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Abstract

Let p3(n) denote the number of overpartitions of n with 2-color in

which one of the colors appears only in parts that are multiples of 3. In

this work, we establish several in�nite families of congruences modulo

powers of 2 and 3 for p3(n). We also show that for each n � 0 and

� � 0,

p3(6 � 5
2�+4n+ (30i+ 25)52�+2) � 0 (mod 18);

where i = 1, 2, 3, 4.

Keywords: Color partition, Overpartition.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive

integers whose sum is n. The number of partitions of n is denoted by p(n) and

we set p(0) = 1.

Corteel and Lovejoy [6] have introduced the combinatorial object known

as overpartition of a nonnegative integer n, which is a non-increasing sequence

of a natural number, whose sum is n and the �rst occurrence of parts of each

size may be over lined. For example, the eight overpartitions of 3 are

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

We denote the number of overpartitions of n by p(n) and set p(0) = 1. As

noted in [6], the generating function for p(n) is given by

1X
n=0

p(n)qn =
Y
n�1

1 + qn

1� qn
=

(q2; q2)1
(q; q)21

; (1.1)

where (q; q)1 = (1� q)(1� q2)(1� q3) � � � :

We de�ne
1X
n=0

p3(n)q
n =

1

(q; q)1(q3; q3)1
; (1.2)

where p3(n) is the number of 2-color partitions of n, in which one of the colors

appears only in parts that are multiples of 3. We also set p3(0) = 1.
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For example, there are four partitions of 2-color partitions of 3:

3a, 3b, 2a + 1a, 1a + 1a + 1a.

In this paper, we de�ne

1X
n=0

p3(n)q
n =

(�q; q)1(�q
3; q3)1

(q; q)1(q3; q3)1
: (1.3)

Let p3(n) denote the number of overpartitions of n with 2-color in which one

of the colors appears only in parts that are multiples of 3. For example, there

are ten partitions of 2-color overpartitions of 3:

3a, 3a, 3b, 3b, 2a + 1a, 2a + 1a, 2a + 1a, 2a + 1a, 1a + 1a + 1a,

1a + 1a + 1a.

For any positive integer k, fk is de�ned by

fk :=
1Y
i=1

(1� qki): (1.4)

The important special cases of Ramanujan's general theta function f(a; b) are

'(q) := f(q; q) = 1 + 2
1X
n=1

qn
2

=
(�q; q2)1(q

2; q2)1
(q; q2)1(�q2; q2)1

=
f 52
f 21 f

2
4

; (1.5)

 (q) := f(q; q3) =
1X
n=0

qn(n+1)=2 =
(q2; q2)1
(q; q2)1

=
f 22
f1
; (1.6)

and

f(�q) := f(�q;�q2) =
1X

n=�1

(�1)nqn(3n�1)=2 = (q; q)1 = f1; (1.7)

where

f(a; b) =
1X

n=�1

an(n+1)=2bn(n�1)=2 (1.8)

= (�a; ab)1(�b; ab)1(ab; ab)1; jabj < 1: (1.9)
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2. Preliminary results

In this section, we collect some results which are useful in proving our main

results.

Lemma 2.1. [7, p. 212] We have the following 5-dissection

f1 = f25
�
a� q � q2=a

�
; (2.1)

where

a := a(q) :=
(q10; q15; q25)1
(q5; q20; q25)1

: (2.2)

Lemma 2.2. The following 2-dissections hold:

f 33
f1

=
f 34 f

2
6

f 22 f12
+ q

f 312
f4
; (2.3)

f3
f 31

=
f 64 f

3
6

f 92 f
2
12

+ 3q
f 24 f6f

2
12

f 72
; (2.4)

f1
f 33

=
f2f

2
4 f

2
12

f 76
� q

f 32 f
6
12

f 24 f
9
6

; (2.5)

f 31
f3

=
f 34
f12

� 3q
f 22 f

3
12

f4f 26
: (2.6)

Hirschhorn, Garvan and Borwein [2] proved equation (2.3). For proof of

(2.4), see [4]. Replacing q by �q in (2.3) and (2.4) , we obtain (2.5) and (2.6)

respectively.

