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Abstract

Statistical convergence has attracted the attention of researchers due
to the fact that it is more general than classical convergence. Recently
M�oricz [Analysis Mathematica, 40(3) (2014), 231-242] has established a
result on statistical extension of classical Tauberian theorem by (L; 1)
- summability for a function of a single variable. In this paper some
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new inclusion theorems are established under Tauberian conditions by
(L; 1; 1) - summability of double integrable functions of two variables
using oscillating behavior and De la vall�ee Poussin mean.

Keywords and Phrases: Harmonic Summability, Slow oscillation, Improper
Integral, Tauberian theorem, (L; 1; 1)-summability, Statistical summability

1. Introduction and de�nition

From calculus of two variables, we may remember that a complex valued
function f(x; y) is locally integrable over R2

+ [i.e., over [0;1) � [0;1)], if
8 0 < p <1, 0 < q <1, the integral

s(p; q) =

Z p

0

Z q

0

f(x; y)dxdy

exists in the Lebesgue's sense. Also, we may recall (Hardy [7], p.11 or Titch-
marsh [1], p.26) that a continuous function a(t), integrable over (0; x) with
s(x) =

R x

0
a(t)dt is integrable in Pickwickian sense if s(x) has p limit as x!1.

Let f(t) be a real - valued continuous function which is measurable (in
Lebesgue's sense) on [1;1), then its logarithmic (L; 1) (also called harmonic)
mean �(t) of order 1 is given by [3]

�(t) =
1

log t

Z t

1

s(x)

x
dx: (1.1)

Let us consider a function of two variables f(x; y) which is real - valued,
continuous and is measurable (in Lebesgue's sense) on [1;1)� [1;1). We set
the partial sum

s(x; y) =

Z x

1

Z y

1

f(�; �)d�d�; 8 1 < x; y <1:

We may de�ne the logarithmic (L; 1; 1) (also called harmonic) mean of s(x; y)
as

�11(s(x; y)) = �(s(x; y)) =
1

log x log y

Z x

1

Z y

1

s(�; �)

��
d�d�: (1.2)

Analogous to (1.2), the (L; 1; 0) and (L; 0; 1) means of s(x; y) can be viewed
as
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�1;0(s(x; y)) =
1

log x

Z x

1

s(�; y)

�
d� and �0;1(s(x; y)) =

1
log y

Z y

1

s(x; �)

�
d� respec-

tively.
Remark. Our choice of s(x; y) in (1.2) generalizes (1.1).

For a function of a single variable, we may recall (see [4]) that a function
s(x) has a statistical limit at 1, if there exists a number l such that for every
� > 0,

lim
b!1

1

b� a
jfx 2 (a; b) : js(x)� lj > �gj = 0: (1.3)

Here we may say that, the function s(x; y) is said to be statistically converging
to a �nite number l at 1, if for every � > 0,

lim
u;v!1

1

uv
j f1 < x; y < u; v : js(x; y)� lj � �g j = 0: (1.4)

Symbolically, we write s(x; y)
st
�! l, as x; y ! 1. Since the function s(x; y)

converges to l, as x; y ! (a; b) (Pringsheim's sense), for every � > 0, 9 a � > 0,
such that js(x; y)� lj < �, whenever jx� aj < �; jy � bj < �.
It can be written as s(x; y)! l, as x; y !1.
The function s(t) is said to be (L; 1) - summable to a �nite number l [3], if

�(s(t))! l; as t!1: (1.5)

Also, we may say that, the function s(x; y) is said to be (L; 1; 1) - summable
to a �nite number l, if

�(s(x; y))! l; as x; y !1: (1.6)

Analogous to (1.6), the function s(x; y) is said to be (L; 1; 1) - statistically
summable to a �nite number l, if

�(s(x; y))
st
�! l; as x; y !1: (1.7)

