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Abstract

We give 2-, 4-, 8- and 16-dissections of a continued fraction of order
sixteen. We show that the sign of the coeflicients in the power series
expansion of the continued fraction of order sixteen is periodic with
period 16. We also give combinatorial interpretations for the coefficients
in the power series expansion of the continued fraction of order sixteen.
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1. Introduction

Throughout this paper, we assume that |¢| < 1 and use the standard notation

oo

(a;9)o0 = [ (1 = ag™),
n=0
(a1,a2,a3,...,005@) 00 = (A1;0)00 (025 @)oo (@35 @)oo - - - 5 (An3 @) oo

25 dloo = (23 @)oo (27143 D)o
and
[Zb 22y 23y« vy Rn;s Q]oo = [Zl; Q]oo[22; Q]oo[z?»; Q]oo sy [Zn; Q]oo-
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The celebrated Rogers-Ramanujan continued fraction and its product repre-
sentation is

1 2 3 o, A
Rlg)=- 2 € _ fee—d) , (1.1)
I1+14+ 1+ 1+ f(—¢%, —¢?)
where o
f(CL, b) — Z an(n—l—l)/? bn(n—l)/27 |CLb| <1,

is Ramanujan’s general theta function. The function f(a,b) satisfy the well
known Jacobi triple product identity

f(a,b) = (—a;ab) oo (—b; ab) oo (ab; ab) .

On page 36 of his “lost” notebook, Ramanujan recorded four g-series represent-
ations of the famous Rogers-Ramanujan continued fraction. Recently, C.
Adiga, N. A. S. Bulkhali, Y. Simsek and H. M. Srivastava [3] have established
two g-series representations of Ramanujan’s continued fraction found in his
“lost” notebook. They have also established three equivalent integral repre-
sentations and modular equations for a special case of this continued fraction.
On employing g-identities of Ramanujan found in his lost notebook, Srivastava
et al. [19] established a number of results involving continued fractions of the
form involved in (1.1).

G. E. Andrews et al. [7] investigated combinatorial partition identities associ-
ated with the following general family:

uv (é) +(w—ul)j
q

(45 @) n—uj (" q*);

o0 s<g>+m mfl
R(s,t, 0, u,v,w) := Zq Z(—l)j

n=0 7=0

(1.2)

In [18], Srivastava and M. P. Chaudhary, proved several results associated
with the family R(s,t,[,u,v,w) which depict the inter relationship between
g-product identities, continued fraction identities and combinatorial partition
identities.

S. Ramanujan [16, p. 50] gave the 2-dissections and 5-dissections of R(q)
and its reciprocal, and these were first proved by Andrews [5] and M. D.
Hirschhorn [9] respectively. The periodic behavior of the sign of the coef-
ficients in the series expansion of R(g) and its reciprocal were observed by
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B. Richmond and G. Szekers [17]. Hirschhorn [9], conjectured formulas for
the 4-dissections of R(q) and its reciprocal, and these were first proved by
R. Lewis and Z. -G. Liu [13]. In [21], O. X. M. Yao and E. X. W. Xia gave
generalizations of Hirschhorn’s formulas on the 4-dissections of R(q) and its
reciprocal. Recently, Hirschhorn [11] gave a simple proof of the 2-dissections
and 4-dissections of R(q) and its reciprocal by using Jacobi’s triple product
identity.

The beautiful Ramanujan—Gollnitz—Gordon continued fraction and its product
representation is

G(Q) — 1 q2 q4 — f(_q; _q7)
D ldg 14+ 14+ f(=¢3 —¢°)

In [10], Hirschhorn found the 8-dissections of G(g¢) and its reciprocal and also
proved that the sign of the coefficients in the power series expansion of G(q)
and its reciprocal are periodic with period 8 and in particular that certain co-
efficients are zero, a phenomenon first observed and proved by Richmond and
Szekers [17]. Recently, S. H. Chan and H. Yesilyurt [8] show the periodicity of
signs of a large number of quotients of certain infinite products. Their results
include as special cases, results of Ramanujan, Andrews, Bressoud, Richmond,
Szekers and Hirschhorn.

The famous Ramanujan’s cubic continued fraction and its product represen-
tation is

(@=L 1t O _ S0 —7)
Sl 1+ 1 4+ f(- )

In [20], B. Srivastava has studied the 2- and 4-dissections of the continued
fraction of H(q)~'. In [12], Hirschhorn and Roselin have studied the 2-, 3-, 4-
and 6-dissections of H(q) and its reciprocal and also shows the sign of the co-
efficients in the power series expansion of H(q) and its reciprocal, are periodic
with period 3 and 6 respectively.