Lemma 2.3. The following 2-dissections hold:

1

f1f3
=

f 28 f
5
12

f 22 f4f
4
6 f

2
24

+ q
f 54 f

2
24

f 42 f
2
6 f

2
8 f12

; (2.7)

1

f 21 f
2
3

=
f 58 f

5
24

f 52 f
5
6 f

2
16f

2
48

+ 2q
f 44 f

4
12

f 62 f
6
6

+ 4q4
f 24 f

2
12f

4
16f

2
48

f 52 f
5
6 f8f24

: (2.8)

Equations (2.7) and (2.8) were proved by Baruah and Ojah [5].
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Lemma 2.4. [1, p. 40, Entry 25]. We have the following 2-dissection holds:

f 41 =
f 104
f 22 f

4
8

� 4q
f 22 f

4
8

f 24
: (2.9)

Lemma 2.5. [1, p. 345, Entry 1 (iv)]. We have the following 3-dissection

f 31 =
f6f

6
9

f3f 318
+ 4q3

f 23 f
6
18

f 26 f
3
9

� 3qf 39 : (2.10)

Lemma 2.6. [1, p. 49] We have

'(q) = '(q9) + 2qf(q3; q15); (2.11)

 (q) = f(q3; q6) + q (q9): (2.12)

Lemma 2.7. The following 3-dissection holds:

f2
f 21

=
f 46 f

6
9

f 83 f
3
18

+ 2q
f 36 f

3
9

f 73
+ 4q2

f 26 f
3
18

f 63
: (2.13)

Equation (2.13) was proved by Hirschhorn and Sellers [3].

3. Main Results

In this section, we establish several in�nite families of congruences modulo

powers of 2 and 3.

By binomial theorem, it is easy to see that

f2m � f 2m (mod 2); (3.1)

f 22m � f 4m (mod 22); (3.2)

f 42m � f 8m (mod 23); (3.3)

f3m � f 3m (mod 3); (3.4)

f 33m � f 9m (mod 32); (3.5)

f 93m � f 27m (mod 33): (3.6)
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Theorem 3.1. For � � 0 and n � 0,

p3(12 � 2
�n) � p3(6n) (mod 9); (3.7)

p3(4 � 3
�+3n+ 2 � 3�+3) � p3(36n+ 18) (mod 9); (3.8)

p3(12n+ 6) � 6 � p3(6n+ 3) (mod 9); (3.9)

p3(108n+ 18) � p3(36n+ 6) (mod 9); (3.10)

p3(36n+ 30) � 0 (mod 9); (3.11)

p3(6n+ 4) � 0 (mod 18): (3.12)

Proof. We have
1X
n=0

p3(n)q
n =

f2f6
f 21 f

2
3

: (3.13)

Substituting (2.13) in (3.13), we obtain

1X
n=0

p3(n)q
n =

f 56 f
6
9

f 103 f
3
18

+ 2q
f 46 f

3
9

f 93
+ 4q2

f 36 f
3
18

f 83
: (3.14)

Extracting the terms involving q3n+1, dividing by q and replacing q3 by q, we

get
1X
n=0

p3(3n+ 1)qn = 2
f 42 f

3
3

f 91
: (3.15)

Invoking (3.5) into (3.15), we deduce that

1X
n=0

p3(3n+ 1)qn � 2f 42 (mod 18): (3.16)

Extracting the terms involving q2n+1 from (3.16), we obtain (3.12).

From (3.14), we have

1X
n=0

p3(3n)q
n =

f 52 f
6
3

f 101 f
3
6

: (3.17)

Invoking (3.5) into (3.17), we obtain

1X
n=0

p3(3n)q
n �

f 33
f1f 42

(mod 9): (3.18)
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Employing (2.3) into (3.18), we deduce that

1X
n=0

p3(3n)q
n �

f 34 f
2
6

f 62 f12
+ q

f 312
f 42 f4

(mod 9): (3.19)

Extracting the terms involving q2n from (3.19) and replacing q2 by q, we have

1X
n=0

p3(6n)q
n �

f 32 f
2
3

f 61 f6
(mod 9): (3.20)

Invoking (3.5) into (3.20), we �nd that

1X
n=0

p3(6n)q
n �

f 31 f
3
2

f3f6
(mod 9): (3.21)