Clearly, if the function

s(x; y)
st
�! l; as x; y !1 (1.8)

exists, then (1.7) also exists. But (1.7) does not imply (1.8). Again, if the
function s(x; y) converges to l, i.e.,

s(x; y)! l; as x; y !1 (1.9)
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exists; then (1.8), (1.7) and (1.6) also exist. But the converse is not true in
general. We prove the converse part by using some conditions like oscillatory
behavior and De la Vall�ee Poussin - mean of double integral. Such conditions
are called Tauberian conditions and theorems with Tauberian conditions are
called Tauberian theorems.
A function s(x) is said to be oscillating slowly with respect to (L; 1) - summa-
bility if

lim
�!1+

lim sup
x!1

sup
log x<log t�� log x

(s(t)� s(x)) = 0 (1.10)

exists [3]. It is easy to check that the condition (1.10) is satis�ed if and only
if for every � > 0, 9 x0 = x0(�) > 1 and � = �(�) > 1, the latter one is as close
to 1 as we want, such that

js(t)� s(x)j � �; whenever x < t < x�: (1.11)

Analogous to (1.10), we say that s(x; y) is oscillating slowly with respect to
(L; 1; 1) - summability, if

lim
�!1+

lim sup
x;y!1

sup
x;y<�;��x�;y�

(s(�; �)� s(x; t)) = 0 (1.12)

exists, i.e., for every � > 0, 9 x0 = x0(�) > 1; y0 = y0(�) > 1 and � = �(�) > 1,
the latter one is as close to 1 as we want, such that

js(�; �)� s(x; y)j � �; whenever x; y < �; � < x�; y�: (1.13)

If a function f(x; y) is such that

log u log vjf(u; v)j � C: (1.14)

at almost every u; v > �0; �0, where C; �0; �0 are constants, then the function
s(x; y) is oscillating slowly w.r.t. (L; 1; 1) - summability. The equation (1.14) is
known as two - sided Tauberian condition. Authors like, Landau [2] and Hardy
[8] have used the two - sided Tauberian conditions for (C; 1) - summability
methods of numerical sequences.

The De la Vall�ee Poussin - mean of the double integral

Z x

1

Z y

1

f(�; �)d�d�

is de�ned by

�(s(x; y)) =
1

(� log x� log x)(� log y � log y)

Z x�

x

Z y�

y

s(�; �)d�d�; � 2 (1;1);
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�(s(x; y)) =
1

(log x� � log x)(log y � � log y)

Z x

x�

Z y

y�
s(�; �)d�d�; � 2 (0; 1):

For each nonnegative integers k and r, we de�ne

�k;r(s(x; y)) =

8>>>>><
>>>>>:

1
log x log y

Z x

1

Z y

1

�(k�1;r�1)s(�; �)d�d�; for k; r � 1

Z x

1

Z y

1

s(�; �)d�d�; for k; r = 0

and we notice that �11(s(x; y)) = �(s(x; y)).

The double integral

Z 1

1

Z 1

1

f(x; y)dxdy is known to be (L; k; r) - statis-

tically summable to l if �k;r(s(x; y)) converges statistically to l. If k = 1 and
r = 1, then (L; k; r) - statistical summability reduces to (L; 1; 1) - statistical
summability. Again, if k 6= 0 and r = 0; then (L; k; r) - statistical summability
reduces to (L; k; 0) - statistical summability. Further, if k = 0 and r 6= 0 then
(L; k; r) - statistical summability reduces to (L; 0; r) - statistical summability.
Let

s(x; y)� �(s(x; y)) = v(f(x; y)) (1.15)

where; v(f(x; y)) = v11(f(x; y)) =
1

log x log y

Z x

1

Z y

1

��f(�; �)d�d�:

Note that, �0(s(x; y)) = v(f(x;y))
(x log x) (y log y)

.