The fascinating continued fraction of order twelve and its product representa-
tion is

1-¢9 FO-¢)1-q") _ g —d')
1-¢)+ A-)1+¢) +- (=& =)
In [14], B. L. S. Lin has studied the 2-; 3-, 4-, 6- and 12-dissections of U(q)
and its reciprocal and also shows the sign of the coefficients in the power series

Ulq) =
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expansion of U(g) and its reciprocal, are periodic with period 12.
The Ramanujan’s continued fraction of order six and its product representation
is

(@2 —q ¥ (¢ —q (g T =) =4, —¢)
(1—¢3?) + (1—¢?P)(1+¢)  + f(=¢—q")

In [4], Adiga et al. have studied the 2- and 4-dissections of X*(¢) and its
reciprocal and also shows that the sign of the coefficients in the power se-
ries expansion of X*(¢q) and its reciprocal, are periodic with period 2 and 6
respectively. In [2], Adiga, Bulkhali, D. Ranganatha and Srivastava have es-
tablished several modular relations for the Rogers-Ramanujan type functions
of order eleven which are analogous to Ramanujan’s forty identities for Rogers-
Ramanujan functions. Furthermore, they gave interesting partition theoretic
interpretation of some of the modular relations. Motivated by the above works
on continued fractions, we shall consider the power series expansion of the fol-
lowing continued fraction of order sixteen:
Alg) = f(=0,-¢") _ (1-q9) ¢0-¢)1-¢) ¢(1-¢H1-¢")
fl=d",=¢")  (A—g¢)+ 1-¢")1+¢) + (1-¢")(1+ qlﬁ)(lg')' '
Ramanujan has recorded several continued fraction in his notebooks. One of
the fascinating continued fraction identities recorded by Ramanujan as Entry
12 in his second notebook [15] is
(*% "o (0’0 ¢ oo 1 (a —bg)(b—aq) (a—bg*)(b— aq’)
(0% 0")oc(B?q30")oe (L—ab) + (1 —ab)(1+¢*) + (1—ab)(1+¢*) + -
lg] <1, Jab] < 1.
(1.4)

X*(q) ==

For a proof of (1.4), see Adiga et al. [1].

In (1.4), replacing ¢ by ¢* and then setting a = ¢*/? and b = ¢°/2, we obtain
(1.3).

For n > 0, we define a(n) and b(n) by

o f(_Q7 _q15) _ EOO aln)a®
A(Q) - f(_q77 —(]9) - - ( )q ’ (15)
=) ZOO g
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The main object of this paper is to study different dissections of A(q) and
B(q). In Section 2, we prove the 2- and 4-dissections of A(q) and B(g). In
Section 3, we prove the 8-dissections of A(q) and B(g). Furthermore, we prove
that the signs of the coefficients in the power series expansion of A(g) and
B(q) are periodic with period 16. In Section 4, we prove the 16-dissections of
A(q) and B(q). In the last section, we give combinatorial interpretations of
the coefficients in the power series expansion of A(q) and B(q).

2. 2- and 4-Dissections of A(q) and B(q)

In this section, we present 2- and 4-dissections of A(q) and B(q). To prove
our results, we need the following Lemmas.

Lemma 2.1. If ab = cd, then
f(a,b)f(e,d) = f(ac,bd)f(ad,bc) + af(b/c,ac’d) f(b/d, acd?). (2.1)
Proof. Adding Entries 29(7) and 29(4) in [1], we obtain the result. O
Lemma 2.2. [1, p. 46, Entry 30 (iv)] One has
fla,b)f(=a,=b) = f(—a*,—b") f(—ab, —ab). (2:2)
Theorem 2.3. Let a(n) be as defined in (1.5). Then

s q77q8,q -
S [, ¢"; 4]
Za (2n+1)¢" =~ [0, % "] (24)
n=0 3 Y

Proof. We have

i“( ' = fl=,=4®) _ f(=¢,—¢")f(d", ")