Employing (2.6) into (3.21), we have

1X
n=0

p3(6n)q
n �

f 32 f
3
4

f6f12
+ 6q

f 52 f
3
12

f4f 36
(mod 9): (3.22)

Extracting the terms involving q2n+1 from (3.22), dividing by q and replacing

q2 by q, we obtain

1X
n=0

p3(12n+ 6)qn � 6
f 51 f

3
6

f2f 33
(mod 9): (3.23)

Invoking (3.4) into (3.23), we get

1X
n=0

p3(12n+ 6)qn � 6
f 21 f

3
6

f2f 23
(mod 9): (3.24)

Replacing q by �q in (2.11) and using the fact that

�(�q) =
f 21
f2
; (3.25)

we �nd that

f 21
f2

=
f 29
f18

� 2q
f3f

2
18

f6f9
: (3.26)
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Again employing (3.26) into (3.24), we obtain

1X
n=0

p3(12n+ 6)qn � 6
f 36 f

2
9

f 23 f18
� 12q

f 26 f
2
18

f3f9
(mod 9): (3.27)

Congruence (3.11) follows by extracting the terms involving q3n+2 on both

sides of (3.27).

Extracting the terms involving q3n+1 from (3.27) and dividing by q, then

replacing q3 by q, we have

1X
n=0

p3(36n+ 18)qn � 6
f 22 f

2
6

f1f3
(mod 9): (3.28)

It follows from (2.12) that

f 22
f1

=
f6f

2
9

f3f18
+ q

f 218
f9
: (3.29)

Employing (3.29) into (3.28), we obtain

1X
n=0

p3(36n+ 18)qn � 6
f 36 f

2
9

f 23 f18
+ 6q

f 26 f
2
18

f3f9
(mod 9): (3.30)

Extracting the terms involving q3n+1 from (3.30) and dividing by q, then re-

placing q3 by q, we have

1X
n=0

p3(108n+ 54)qn � 6
f 22 f

2
6

f1f3
(mod 9): (3.31)

In view of congruences (3.28) and (3.31), we have

p3(108n+ 54) � p3(36n+ 18) (mod 9): (3.32)

Utilizing (3.32) and by mathematical induction on �, we get (3.8).

Extracting the terms involving q3n from (3.27) and replacing q3 by q, we

have
1X
n=0

p3(36n+ 6)qn � 6
f 32 f

2
3

f 21 f6
(mod 9): (3.33)
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Extracting the terms involving q3n from (3.30) and replacing q3 by q, we have

1X
n=0

p3(108n+ 18)qn � 6
f 32 f

2
3

f 21 f6
(mod 9): (3.34)

In view of congruences (3.33) and (3.34), we arrive at (3.10).

Extracting the terms involving q2n from both sides of (3.22) and then

replacing q2 by q, we obtain

1X
n=0

p3(12n)q
n �

f 31 f
3
2

f3f6
(mod 9): (3.35)

In view of congruences (3.21) and (3.35), we have

p3(12n) � p3(6n) (mod 9): (3.36)

Utilizing (3.36) and by mathematical induction on �, we arrive at (3.7).

Extracting the terms involving q2n+1 from (3.19) and dividing by q, then

replacing q2 by q, we obtain

1X
n=0

p3(6n+ 3)qn �
f 36
f 41 f2

(mod 9): (3.37)

Extracting the terms involving q2n+1 from (3.22) and dividing by q, then re-

placing q2 by q, we obtain

1X
n=0

p3(12n+ 6)qn � 6
f 51 f

3
6

f2f 33
(mod 9): (3.38)

Invoking (3.5) into (3.38), we have

1X
n=0

p3(12n+ 6)qn � 6
f 36
f 41 f2

(mod 9): (3.39)

In view of congruences (3.37) and (3.39), we arrive at (3.9).
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Theorem 3.2. For � � 0 and n � 0,

p3(6 � 5
2�+4n+ (30i+ 25)52�+2) � 0 (mod 18); (3.40)

where i = 1, 2, 3, 4.

