Infinite Families of Congruences for 2-Color overpartitions *

M. S. Mahadeva Naika ${ }^{\dagger}$
Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 001, Karnataka, India.

S. Shivaprasada Nayaka ${ }^{\ddagger}$
Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 001, Karnataka, India.

and

C.Shivashankar ${ }^{\S}$
Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 001, Karnataka, India.

Received March 16, 2016, Accepted April 27, 2016.

[^0]
Abstract

Let $\bar{p}_{3}(n)$ denote the number of overpartitions of n with 2 -color in which one of the colors appears only in parts that are multiples of 3 . In this work, we establish several infinite families of congruences modulo powers of 2 and 3 for $\bar{p}_{3}(n)$. We also show that for each $n \geq 0$ and $\alpha \geq 0$, $$
\bar{p}_{3}\left(6 \cdot 5^{2 \alpha+4} n+(30 i+25) 5^{2 \alpha+2}\right) \equiv 0 \quad(\bmod 18)
$$

where $i=1,2,3,4$.
Keywords: Color partition, Overpartition.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. The number of partitions of n is denoted by $p(n)$ and we set $p(0)=1$.

Corteel and Lovejoy [6] have introduced the combinatorial object known as overpartition of a nonnegative integer n, which is a non-increasing sequence of a natural number, whose sum is n and the first occurrence of parts of each size may be over lined. For example, the eight overpartitions of 3 are

$$
3, \quad \overline{3}, \quad 2+1, \quad \overline{2}+1, \quad 2+\overline{1}, \quad \overline{2}+\overline{1}, \quad 1+1+1, \quad \overline{1}+1+1
$$

We denote the number of overpartitions of n by $\bar{p}(n)$ and set $\bar{p}(0)=1$. As noted in [6], the generating function for $\bar{p}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\prod_{n \geq 1} \frac{1+q^{n}}{1-q^{n}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{(q ; q)_{\infty}^{2}} \tag{1.1}
\end{equation*}
$$

where $(q ; q)_{\infty}=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots$.
We define

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{3}(n) q^{n}=\frac{1}{(q ; q)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}} \tag{1.2}
\end{equation*}
$$

where $p_{3}(n)$ is the number of 2 -color partitions of n, in which one of the colors appears only in parts that are multiples of 3 . We also set $p_{3}(0)=1$.

For example, there are four partitions of 2-color partitions of 3:

$$
3_{a}, \quad 3_{b}, \quad 2_{a}+1_{a}, \quad 1_{a}+1_{a}+1_{a} .
$$

In this paper, we define

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(n) q^{n}=\frac{(-q ; q)_{\infty}\left(-q^{3} ; q^{3}\right)_{\infty}}{(q ; q)_{\infty}\left(q^{3} ; q^{3}\right)_{\infty}} \tag{1.3}
\end{equation*}
$$

Let $\bar{p}_{3}(n)$ denote the number of overpartitions of n with 2 -color in which one of the colors appears only in parts that are multiples of 3 . For example, there are ten partitions of 2 -color overpartitions of 3 :
$3_{a}, \quad \overline{3}_{a}, \quad 3_{b}, \quad \overline{3}_{b}, \quad 2_{a}+1_{a}, \quad \overline{2}_{a}+1_{a}, \quad 2_{a}+\overline{1}_{a}, \quad \overline{2}_{a}+\overline{1}_{a}, \quad 1_{a}+1_{a}+1_{a}$, $\overline{1}_{a}+1_{a}+1_{a}$.

For any positive integer k, f_{k} is defined by

$$
\begin{equation*}
f_{k}:=\prod_{i=1}^{\infty}\left(1-q^{k i}\right) \tag{1.4}
\end{equation*}
$$

The important special cases of Ramanujan's general theta function $f(a, b)$ are

$$
\begin{gather*}
\varphi(q):=f(q, q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}}=\frac{\left(-q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}}=\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}}, \tag{1.5}\\
\psi(q):=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}=\frac{f_{2}^{2}}{f_{1}}, \tag{1.6}
\end{gather*}
$$

and

$$
\begin{equation*}
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=(q ; q)_{\infty}=f_{1}, \tag{1.7}
\end{equation*}
$$

where

$$
\begin{align*}
f(a, b) & =\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} \tag{1.8}\\
& =(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty}, \quad|a b|<1 \tag{1.9}
\end{align*}
$$

2. Preliminary results

In this section, we collect some results which are useful in proving our main results.