-0 B f(=d",—¢®)  f(—=d",—¢®) flq7,¢°) (2.5)

n
By employing (2.1) with a = —¢, b = —¢'°, ¢ = ¢" and d = ¢°, we obtain

fl=a. =) f(d",¢") = F(=¢®, —*) f(—¢"°, —¢*) — qf (—¢®, —q24)f(—q6,(—q2)6)-
2.6
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Setting a = ¢" and b = ¢° in (2.2), we find that
fd"a") f(=d",—¢") = F(=q"", ") f(=q"®, —4"). (2.7)
Combining (2.5), (2.6) and (2.7), we obtain

o0 " f(_ 87_ 24)f(_ 107_ 22) _ f(_ 87_ 24)f(_ 67_ 26)
2 omd" = — f(quﬂzqus)f?—qmq, —qfé) S

n=0

It follows immediately that

0 . f_87_24f_10;_22
el = e g g

00 . f—87_24f_6,_26
Z a(2n +1)¢"" ™ = — qf((—qi, _ZlgifE_Zm, _qqlf)i)'

Changing ¢ to ¢'/? in the above equations, we obtain (2.3) and (2.4). O
Theorem 2.4. Let b(n) be as defined in (1.6). Then

- 4", 4% 4"
Zb(Qn)Qn =T 8 16 (2.8)
e~ 4 4% ¢"%] o0
[e.e]
4%, 4" "]
b(2n + 1)¢" =L 2 2.9
nz; ( ) 9, 4% ¢")o0 (29)
Proof. The proof of Theorem 2.4 is similar to that of Theorem 2.3. [
Theorem 2.5. We have
[o.e]
n 14%6°,4% 4"
Za(4n)q :[q4 7t q% ¢ (2.10)
n=0 ) ) ) co
oo
[4°,4°, 4% ¢% 0"
Za(4n+ Dg" =~ 4% q% 47, g% g1 (2.11)
TLZO ? ? ? b
- [0, 4%, ¢, 4% "%
Za(4n+2)q" == A T T (2.12)
vt g% ¢*, 4", 4% ¢"%]
o
I A
2 aln+3)q e (2.13)
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Proof. From (2.3), we see that
i aan)g =450 e f=0 =g )" 4"
= [4% ¢ (=47, —¢°)f (4", 4°)
By employing (2.1) with a = —¢®, b = —¢'', ¢ = ¢" and d = ¢°, we obtain
F(=¢", ="V f(d",¢") = f(=a", =) [(=a", =)=’ F(—a", —¢*) f (=¢*, =)
Combining above identity, (2.7) and (2.14), we obtain

(2.14)

ia@n)qn:[Q“;qu]m {f(—q127—q2°)f(—q17 ¢*) —¢"f(=4¢", - S)f(—qg,—qgo)}.
(4% "] fl=a*, —¢"®) f(— q167—q16)
It follows immediately that
= 14 % % 0"
> al4n o
— [¢*, %, 4% 4]
= [0, 4%, % ¢""]
a(4n + 2)q — ¢
nZ% [¢*, ¢*, 4", 4% ¢"%]oo
Proofs of (2.11) and (2.13) are similar. O

Theorem 2.6. We have

_[¢%4°.¢%, 4% 4"
b(4n)q , 2.15
; (4n)g” g, gt dt 6% ¢ (215)
- [%, 4% 4%, q"; 4"
b(dn+ 1)¢" = , 2.16
Z ( ) 9.4, %, ¢% "] (2.16)
%% ¢ 0% ¢
b(4n + 2)q , 2.17
Z g qh dt 6% 0w (2:17)
Zb (4 + 3)g =000 q;] . (2.18)
et 0t 6% 0
Proof. The proof of Theorem 2.6 is similar to that of Theorem 2.5. O

By Theorems 2.3, 2.4, 2.5 and 2.6, we have the following corollary:
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Corollary 2.7. Forn >0,

a(4n) = b(4n + 3)

and
ia(%)ff ib(%)fﬂ zm:oa(zln)q" zm:ob(zm +1)¢"
f:a(Qn + 1)¢" i _ib@n + 1)q"7 f:a(zm +1)¢" - _ib(‘m +2)g"
n=0 n=0 n=0 n=0
and
f: a(dn + 2)q" f: b(4n + 3)q"
=0 a0
Samene S
n=0 n=0

Remark 2.8. Theorem 2.5 and Theorem 2.6 can also be proved by applying
an identity proved by Andrews and D. Bressoud [6, Theorem 1].

3. 8-Dissections of A(q) and B(q)

In this section, we present 8-dissections of A(¢g) and B(g) and also present the
signs of the coefficients in the power series expansion of A(q) and B(q) are
periodic with period 16.