Proof. Extracting the terms involving q2n from (3.16) and replacing q2 by q,

we have
1X
n=0

p3(6n+ 1)qn � 2f 41 (mod 18): (3.41)

Employing (2.1) into (3.41) and extracting the terms involving q5n+4, we get

1X
n=0

p3(30n+ 25)qn � 8f 45 (mod 18): (3.42)

Extracting the terms involving q5n from (3.42) and replacing q5 by q, we have

1X
n=0

p3(150n+ 25)qn � 8f 41 (mod 18): (3.43)

From (3.41) and (3.43), we �nd that

p3(150n+ 25) � 4p3(6n+ 1) (mod 18): (3.44)

Utilizing (3.44) and by mathematical induction on �, we obtain

p3(6 � 5
2�+2n+ 52�+2) � 4�+1p3(6n+ 1) (mod 18): (3.45)

From (3.42), we get

p3(150n+ 30i+ 25) � 0 (mod 18); i = 1; 2; 3; 4: (3.46)

Using (3.45) and (3.46), we obtain (3.40).

Theorem 3.3. For � � 0 and n � 0,

p3(12n+ 10) � 0 (mod 27); (3.47)

p3(3 � 4
�+2n+ 10 � 4�+1) � 0 (mod 27): (3.48)
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Proof. From (3.15), we have

1X
n=0

p3(3n+ 1)qn = 2f 42

�
f3
f 31

�3

: (3.49)

Employing (2.4) into (3.49) and invoking (3.6), we obtain

1X
n=0

p3(3n+ 1)qn � 2
f 184 f

9
6

f 232 f
6
12

+ 18q
f 144 f

7
6

f 212 f
2
12

(mod 27): (3.50)

Extracting the terms involving q2n+1 from (3.50), dividing by q and replacing

q2 by q, we get

1X
n=0

p3(6n+ 4)qn � 18
f 142 f

7
3

f 211 f
2
6

(mod 27): (3.51)

Invoking (3.4) into (3.51), we deduce that

1X
n=0

p3(6n+ 4)qn � 18f 52 f6 (mod 27): (3.52)

Congruence (3.47) follows by extracting the terms involving q2n+1 from both

sides of (3.52).

Extracting the terms involving q2n from (3.52) and replacing q2 by q, we

get
1X
n=0

p3(12n+ 4)qn � 18f 51 f3 (mod 27): (3.53)

Using (3.4) into (3.53), we obtain

1X
n=0

p3(12n+ 4)qn � 18f 81 (mod 27): (3.54)

Invoking (2.9) into (3.54), we �nd that

1X
n=0

p3(12n+ 4)qn � 18
f 204
f 42 f

8
8

+ 18q2
f 42 f

8
8

f 44
+ 18qf 84 (mod 27): (3.55)
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Extracting the terms involving q2n+1 from (3.55), dividing by q and replacing

q2 by q, we get
1X
n=0

p3(24n+ 16)qn � 18f 82 (mod 27): (3.56)

We can rewrite the above equation as

1X
n=0

p3(24n+ 16)qn � 18f 52 f6 (mod 27): (3.57)

In view of congruences (3.52) and (3.57), we have

p3(6n+ 4) � p3(24n+ 16) (mod 27): (3.58)

Utilizing (3.58) and by mathematical induction on �, we arrive at

p3(6n+ 4) � p3(6 � 4
�+1n+ 4�+2) (mod 27): (3.59)

Using (3.59) and (3.47), we get (3.48).

Theorem 3.4. For each � � 0 and n � 0,

p3(3
�n) � p3(n) (mod 8); (3.60)

p3(18n+ 6) � 2p3(9n+ 3) (mod 8); (3.61)

p3(3 � 4
�+1n+ 10 � 4�) � 0 (mod 16); (3.62)

p3(6 � 4
�+1n+ 5 � 4�+1) � 0 (mod 32); (3.63)

p3(6n+ 5) � 0 (mod 32); (3.64)

p3(18n+ 15) � 0 (mod 8): (3.65)

Proof. Invoking (3.3) into (3.17), we deduce that

1X
n=0

p3(3n)q
n �

f2f6
f 21 f

2
3

(mod 8): (3.66)

In view of congruences (3.13) and (3.66), we have

p3(3n) � p3(n) (mod 8): (3.67)
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Utilizing (3.67) and by mathematical induction on �, we arrive at (3.60).