For each positive integers k; r, we de�ne

vk;r(f(x; y)) =

8>>>>><
>>>>>:

1
log x log y

Z x

1

Z y

1

v(k�1;r�1)��f(�; �)d�d�; for k; r � 1

Z x

1

Z y

1

��f(�; �)d�d�; for k; r = 0

The double integral

Z 1

1

Z 1

1

xyf(x; y)dxdy is (L; k; r) - statistical summable
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to l, if vk;r(f(x; y)) converges statistically to l. If k = 1 and r = 1, then
(L; k; r) - statistical summability reduces to (L; 1; 1) - statistical summability.
Again, if k 6= 0 and r = 0; then (L; k; r) - statistical summability reduces to
(L; k; 0) - statistical summability. Further, if k = 0 and r 6= 0, then (L; k; r) -
statistical summability reduces to (L; 0; r) - statistical summability.

2. Known results

The concept of statistical convergence was introduced by Fast [9]. Fridly and
Khan [10] implemented Hardy's [8] and Landau's [2] Tauberian theorems to the
case of statistical convergence. In 2003, M�oricz [5], [6] has established some
Tauberian theorems for statistical Ces�aro summability of single and double
sequences. Subsequently, in 2014, M�oricz [3] has established the following the-
orems on statistical convergence of Harmonic summability of a single - valued
function.

Theorem 1. [3] If s(x) 2 R is (L; 1) - summable and s(x) is decreasing
slowly, then original converges follows from statistical converges of s(x).

Theorem 2. [3] If s(x) 2 C is (L; 1) - summable and s(x) is oscillating
slowly, then original converges follows from statistical converges of s(x).

Theorem 3. [3] If s(x) 2 R is (L; 1) - summable and s(x) is oscillating
slowly, then original converges follows from (L; 1) mean of statistical converges.

Theorem 4. [3] If s(x) 2 C is (L; 1) - summable and s(x) is oscillating slowly,
then original converges follows from (L; 1) mean of statistical converges.

3. Main result

In an attempt to enrich further studies in this direction, two new in-
clusion theorems on (L; 1; 1) - summability of double integrable functions of
two variables are established under Tauberian conditions as follows.

Theorem 1. If s(x; y) is (L; 1; 1) - statistical summable to l and s(x; y)
is oscillating slowly, then s(x; y)! l, as x; y !1.
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For proving theorem 1, we need the following lemmas:

Lemma 1. (i) For � > 1,

s(x; y)� �(s(x�; y�))

=
1

(�� 1)2
�
�(s(x�; y�))� �(s(x; y))

�
+

2

(�� 1)
�(s(x�; y�))

�
1

(� log x� log x)(� log y � log y)

Z x�

x

Z y�

y

(s(�; �)� s(x; y))d�d�:

(ii) For 0 < � < 1,

s(x; y)� �(s(x�; y�))

=
1

(1� �)2
(�(s(x; y))� �(s(x�; y�))) +

2

(1� �)
�(s(x�; y�))

�
1

(log x� � log x)(log y � � log y)

Z x

x�

Z y

y�
(s(x; y)� s(�; �))d�d�:

Proof. (i) We have by De la Vall�ee Poussin mean of s(x; y),

�(s(x; y)) =
1

(� log x� log x)(� log y � log y)

Z x�

x

Z y�

y

s(�; �)d�d�

=

�
1

log x(�� 1) log y(�� 1)

�

�

 Z x�

1

Z y�

1

s(�; �)d�d� �

Z x

1

Z y

1

s(�; �)d�d�

!
; for � > 1:

Since,

�(s(x�; y�)) =
1

� log x � log y

Z x�

1

Z y�

1

s(�; �)d�d� and

�(s(x; y)) =
1

log x log y

Z x

1

Z y

1

s(�; �)d�d�;
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we get,

�(s(x; y)) =
�2

(�� 1)2
�(s(x�; y�))�

1

(�� 1)2
�(s(x; y))

=

�
1 +

1

(�� 1)

�2

�(s(x�; y�))�
1

(�� 1)2
�(s(x; y)):

) �(s(x; y))� �(s(x�; y�)) =
1

(�� 1)2
�(s(x�; y�)) +

2

(�� 1)
�(s(x�; y�))