Lemma 2.1. [7, p. 212] We have the following 5-dissection

$$
\begin{equation*}
f_{1}=f_{25}\left(a-q-q^{2} / a\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a:=a(q):=\frac{\left(q^{10}, q^{15} ; q^{25}\right)_{\infty}}{\left(q^{5}, q^{20} ; q^{25}\right)_{\infty}} \tag{2.2}
\end{equation*}
$$

Lemma 2.2. The following 2-dissections hold:

$$
\begin{align*}
& \frac{f_{3}^{3}}{f_{1}}=\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}} \tag{2.3}\\
& \frac{f_{3}}{f_{1}^{3}}=\frac{f_{4}^{6} f_{6}^{3}}{f_{2}^{9} f_{12}^{2}}+3 q \frac{f_{4}^{2} f_{6} f_{12}^{2}}{f_{2}^{7}} \tag{2.4}\\
& \frac{f_{1}}{f_{3}^{3}}=\frac{f_{2} f_{4}^{2} f_{12}^{2}}{f_{6}^{7}}-q \frac{f_{2}^{3} f_{12}^{6}}{f_{4}^{2} f_{6}^{9}} \tag{2.5}\\
& \frac{f_{1}^{3}}{f_{3}}=\frac{f_{4}^{3}}{f_{12}}-3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}} \tag{2.6}
\end{align*}
$$

Hirschhorn, Garvan and Borwein [2] proved equation (2.3). For proof of (2.4), see [4]. Replacing q by $-q$ in (2.3) and (2.4), we obtain (2.5) and (2.6) respectively.

Lemma 2.3. The following 2-dissections hold:

$$
\begin{align*}
\frac{1}{f_{1} f_{3}} & =\frac{f_{8}^{2} f_{12}^{5}}{f_{2}^{2} f_{4} f_{6}^{4} f_{24}^{2}}+q \frac{f_{4}^{5} f_{24}^{2}}{f_{2}^{4} f_{6}^{2} f_{8}^{2} f_{12}}, \tag{2.7}\\
\frac{1}{f_{1}^{2} f_{3}^{2}} & =\frac{f_{8}^{5} f_{24}^{5}}{f_{2}^{5} f_{6}^{5} f_{16}^{2} f_{48}^{2}}+2 q \frac{f_{4}^{4} f_{12}^{4}}{f_{2}^{6} f_{6}^{6}}+4 q^{4} \frac{f_{4}^{2} f_{12}^{2} f_{16}^{4} f_{48}^{2}}{f_{2}^{5} f_{6}^{5} f_{8} f_{24}} \tag{2.8}
\end{align*}
$$

Equations (2.7) and (2.8) were proved by Baruah and Ojah [5].

Lemma 2.4. [1, p. 40, Entry 25]. We have the following 2-dissection holds:

$$
\begin{equation*}
f_{1}^{4}=\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{2.9}
\end{equation*}
$$

Lemma 2.5. [1, p. 345, Entry 1 (iv)]. We have the following 3-dissection

$$
\begin{equation*}
f_{1}^{3}=\frac{f_{6} f_{9}^{6}}{f_{3} f_{18}^{3}}+4 q^{3} \frac{f_{3}^{2} f_{18}^{6}}{f_{6}^{2} f_{9}^{3}}-3 q f_{9}^{3} \tag{2.10}
\end{equation*}
$$

Lemma 2.6. [1, p. 49] We have

$$
\begin{gather*}
\varphi(q)=\varphi\left(q^{9}\right)+2 q f\left(q^{3}, q^{15}\right) \tag{2.11}\\
\psi(q)=f\left(q^{3}, q^{6}\right)+q \psi\left(q^{9}\right) \tag{2.12}
\end{gather*}
$$

Lemma 2.7. The following 3-dissection holds:

$$
\begin{equation*}
\frac{f_{2}}{f_{1}^{2}}=\frac{f_{6}^{4} f_{9}^{6}}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}} \tag{2.13}
\end{equation*}
$$

Equation (2.13) was proved by Hirschhorn and Sellers [3].

3. Main Results

In this section, we establish several infinite families of congruences modulo powers of 2 and 3 .

By binomial theorem, it is easy to see that

$$
\begin{align*}
f_{2 m} \equiv f_{m}^{2} \quad(\bmod 2) \tag{3.1}\\
f_{2 m}^{2} \equiv f_{m}^{4} \quad\left(\bmod 2^{2}\right) \tag{3.2}\\
f_{2 m}^{4} \equiv f_{m}^{8} \quad\left(\bmod 2^{3}\right) \tag{3.3}\\
f_{3 m} \equiv f_{m}^{3} \quad(\bmod 3) \tag{3.4}\\
f_{3 m}^{3} \equiv f_{m}^{9} \quad\left(\bmod 3^{2}\right), \tag{3.5}\\
f_{3 m}^{9} \equiv f_{m}^{27} \quad\left(\bmod 3^{3}\right) \tag{3.6}
\end{align*}
$$