Invoking (3.3) into (3.15), we deduce that

1X
n=0

p3(3n+ 1)qn � 2
f 33
f1

(mod 16): (3.68)

Using (2.3) in (3.68) and extracting the terms involving q2n+1, we get

1X
n=0

p3(6n+ 4)qn � 2
f 36
f2

(mod 16); (3.69)

which implies

p3(12n+ 10) � 0 (mod 16) (3.70)

and
1X
n=0

p3(12n+ 4)qn � 2
f 33
f1

(mod 16): (3.71)

Using (3.68) and (3.71), we �nd that

p3(12n+ 4) � p3(3n+ 1) (mod 16): (3.72)

By mathematical induction on �, we get

p3(3 � 4
�+1n+ 4�+1) � p3(3n+ 1) (mod 16): (3.73)

Congruence (3.62) follows from (3.70) and (3.73).

Equating the terms containing q3n+2 from both sides of (3.14), dividing by

q2 and then replacing q3 by q, we obtain

1X
n=0

p3(3n+ 2)qn = 4
f 32 f

3
6

f 81
: (3.74)

Invoking (3.3) into (3.74), we deduce that

1X
n=0

p3(3n+ 2)qn � 4
f 36
f2

(mod 32); (3.75)
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which implies

p3(6n+ 5) � 0 (mod 32) (3.76)

and
1X
n=0

p3(6n+ 2)qn � 4
f 33
f1

(mod 32): (3.77)

Employing (2.3) into (3.77), we obtain

1X
n=0

p3(6n+ 2)qn � 4
f 34 f

2
6

f 22 f12
+ 4q

f 312
f4

(mod 32): (3.78)

Extracting the terms involving q2n+1 from (3.78), dividing by q and replacing

q2 by q, we get
1X
n=0

p3(12n+ 8)qn � 4
f 36
f2

(mod 32); (3.79)

which implies

p3(24n+ 20) � 0 (mod 32) (3.80)

and
1X
n=0

p3(24n+ 8)qn � 4
f 33
f1

(mod 32): (3.81)

In view of congruences (3.77) and (3.81), and by mathematical induction on

�, we �nd that

p3(6 � 4
�+1n+ 2 � 4�+1) � p3(6n+ 2) (mod 32): (3.82)

Congruence (3.63) follows from (3.80) and (3.82).

Invoking (3.3) into (3.17), we deduce that

1X
n=0

p3(3n)q
n �

f2f
6
3

f 21 f
3
6

(mod 8): (3.83)

Employing (2.13) into (3.83), we obtain

1X
n=0

p3(3n)q
n �

f6f
6
9

f 23 f
3
18

+ 2q
f 39
f3

+ 4q2
f 318
f6

(mod 8): (3.84)
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Extracting the terms involving q3n+2 from (3.84), dividing by q2 and replacing

q3 by q, we get
1X
n=0

p3(9n+ 6)qn � 4
f 36
f2

(mod 8);

which implies

p3(18n+ 15) � 0 (mod 8) (3.85)

and
1X
n=0

p3(18n+ 6)qn � 4
f 33
f1

(mod 8): (3.86)

Again extracting the terms involving q3n+1 from (3.84), dividing by q and

replacing q3 by q, we get

1X
n=0

p3(9n+ 3)qn � 2
f 33
f1

(mod 8): (3.87)

Congruence (3.61) follows from (3.86) and (3.87).

Theorem 3.5. For � � 0 and n � 0,

p3(4
�n) � p3(n) (mod 4); (3.88)

p3(6(4n+ i) + 1) � 0 (mod 4); (3.89)

where i = 1, 2, 3.

p3(24 � 25
�+2n+ (120j + 25) � 25�+1) � 0 (mod 4); (3.90)

where j = 1, 2, 3, 4.

p3(2
2�+2n+ 22�+1) � 0 (mod 4); (3.91)

p3(2 � 3
�+2n+ 5 � 3�+1) � 0 (mod 16); (3.92)

p3(6n+ 5) � 0 (mod 16): (3.93)
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Proof. Employing (2.8) into (3.13), we obtain

1X
n=0

p3(n)q
n =

f 58 f
5
24

f 42 f
4
6 f

2
16f

2
48

+ 2q
f 44 f

4
12

f 52 f
5
6

+ 4q4
f 24 f

2
12f

4
16f

2
48

f 42 f
4
6 f8f24

: (3.94)