Theorem 3.1. We have

- [, 4%, &% ¢¥
a(8n)q" = , 3.1
nz:% (87) [4%, 4%, ¢*; 6%l (3:1)
x 3 3 .5 .5 . 7.,16
S afsn + 1) = - 94", ¢ ¢°, 0", 4" 4] (3.2)

(4%, ¢%. ¢*, ¢*, 5. % ¢'%]’
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7,0, ¢%,¢°,¢°, 475 ¢"%) e
[42, 4%, ¢*, 4%, 5, ¢%; ¢*%]

NE

a(8n+2)¢" =—¢q

i
(e}

2 [qa q, q37 q37 q57 q77 q16]oo
(@2, ¢*, ¢*, 4%, 45, % ¢"%]

NE

a(8n+3)¢" =

3
Il
o

WE

a(8n + 4)¢" =0,

3
Il
)

a(8n —+ 5)q” 2 [qaq,q3,q3,q5’q5;q16]OO
[%,a*. ¢", 4 ¢%, 4% ¢"%o

NE

i
(e}

0488 ¢ d" ¢
[4%, 6%, 4% 4%, 45, 4% "]

WE

a(8n+6)q¢"

3
Il
)

a(8n + 7)(]” = [q’q’q37q57q5;q7§q16]oo
[q27q27q4;q4,q6,q8;q16]00

NE

i
(e}

Proof. Using Theorem 2.5, it is easy to prove the above eight identities
do in obtaining the 2-dissections of A(g), so we omit the details.

Using Theorem 2.6, we establish the following eight identities.

Theorem 3.2. We have

- b8 ¢, ¢° a4, 470"

; (8n)e et ah 68 a8 4% M)

258”“ U A R N L L el P

T a% % 08 65 05, 5

Zbg L) e 4,470 )

" RN T

b(8n + 3)g a0, 0P, 470"

Z n R N T
5 7. .16

Zb8n+4 e8P d ]007

T¢% 4 dh 65 0% 0

89

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

as we

]

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Z b(8n +5)¢" =
n=0

Z b(8n +6)¢" =
n=0
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7.

)

4,6 ¢, ¢ 4", 4" ¢"%]
[, 4%, ¢*, 4% 4%, 4% ¢*%) o
q

7,6*. ¢, ¢, 4", 4"; ¢"%]

)

(42, ¢, ¢*, 4%, %, ¢%; ¢*% )

Z b(8n + 7)q" =0.

n=0
Corollary 3.3. We have

o

Z a(8n)q"

n=0

Z b(8n + 3)¢"
n=0

hgE

Il
=)

n

M8

i
[en}

a(8n + 1)¢" Zb(8n+4)q
n=0

a(8n + 2)q" Z b(8n + 1)q
n=0

" Z a(8n+7)¢"

hE

a(8n +6)g" Z b(8n + 5)q
n=0

" Z a(8n+5)¢"

n=0 n=0

and o N
> a(8n+7)q" > b(8n+4)q"
n=0 n=0
1% = {9
> a(8n+2)q" > b8 +5)¢"
n=0 n=0

Proof. Proof follows from Theorem

3.1 and Theorem 3.2.

" Z a(8n +3)¢"

]

Theorem 3.4. We have a(2) = a(3) = a(b) = a(6) = a(8n +4) = 0. The
remaining coefficients a(n) satisfy the inequalities

a(16n), a(16n + 2),a(16n + 5),a(16n + 7),a(16n + 9),a(16n + 11),a(16n + 14) > 0,
a(16n + 1),a(16n + 3), a(16n + 6),a(16n + 8),a(16n + 10),a(16n + 13), a(16n + 15) < 0.
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Proof. From (3.1), we have

& [_Q7 _q3> _q37 qs]oo
a(8n)(—q)" =
2_alsn)(~a) (4, 4% ¢*; ¢¥loc
_ (6P~ )
(4%, 4%, 4% ¢®)2,

n=0

From the above equality, it follows that a(16n) > 0 and a(16n + 8) < 0.
Similarly, we can determine the signs of the remaining subsequences for a(n).
O

Theorem 3.5. We have b(8) = b(8n+7) = 0. The remaining coefficients b(n)
satisfy the inequalities

b(16n), b(16n + 1), b(16n + 2), b(16n + 3), b(16n + 4), b(16n + 5), b(16n + 6) > 0,
b(16n + 8), b(16n + 9), b(16n + 10), b(16n + 11), b(16n + 12), b(16n + 13), b(16n + 14) < 0.