�
1

(�� 1)2
�(s(x; y)): (3.1)

we have; s(x; y) = �(s(x; y))�
1

(� log x� log x)(� log y � log y)

�

 Z x�

x

Z y�

y

(s(�; �)� s(x; y))d�d�

!
;

Subtracting �(s(x�; y�)) from the identity, we have

s(x; y)� �(s(x�; y�)) = �(s(x; y)� �(s(x�; y�))

�
1

(� log x� log x)(� log y � log y)

�

 Z x�

x

Z y�

y

(s(�; �)� s(x; y))d�d�:

!
(3.2)

From equation (3.1) and (3.2), we have

s(x; y)� �(s(x�; y�))

=
1

(�� 1)2
�
�(s(x�; y�))� �(s(x; y))

�
+

2

(�� 1)
�(s(x�; y�))

�
1

(� log x� log x)(� log y � log y)

Z x�

x

Z y�

y

(s(�; �)� s(x; y))d�d�: (3.3)

This completes the proof of lemma 1(i) and similarly we can prove 1(ii).

Lemma 2. s(x; y) is oscillating slowly if and only if v(f(x; y)) is bounded
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and oscillating slowly.

Proof. Let s(x; y) is oscillating slowly. First of all let us show that v(f(x; y)) =
O(1) as x; y !1.
We have,

Z x

1

Z y

1

wzf(w; z)dwdz =
1X
i=1

1X
j=1

Z x=2i

x=2i+1

Z y=2j

y=2j+1
wzf(w; z)dwdz: (3.4)

It follows from the identity,Z �

�

Z �



wzf(w; z)dwdz =

Z �

�

Z �



wzs0(w; z)dwdz

=

Z �

�

z

�Z �



ws0(w; z)dw

�
dz

=

Z �

�

z

�
w[s(w; z)]� �

Z �



s(w; z)dw

�
dz

= �

Z �

�

Z �



zs(w; z)dwdz + �

Z �

�

zs(�; z)dz � 

Z �

�

zs(; z)dz

�

Z �

�

zs(�; z)dz + 

Z �

�

zs(�; z)dz

= �

Z �

�

Z �



zs(w; z)dwdz + (� � )

Z �

�

zs(�; z)dz

+

�Z �

�

zs(�; z)dz �

Z �

�

zs(; z)dz)

�

= �

Z �

�

Z �



[z(s(w; z)� s(�; z))] dzdw + 

�Z �

�

zs(�; z)dz �

Z �

�

zs(; z)dz

�

= (� � �)(� � ) max
�;�x;y��;�

js(x; y)� s(�; �)j+ 

����
Z �

�

z(s(�; z)� s(; z))dz

���� :
Choosing � = x=2i, �=� � 2 and � = y=2j, �= � 2, we obtain,

����
Z x

1

Z y

1

wzf(w; z)dwdz

���� � A

1;1X
i=1;j=1

xy

2i+j
= O(xy); as x; y !1:
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Now we have to show that �(s(x; y)) is oscillating slowly.

Since, �0(s(x; y)) = v(f(x;y))
(x log x) (y log y)

, we get

j�(s(�; �))� �(s(x; y))j =

����
Z �

x

Z �

y

�0(s(w; z))dwdz

����
=

����
Z �

x

Z �

y

f(w; z)dwdz

����
� C

Z �

x

�Z �

y

dw

w

�
dz

z

= C log(�=y) log(�=x);

for any x; y � �; � � x�; y�.

Hence, we conclude that,

max
x;y��;��x�;y�

j�(s(�; �))� �(s(x; y))j � C(�� 1)2 log x log y:

Taking the limit sup to both sides as �! 1+, we get

lim
�!1+

lim sup
x;y!1

max
x;y��;��x�;y�

j�(s(�; �)� �(s(x; y))j = 0:

Hence, v(f(x; y)) is oscillating slowly by Kronecker identity (1.15).
Conversely, let us suppose v(f(x; y)) is bounded and oscillating slowly. Thus
the boundedness of v(f(x; y)) implies that �(s(x; y)) is oscillating slowly.
Again, since v(f(x; y)) is oscillating slowly, so s(x; y) is oscillating slowly by
Kronecker identity (1.15). Hence the proof of the lemma 2 follows from lemma
1.

