1}\right] \\ &= 2f(0)^2 [(a^2-a)h_2(x)h_2(y) \\ &\quad +(b^2-b)h_2(x)^{-1}h_2(y)^{-1}+abh_2(x)h_2(y)^{-1}+abh_2(x)^{-1}h_2(y)] \\ &= -2f(0)^2 [abh_2(x)h_2(y)+abh_2(x)^{-1}h_2(y)^{-1} \\ &\quad -abh_2(x)h_2(y)^{-1}-abh_2(x)^{-1}h_2(y)] \\ &= -2f(0)^2 ab \left[h_2(x)-h_2(x)^{-1}\right] \left[h_2(y)-h_2(y)^{-1}\right]. \end{split}$$

Thus, we have

(65) $2f(x)f(y) - 2f(0)f(x+y) = -2f(0)^2ab[h_2(x) - h_2(x)^{-1}][h_2(y) - h_2(y)^{-1}].$ Hence, from (64) and (65), we see that

$$f(x - y + \alpha) - f(x + y + \alpha) = 2f(x)f(y) - 2f(0)f(x + y)$$

implies

(66) $f(0) a h_2(\alpha) = 2 f(0)^2 ab.$ Hence (67) $h_2(\alpha) = 2 f(0) b.$ Since by (63), $a h_2(\alpha) = b h_2(\alpha)^{-1}$, (67) yields $a h_2(\alpha) = 2 f(0) ab$ which is $b h_2(\alpha)^{-1} = 2 f(0) a b.$ Hence (68) $h_2(\alpha)^{-1} = 2 f(0) a.$ From (67) and (68), we obtain (69) $f(0)^2 = \frac{1}{4ab}.$

Using (69) in (66), we see that

(70)
$$f(0) a h_2(\alpha) = \frac{1}{2}$$

From (63), (70) and (60), we have

(71)
$$f(x) = \frac{1}{2b} \left[a h_2(x) + b h_2(x)^{-1} \right] h_2(\alpha).$$

Using (14), we get

$$\begin{split} g(x) &= 2 \, f(0) \, f(x-\alpha) - f(x) \\ &= 2 \, f(0)^2 \, \left[a \, h_2(x) \, h_2(\alpha)^{-1} + b \, h_2(x)^{-1} \, h_2(\alpha) \right] - f(0) \, \left[a \, h_2(x) + b \, h_2(x)^{-1} \right] \\ &= \frac{2}{4ab} \left[a \, h_2(x) \, h_2(\alpha)^{-1} + b \, h_2(x)^{-1} \, h_2(\alpha) \right] - \frac{a \, h_2(\alpha)}{2ab} \left[a \, h_2(x) + b \, h_2(x)^{-1} \right] \\ &= \frac{1}{2ab} \left[a \, h(x) \, h(\alpha)^{-1} + b \, h_2(x)^{-1} \, h_2(\alpha) - a^2 h_2(x) \, h_2(\alpha) - a b h_2(x)^{-1} h_2(\alpha) \right] \\ &= \frac{1}{2ab} \left[a \, h_2(x) \left\{ h_2(\alpha)^{-1} - a \, h_2(\alpha) \right\} + b \, h_2(x)^{-1} \left\{ h_2(\alpha) - a \, h_2(\alpha) \right\} \right] \\ &= \frac{1}{2ab} \left[a \, h_2(x) \left\{ h_2(\alpha)^{-1} - b \, h_2(\alpha)^{-1} \right\} + b \, h_2(x)^{-1} \left\{ h_2(\alpha) - a \, h_2(\alpha) \right\} \right] \\ &= \frac{1}{2ab} \left[a^2 \, h_2(x) \, h_2(\alpha)^{-1} + b^2 \, h_2(x)^{-1} h_2(\alpha) \right]. \end{split}$$

The function f(x) in (71) can be rewritten as

$$f(x) = \frac{1}{2b} \left[a h_2(x) + b h_2(x)^{-1} \right] h_2(\alpha)$$

= $\frac{1}{2ab} \left[a^2 h_2(x) h_2(\alpha) + ab h_2(x)^{-1} h_2(\alpha) \right]$
= $\frac{1}{2ab} \left[ab h_2(x) h_2(\alpha)^{-1} + ab h_2(x)^{-1} h_2(\alpha) \right]$
= $\frac{1}{2} \left[h_2(x) h_2(\alpha)^{-1} + h_2(x)^{-1} h_2(\alpha) \right].$

Thus the general solution for this case is given by

(72)
$$f(x) = \frac{1}{2} \left[h_2(x)h_2(\alpha)^{-1} + h_2(x)^{-1}h_2(\alpha) \right]$$

(73)
$$g(x) = \frac{1}{2} \left[\frac{a}{b} h_2(x) h_2(\alpha)^{-1} + \frac{b}{a} h_2(x)^{-1} h_2(\alpha) \right]$$

where a, b are complex numbers satisfying a + b = 1 and $ah_2(\alpha) = bh_2(\alpha)^{-1}$, and $f(0)^2 = \frac{1}{4ab}$.