Proof. From (3.9), we have

B3 3 5 5 T 7. 16
S b(gn)(—g)" =7, il i i P L Jos
— (9%, q* ¢*, 4%, 4%, % 4"
From the above equality, it follows that b(16n) > 0 and b(16n + 8) < 0.

Similarly, we can determine the signs of the remaining subsequences for b(n).
O

4. 16-Dissections of A(q) and B(q)

In this section, we present 16-dissections of A(g) and B(q). In these dissections
components are not single products. One can establish the following two
theorems on using 8-dissections of A(q) and B(gq). The proof is similar to that
of 8-dissections of A(q) and B(g), so we omit the details.
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Theorem 4.1. We have

o

Za(lGn)q" =

n=0

NE

0

M 102 202 102 11Me 10e £

3
Il
=)

M8

0

LR

3
Il
=)

M]3

0

S
Il

NE

0

S
Il

NE

=0

3
|

NE

=0

3
|

a(l6n + 2)q"

a(16n + 3)¢"

a(l6n + 6)q"

a(l6n + 7)q"

a(16n + 10)¢"

a(16n + 11)¢"

a(16n + 14)¢"

a(16n + 15)¢"

a(l6n +1)¢" =
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X
f(_q7 _q)f(_q27 _q2) ’
_RX

f=¢,—a) [ (=%, —a®) f(—q*, —q*)’

qQ{f (=% =" f(=q", - )M + @ F(—¢*, —¢") f(—q, —¢"°) N}
f(=¢, =) f(—=?, =) f(—=¢*, =) f (=8, —®) (=47, —¢°)
—qP{f (=", =" (=%, =" ON + ¢ f(—¢*, —¢") f(—¢*, —¢**) M}
f(=¢, =) f(=* —*) f(=¢*, =) f (=%, —¢®) (=47, —¢°)

a(16n + 5)¢" =

—qQ{f (=% =) [(=*, —¢" )M + qf (—¢*, —¢') f (—¢°,

a(16n + 8)¢" =

a(16n +9)¢" =

aPf(—q*, — "D {f (-, —a"HX + ¢f (—¢®, —¢"®)Y}

=4, -0 f (= =) f(—=¢*, —¢") f(=a®, —a®) f(—=d", —¢°)’

—q")N}

[0, =) f (=, =) f(—=¢*, —¢Y) f (=B, —®) f (=47, —4°)
~R{f(—¢® —¢") f(=¢", )N + ¢* f(—¢*, —¢"") f (—q, —¢"°) M}

f(_q7 _Q)f(_q27 _q2)f(_q47 _q4)f(_q87 _qS)f(_q77 _qg) ’

-Y

f(_q7 _Q)f(_q27 _q2) ’

RY

f(_q7 _q)f(_q27 _q2)f(_q4a _q4) ’

QLS (=% =" (=47, —¢°)N + ¢ f (=%, —¢'*) f(—q, —¢*®) M}
f(=a, =) f(=¢%, —®) f(=q*, =g f(—¢®, —¢®) f(—q7, —¢°)

qP{f(=¢°, =" [ (=% ' )M + qf (=¢*, —¢"*) f (—¢*, —¢**) N}
[t —a) [ (=, =) f(—a¢*, —¢*) f (=, —®) f (=47, —¢°)

—qPf(—¢", —¢"){f(-&* —¢")X + f(—¢*, —¢")Y}
f—a,—a) [ (=, =) f(—q*, —aY) F (=8, —a®) f (=47, —¢°)’

QU (=, ") f (=, —" )N + @ F(—¢*, —¢"") f(—¢*, —q

a(l6n + 13)¢" =

f(=¢, =) (= —*) F(=¢*, =) f (=%, —¢®) f (=47, —¢°
—R{f(—¢% —¢" ) f(=q", —¢")M + > f(—¢*, —¢"*) f(—q, —

f(=a, =) f (=%, =) f(—q*, —aV) f(—¢®, —¢®) f(—q", —¢°

?
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where,

Theorem 4.2. We have

Z b(16n)q" =
n=0
i b(16n + 1)q

Zb (16n + 2)q

Z b(16n + 3)q" =
n=0

n

Z b(16n + 4)g"

Zb 161 + 5)q
Zb (16n + 6)q

Z b(16n + 8)¢"
n=0

Pf(-

fl=a,—d"), Q:=f(-¢*=¢%), R:=f(-¢*, "),
1@ ) ) +d flaq )f(q,q %),

Fla,aVf(d" ") + af (@ a®) Fla, 4"),
@) q" )+f(q7 7) (5 "),
F@ ) (@ d') +af(a,4) (@, q").