Proof of Theorem 1.

Let s(x; y) be (L; 1; 1)- statistical summable to l, then �(s(x; y))
st
�! l with

respect to (L; 1; 1) - summability. Now from equation (1.15), v(f(x; y)) is
(L; 1; 1) - statistical summable to zero. Thus, v(f(x; y)) is oscillating slowly
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by lemma 2. Again by lemma 1(i), we get

v(f(x; y))� �(v(f(x�; y�))) =
1

(�� 1)2
(�(v(f(x�; y�)))� �(v(f(x; y))))

+
2

(�� 1)
�(v(f(x�; y�)))�

1

(� log x� log x)(� log y � log y)

�

 Z x�

x

Z y�

y

(v(f(�; �))� v(f(x; y)))d�d�

!
: (3.5)

We have by (3.5),

jv(f(x; y))� �(v(f(x; y)))j �
1

(�� 1)2
j(�(v(f(x�; y�)))� �(v(f(x; y))))j

+
2

(�� 1)
j�(v(f(x�; y�)))j

+ max
x;y��;��x�;y�

jv(f(�; �))� v(f(x; y))j: (3.6)

Now taking limit sup to both sides of equation (3.6) as x; y !1, we have

lim sup
x;y!1

jv(f(x; y))� �(v(f(x; y)))j

� lim sup
x;y!1

1

(�� 1)2
j(�(v(f(x�; y�)))� �(v(f(x; y))))j

+ lim sup
x;y!1

2

(�� 1)
j�(v(f(x�; y�)))j

+ lim sup
x;y!1

max
x;y��;��x�;y�

jv(f(�; �))� v(f(x; y))j: (3.7)

Since �(v(f(x�; y�))) converges, �rst and second term in the right hand side
of equation (3.7), must be zero.
This implies,

lim sup
x;y!1

jv(f(x; y))� �(v(f(x; y)))j

� lim sup
x;y!1

max
x;y��;��x�;y�

jv(f(�; �))� v(f(x; y))j: (3.8)

As �! 1+ in (3.8), we get

lim sup
x;y!1

jv(f(x; y))� �(v(f(x; y)))j � 0: (3.9)
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Clearly, v(f(x; y)) = o(1), as x; y ! 1. Again, since s(x; y) is statistical
summable to l by (L; 1; 1) means and v(f(x; y)) = o(1), as x; y ! 1, so
s(x; y)! l; as x; y !1.

Corollary 1. If s(x; y) is (L; k; r) - statistical summable to l and s(x; y)
is oscillating slowly, then s(x; y)! l as x; y !1.

Proof. By lemma 2, s(x; y) being oscillating slowly, so �kr(s(x; y)) is oscillat-
ing slowly. Further in analogous to theorem-1, s(x; y) is (L; k; r) - statistically
summable to l, this implies

�kr(s(x; y))
st
�! l as x; y !1: (3.10)

Next from the de�nition,

�kr(s(x; y)) = �11(s(x; y))(�k�1;r�1(s(x; y))): (3.11)

Clearly, equation (3.10) and (3.11) implies s(x; y) is (L; k�1; r�1) - statistical
summable to l.
Again by lemma 2, �k�1;r�1(s(x; y)) is also oscillating slowly. Hence by theo-
rem -1, we have

�k�1;r�1(s(x; y))! l as x; y !1.
Continuing in this way, we get s(x; y)! l as x; y !1.

Theorem 2. If s(x; y) is (L; 1; 1) - statistical summable to l and v(f(x; y)) is
oscillating slowly, then s(x; y)! l, as x; y !1:

Proof. As s(x; y) is (L; 1; 1) - statistical summable to l, then �11(s(x; y))
st
�! l.

So, v(f(x; y))
st
�! 0 with respect to (L; 1; 1) summability, by equation (1.15).