Now we verify that the solution (f,g) given in (72) and (73) satisfy

$$2f(x)f(y) = f(x - y + \alpha) + g(x + y + \alpha).$$

For this let us compute

$$\begin{aligned} 4 f(x) f(y) &= [h_2(x-\alpha) + h_2(\alpha-x)] [h_2(y-\alpha) + h_2(\alpha-y)] \\ &= [h_2(x)h_2(\alpha)^{-1} + h_2(\alpha)h_2(x)^{-1}] [h_2(y)h_2(\alpha)^{-1} + h_2(\alpha)h_2(y)^{-1}] \\ &= [h_2(x)h_2(y)h_2(\alpha)^{-2} + h_2(x)h_2(y)^{-1} + h_2(x)^{-1}h_2(y) + h_2(x)^{-1}h_2(y)^{-1}h_2(\alpha)^2] \\ &= \frac{a}{b} h_2(x) h_2(y) + h_2(x) h_2(y)^{-1} + h_2(x)^{-1} h_2(y) + \frac{b}{a} h_2(x)^{-1} h_2(y)^{-1} \\ &= h_2(y) \left\{ \frac{a}{b} h_2(x) + h_2(x)^{-1} \right\} + h_2(y)^{-1} \left\{ h_2(x) + \frac{b}{a} h_2(x)^{-1} \right\} \\ &= \frac{1}{b} h_2(y) \left\{ a h_2(x) + b h_2(x)^{-1} \right\} + \frac{1}{a} h_2(y)^{-1} \left\{ a h_2(x) + b h_2(x)^{-1} \right\} \\ &= \frac{1}{ab} \left[a h_2(x) + b h_2(x)^{-1} \right] \left[a h_2(y) + b h_2(y)^{-1} \right]. \end{aligned}$$

Thus we have

(74)
$$2f(x)f(y) = \frac{1}{2ab} \left[a h_2(x) + b h_2(x)^{-1} \right] \left[a h_2(y) + b h_2(y)^{-1} \right]$$

for all $x, y \in G$. Next we compute $f(x - y + \alpha) + g(x + y + \alpha)$ to get

$$\begin{split} f(x - y + \alpha) + g(x + y + \alpha) \\ &= \frac{1}{2} \left[h_2(x) h_2(y)^{-1} h_2(\alpha) h_2(\alpha)^{-1} + h_2(x)^{-1} h_2(y) h_2(\alpha)^{-1} h_2(\alpha) \right] \\ &\quad + \frac{1}{2} \left[\frac{a}{b} h_2(x) h_2(y) h_2(\alpha) h_2(\alpha)^{-1} + \frac{b}{a} h_2(x)^{-1} h_2(y)^{-1} h_2(\alpha)^{-1} h_2(\alpha) \right] \\ &= \frac{1}{2} \left[h_2(x) h_2(y)^{-1} + h_2(x)^{-1} h_2(y) + \frac{a}{b} h_2(x) h_2(y) + \frac{b}{a} h_2(x)^{-1} h_2(y)^{-1} \right] \\ &= \frac{1}{2} \left[h_2(x) \left\{ h_2(y)^{-1} + \frac{a}{b} h_2(y) \right\} + h_2(x)^{-1} \left\{ h_2(y) + \frac{b}{a} h_2(y)^{-1} \right\} \right] \\ &= \frac{1}{2} \left[\frac{1}{b} h_2(x) \left\{ b h_2(y)^{-1} + a h_2(y) \right\} + \frac{1}{a} h_2(x)^{-1} \left\{ a h_2(y) + b h_2(y)^{-1} \right\} \right] \\ &= \frac{1}{2ab} \left[a h_2(x) + b h_2(x)^{-1} \right] \left[a h_2(y) + b h_2(y)^{-1} \right]. \end{split}$$

Therefore

(75)
$$f(x-y+\alpha) + g(x+y+\alpha) = \frac{1}{2ab} \left[ah_2(x) + bh_2(x)^{-1} \right] \left[ah_2(y) + bh_2(y)^{-1} \right]$$

From (74) and (75), we see that (f, g) given in (72) and (73) is a solution of the equation (10) for this sub case.

Since there are no more cases left, this complete the proof of the theorem. \Box

4. An open problem

Let G be an abelian group and let 0 denote the identity element of G. Let $\sigma: G \to G$ be an involution, that is $\sigma(xy) = \sigma(y) + \sigma(x)$ and $\sigma(\sigma(x)) = x$ for all $x, y \in G$. Find all functions $f, g: G \to \mathbb{C}$ satisfying

$$f(x + \sigma(y) + \alpha) + g(x + y + \alpha) = 2f(x)f(y)$$

for all $x, y \in G$.

References

- L. B. Etigson, A cosine functional equation with restricted arguments. Canad. Math. Bull. (4) 17 (1974), 505-509.
- [2] Pl. Kannappan, A functional equation for the cosine, Canad. Math. Bull. 2 (1968), 495-498.
- [3] Pl. Kannappan, On sine functional equation, Stud. Sci. Math. Hung. 4 (1969), 331-333.
- [4] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
- [5] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, 2011.
- [6] E. B. Van Vleck, A functional equation for the sine, Ann. Math. 7 (1910), 161-165.
- [10] E. B. Van Vleck, On the functional equation for the sine. Additional note, Ann. Math., 13 (1911-12), 154.