' =" ){f(—¢"" =" )X —qf (—¢*, —¢")Y}

_f(_Q7
_ QU (=% =) f (=’ —¢®)N —qf (=

—q)f(—a% =) f(—¢*, —¢*) f (=8, —¢®) f(—q, —¢*5)’
,—¢") f(=¢°, —q”)M}

93

7
f=a, =) f (=, =) f(—q*, —¢") F (=48, —¢®) f (—q, —¢*5)
6

_R{f(=¢*,—")f(=¢", " )N — af (-

—q'°) f(—q, —¢"°) M}
-0)f (=%, —a®) f(=q*, —q*) f (=%, —¢®) f (—q, —¢*?)

J(—q,
X
Cf(=q, ) f (-, —¢?)
RX
T4 f (2~ (—dt, —¢")

:f(_qa

_ QU (=% - (=" —°)N —af (—¢*, —¢'*) f(—¢, —¢'*) M}

f(=q,

_P{f(=d® ") (=’ —¢"*)N — af (=¢*, —¢'") f (=4, —¢"") M}

—q)f(=¢%, —*) f(—q*, —aY) f (=%, —¢®) f(—q, —¢*P)

b

?

f(—=¢, =) f(=¢* =) f(—a*, —q*) f (=68, —¢®) f(—q, —¢"P)
Pf(—q*, —¢"H){f(—=¢*, ") X — f(—¢°, —¢'") Y}

—q)f (=% =) f(—¢*, =) [ (=%, —¢®) [ (—q, —¢*°)’

9

b
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_ QU (=% - (=" —¢" )N — f(=¢°, —¢"") f(=¢*, —¢") M}
2“6 T =00 q,—q)f( & dh ) () [, —a)
2

_R{f(=*, ="V (-4, —¢"°)N — f(=¢* —'") f(=d", —¢") M}
Zb (16n +10)q f(=¢, =) f(—% - f(—* =) fF(—¢8, —a®) f(—q, —¢"5)
n . e
S bton + 0" =gy

00 . —RY
7;) b(16n +12)g - f (=2 - (=t —¢*)’

_Q{f (=", -V f (=4, —a")N — f(=¢*, —¢") f(=d", —¢") M}
me T13)a f(=0,—a) [ (—=*, —*) f(—¢*, —¢*) f (—=¢®, —¢®) f(—q, —¢'®)

_P{f(=* ") f(=", —¢' )N — f(=¢*, =) f(—¢*, —¢"*) M}
nz;b (160 +14)¢" f(—q, —Q)f( ¢, =) f(=¢*, =) [ (=% —¢®) f(—a, —¢")

where P,Q), R, X, Y, M, N are as defined in Theorem 4.1.

5. Combinatorial Interpretations of a(n) and

b(n)

In this section, we present combinatorial interpretations of a(n) and b(n). For
simplicity, we define

(056" )o0 = (€673 ¢") ooy
where r and s are positive integers and r < s.

Definition 5.1. A positive integer n has k colors if there are k copies of n
available and all of them are viewed as distinct objects. Partitions of positive
integer into parts with colors are called “colored partitions”.

For example, if 2 is allowed to have two colors, say r (red) and ¢ (green) and
odd parts being distinct, then all colored partitions of 3 are 3,2, + 1,2, + 1.
An important fact is that

1

(g% qv)k,’
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is the generating function for the number of partitions of n, where all the parts
are congruent to u (mod v) and have k colors.

Theorem 5.2. Let Py(n) denote the number of partitions of n with parts not
congruent to 8 (mod 16) and all having two colors except for parts congruent
to £1,+7 (mod 16) and odd parts being distinct.

Let Py(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to +1,+6,+7
(mod 16) and odd parts being distinct.

Let Py(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to £3,+£4,+7
(mod 16) and odd parts being distinct.

Let Ps(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to +2,+5,+7
(mod 16) and odd parts being distinct.

Let Py(n) denote the number of partitions of n with parts not congruent to +7
(mod 16) and all having two colors except for parts congruent to +£2 (mod 16)
and odd parts being distinct.