Again imposing identity (1.15) to v(f(x; y)), we get v(v(f(x; y)))
st
�! 0, by

(L; 1; 1) summability. Hence, v(v(f(x; y))) is oscillating slowly by lemma 2.
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Now by lemma 1(i),

v(v(f(x; y)))� �(v(v(f(x�; y�))))

=
1

(�� 1)2
[�(v(v(f(x�; y�))))� �(v(v(f(x; y))))]

+
2

(�� 1)
(�(v(v(f(x�; y�)))))�

1

(� log x� log x)(� log y � log y)

�

 Z x�

x

Z y�

y

(v(v(f(�; �)))� v(v(f(x; y))))d�d�:

!
(3.12)

We have,

jv(v(f(x; y)))� �(v(v(f(x; y))))j

�
1

(�� 1)2
j�(v(v(f(x�; y�))))� �(v(v(f(x; y))))j

+
2

(�� 1)
j�(v(v(f(x�; y�))))j

+ max
x;y��;��x�;y�

j(v(v(f(�; �)))� v(v(f(x; y))))j: (3.13)

Now taking limit sup to both sides of equation (3.13) as x; y !1, we have

lim sup
x;y!1

jv(v(f(x; y)))� �(v(v(f(x; y))))j

� lim sup
x;y!1

1

(�� 1)2
j�(v(v(f(x�; y�))))� �(v(v(f(x; y))))j

+ lim sup
x;y!1

2

(�� 1)
j�(v(v(f(x�; y�))))j

+ lim sup
x;y!1

max
x;y��;��x;y�

jv(v(f(�; �)))� v(v(f(x; y)))j: (3.14)

Since �(v(v(f(x�; y�)))) converges, �rst and second term in right hand side of
equation (3.14) must be zero. This implies

lim sup
x;y!1

jv(v(f(x; y)))� �(v(v(f(x; y))))j

� lim sup
x;y!1

max
x;y��;��x�;y�

jv(v(f(�; �)))� v(v(f(x; y)))j: (3.15)
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As �! 1+ in (3.15), we get

lim sup
x;y!1

jv(v(f(x; y)))� �(v(v(f(x; y))))j � 0: (3.16)

Clearly, v(v(f(x; y))) = o(1), as x; y ! 1. Further, since s(x; y) is statisti-
cally summable to l by (L; 1; 1) mean and v(v(f(x; y))) = o(1), as x; y ! 1,
s(x; y)! l as x; y !1.

Corollary 2. If s(x; y) is (L; k; r) - statistical summable to l and v(f(x; y))
is oscillating slowly, then s(x; y)! l, as x; y !1.

Proof. As v(f(x; y)) is oscillating slowly, setting v(f(x; y)) in place of s(x; y);
�k;r(v(f(x; y))) is oscillating slowly by lemma 2. Again as v(f(x; y)) is (L; k; r)
- statistical summable to l; by theorem 2, we have

�k;r(v(f(x; y)))
st
�! l as x; y !1: (3.17)

By de�nition,

lim
x;y!1

�k;r(v(f(x; y))) = �1;1(v(f(x; y)))(�(k�1;r�1)(v(f(x; y)))): (3.18)

From (3.17) and (3.18), we have v(f(x; y)) is (L; k � 1; r � 1) - statistical
summable to l. Again (by lemma 2), since �(k�1;r�1)(v(f(x; y))) is oscillating
slowly, we have lim

x;y!1
�(k�1;r�1)(v(f(x; y))) = l (by theorem 2). Continuing in

this way, we get lim
x;y!1

v(f(x; y)) = l; implies s(x; y)! l,

as x; y !1.

4. Conclusion

Statistical convergence has become an active area of research due to the fact
that it is more general than classical convergence, i.e., a sequence may be con-
vergent in statistical mean even if it is not convergent in classical mean. The
result established in this paper for a function of two variables generalizes the
earlier existing results for the function of a single variable. Further, it will be
encouraging if one can extend the result for function of several variables.
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