Extracting the terms involving q2n+1 from (3.94), dividing by q and replacing

q2 by q, we get

1X
n=0

p3(2n+ 1)qn = 2
f 42 f

4
6

f 51 f
5
3

: (3.95)

Invoking (3.3) into (3.95), we deduce that

1X
n=0

p3(2n+ 1)qn � 2f 31 f
3
3 (mod 16): (3.96)

Employing (2.10) into (3.96), we obtain

1X
n=0

p3(2n+ 1)qn � 2
f 23 f6f

6
9

f 318
+ 8q3

f 53 f
6
18

f 26 f
3
9

� 6qf 33 f
3
9 (mod 16): (3.97)

Congruence (3.93) follows by extracting the terms involving q3n+2 on both

sides of (3.97).

Extracting the terms involving q3n+1 from (3.97), dividing by q and replac-

ing q3 by q, we get

p3(6n+ 3)qn � 10f 31 f
3
3 (mod 16): (3.98)

Using (3.96) and (3.98), we have

p3(6n+ 3) � 5p3(2n+ 1) (mod 16): (3.99)

Utilizing (3.99) and by mathematical induction on �, we get

p3(6 � 3
�n+ 3�+1) � 5�+1p3(2n+ 1) (mod 16): (3.100)

Using (3.100) and (3.93), we get (3.92).
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Extracting the terms involving q2n from (3.94) and replacing q2 by q, we

get

1X
n=0

p3(2n)q
n =

f 54 f
5
12

f 41 f
4
3 f

2
8 f

2
24

+ 4q2
f 22 f

2
6 f

4
8 f

2
24

f 41 f
4
3 f4f12

; (3.101)

which implies that

1X
n=0

p3(2n)q
n �

f 54 f
5
12

f 41 f
4
3 f

2
8 f

2
24

(mod 4): (3.102)

Invoking (3.2) into (3.102), we deduce that

1X
n=0

p3(2n)q
n �

f4f12
f 22 f

2
6

(mod 4): (3.103)

Extracting the terms involving q2n+1 from (3.103), we obtain

p3(4n+ 2) � 0 (mod 4): (3.104)

Again extracting the terms involving q2n from (3.103) and replacing q2 by q,

we get

1X
n=0

p3(4n)q
n �

f2f6
f 21 f

2
3

(mod 4): (3.105)

In view of congruences (3.13) and (3.105), we have

p3(4n) � p3(n) (mod 4): (3.106)

Utilizing (3.106) and by mathematical induction on �, we get (3.88). Using

(3.104) in (3.88), we obtain (3.91).

Extracting the terms involving q3n from (3.97) and replacing q3 by q, we

get

1X
n=0

p3(6n+ 1)qn � 2
f 21 f2f

6
3

f 36
+ 8q

f 51 f
6
6

f 22 f
3
3

(mod 16); (3.107)
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which implies that

1X
n=0

p3(6n+ 1)qn � 2
f 21 f2f

6
3

f 36
(mod 4): (3.108)

Invoking (3.1) into (3.108), we deduce that

1X
n=0

p3(6n+ 1)qn � 2f4 (mod 4): (3.109)

Congruence (3.89) follows by extracting the terms involving q4n+i on both sides

of (3.109).

Extracting the terms involving q4n from (3.109) and replacing q4 by q, we

get

1X
n=0

p3(24n+ 1)qn � 2f1 (mod 4): (3.110)

Employing (2.1) into (3.110) and extracting the term q5n+1, we obtain

1X
n=0

p3(120n+ 25)qn � 2f5 (mod 4): (3.111)

Extracting the terms involving q5n+i from (3.111), we get

p3(600n+ 120i+ 25) � 0 (mod 4); i = 1; 2; 3; 4: (3.112)

Extracting the terms involving q5n from (3.111) and replacing q5 by q, we get

1X
n=0

p3(600n+ 25)qn � 2f1 (mod 4): (3.113)

Using (3.110) and (3.113), we get

p3(600n+ 25) � p3(24n+ 1) (mod 4): (3.114)

Utilizing (3.114) and by mathematical induction on �, we get

p3(600 � 25
�n+ 25�+1) � p3(24n+ 1) (mod 4): (3.115)

Utilizing (3.112) and (3.115), we get (3.90).
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