Let Ps(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to +4,+5 +7
(mod 16) and odd parts being distinct.

Let Ps(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to +3,+6,+7
(mod 16) and odd parts being distinct.

Then, we have

N e S e

(=D)"a(8n) = Py(n), (-1)"aB8n+1)=—-Pi(n), (—1)"a(8n+2)=FP(n—1),
(=D"a(8n+3) =—-FP3(n—2), (=1)"a(8n+5) = Ps(n—2),
(=D)"a(8n+6) =—PFPs(n—1), (=1)"a(8n+7) = Fs(n).

Proof. Replacing ¢ to —¢q in (3.1), we obtain

i (_1)na(8n)qn — (_qil7 _qi37 _q:I:37 _qi57 _qi57 _qi7; q16)oo '
= (a*2, %2, ¢, g1, 4%, 4746, ¢1%) o

Observe that the product on the right is the generating function for Py(n) and
SO

(—1)™a(8n) = Py(n). Similar arguments can be used to derive the remain-
ing equations. [l
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Example 5.3. By Maple, we have been able to find the following series ex-
pansion for A(q):

A(q) :1_q+q7_q8+q9_q10+q14_2q15+2q16_2q17+2q18_q19+q21 _2q22
+2q23_4q24+4q25_2q26+2q27_2q29+2q30_5q31+7q32_7q33+5q34_'” .

The following table verifies the case n = 3 in Theorem 5.2.

Py(3) =4 =—a(24) |3, 34 2,41, 2,+1
P(3) = —4=—a(25) | 3,, 35, 2,41, 2, +1

g

T

T

ry 1g

N[ —| —| DD
DNO| | —| DN
i~

Ty “g
Ps(3)=5=—a(31) | 3, 2, +1,, 2, + 1,
2,+1,, 2,+1,

Theorem 5.4. Let Py(n) denote the number of partitions of n with parts not
congruent to £1 (mod 16) and all having two colors except for parts congruent
to £2 (mod 16) and odd parts being distinct.

Let Pi(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to +1,+3, +4
(mod 16) and odd parts being distinct.

Let Py(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to 1,45, +6
(mod 16) and odd parts being distinct.

Let Ps(n) denote the number of partitions of n with parts not congruent to
8 (mod 16) and all having two colors except for parts congruent to +1,+7
(mod 16) and odd parts being distinct.

Let Py(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to +1,+6,+7
(mod 16) and odd parts being distinct.

Let Ps(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to +1,+4,+5
(mod 16) and odd parts being distinct.

Let Ps(n) denote the number of partitions of n with parts congruent to all parts
(mod 16) and all having two colors except for parts congruent to +1,+2 +3
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(mod 16) and odd parts being distinct.
Then, we have

(=1)"b6(8n + k) = Py(n) for 0<k<6.
Proof. Replacing ¢ to —¢q in (3.9), we obtain

o +3 +3 +5 +5 +7 +7. 16
sy 4, ¢, —q¢ ,—q¢ ,—q ;4 )

(¢%2, ¢, ¢**, 455, ¢%5, 6%, ¢% ¢"0) o

Observe that the product on the right is the generating function for Py(n) and
SO

(—=1)"b(8n) = Py(n). Similar arguments can be used to derive the remain-
ing equations. O

o0

(—1)"b(8n)g" = =1

n=0

Example 5.5. By Maple, we have been able to find the following series ex-
pansion for B(q):

B(q):1+q+q2+q3+q4+q5+q6—q9—qlo—qn—qu—q13—q14+q16+2q17+2q18
26" +2¢%° 4221 + ¢ — 221 — 3¢ — 4¢® —4g%T — 4¢*® —4q® — 20 +--- .

The following table verifies the case n = 3 in Theorem 5.4.

Py(3) =2 = —b(24) 3,, 3,
P(3)=3=—b(25) | 3, 2,41, 2,+1
Py(3) =4=—b(26) | 3, 3, 2, +1, 2, +1
Ps(3) =4=—b(27) | 3, 3,, 2, +1, 2, +1
P(3)=4=—b(28) | 3, 3,, 2, +1, 2, +1
Ps(3)=4=—b(29) | 3, 3, 2, +1, 2, +1
Ps(3) = 2 = —b(30) 3, 2+1

Remark 5.6. Theorem 3.4 and Theorem 3.5 also follows from Theorem 5.2
and Theorem 5.4 respectively.
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