Theorem 3.1. For $\alpha \geq 0$ and $n \geq 0$,

$$
\begin{align*}
\bar{p}_{3}\left(12 \cdot 2^{\alpha} n\right) & \equiv \bar{p}_{3}(6 n) \quad(\bmod 9), \tag{3.7}\\
\bar{p}_{3}\left(4 \cdot 3^{\alpha+3} n+2 \cdot 3^{\alpha+3}\right) & \equiv \bar{p}_{3}(36 n+18) \quad(\bmod 9), \tag{3.8}\\
\bar{p}_{3}(12 n+6) & \equiv 6 \cdot \bar{p}_{3}(6 n+3) \quad(\bmod 9), \tag{3.9}\\
\bar{p}_{3}(108 n+18) & \equiv \bar{p}_{3}(36 n+6) \quad(\bmod 9), \tag{3.10}\\
\bar{p}_{3}(36 n+30) & \equiv 0 \quad(\bmod 9), \tag{3.11}\\
\bar{p}_{3}(6 n+4) & \equiv 0 \quad(\bmod 18) . \tag{3.12}
\end{align*}
$$

Proof. We have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(n) q^{n}=\frac{f_{2} f_{6}}{f_{1}^{2} f_{3}^{2}} \tag{3.13}
\end{equation*}
$$

Substituting (2.13) in (3.13), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(n) q^{n}=\frac{f_{6}^{5} f_{9}^{6}}{f_{3}^{10} f_{18}^{3}}+2 q \frac{f_{6}^{4} f_{9}^{3}}{f_{3}^{9}}+4 q^{2} \frac{f_{6}^{3} f_{18}^{3}}{f_{3}^{8}} \tag{3.14}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+1}$, dividing by q and replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n+1) q^{n}=2 \frac{f_{2}^{4} f_{3}^{3}}{f_{1}^{9}} \tag{3.15}
\end{equation*}
$$

Invoking (3.5) into (3.15), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n+1) q^{n} \equiv 2 f_{2}^{4} \quad(\bmod 18) \tag{3.16}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.16), we obtain (3.12).
From (3.14), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n) q^{n}=\frac{f_{2}^{5} f_{3}^{6}}{f_{1}^{10} f_{6}^{3}} \tag{3.17}
\end{equation*}
$$

Invoking (3.5) into (3.17), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n) q^{n} \equiv \frac{f_{3}^{3}}{f_{1} f_{2}^{4}} \quad(\bmod 9) \tag{3.18}
\end{equation*}
$$

Employing (2.3) into (3.18), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n) q^{n} \equiv \frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{6} f_{12}}+q \frac{f_{12}^{3}}{f_{2}^{4} f_{4}} \quad(\bmod 9) \tag{3.19}
\end{equation*}
$$

Extracting the terms involving $q^{2 n}$ from (3.19) and replacing q^{2} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n) q^{n} \equiv \frac{f_{2}^{3} f_{3}^{2}}{f_{1}^{6} f_{6}} \quad(\bmod 9) \tag{3.20}
\end{equation*}
$$

Invoking (3.5) into (3.20), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n) q^{n} \equiv \frac{f_{1}^{3} f_{2}^{3}}{f_{3} f_{6}} \quad(\bmod 9) \tag{3.21}
\end{equation*}
$$

Employing (2.6) into (3.21), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n) q^{n} \equiv \frac{f_{2}^{3} f_{4}^{3}}{f_{6} f_{12}}+6 q \frac{f_{2}^{5} f_{12}^{3}}{f_{4} f_{6}^{3}} \quad(\bmod 9) \tag{3.22}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.22), dividing by q and replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+6) q^{n} \equiv 6 \frac{f_{1}^{5} f_{6}^{3}}{f_{2} f_{3}^{3}} \quad(\bmod 9) \tag{3.23}
\end{equation*}
$$

Invoking (3.4) into (3.23), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+6) q^{n} \equiv 6 \frac{f_{1}^{2} f_{6}^{3}}{f_{2} f_{3}^{2}} \quad(\bmod 9) \tag{3.24}
\end{equation*}
$$

Replacing q by $-q$ in (2.11) and using the fact that

$$
\begin{equation*}
\phi(-q)=\frac{f_{1}^{2}}{f_{2}} \tag{3.25}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\frac{f_{1}^{2}}{f_{2}}=\frac{f_{9}^{2}}{f_{18}}-2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}} . \tag{3.26}
\end{equation*}
$$

Again employing (3.26) into (3.24), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+6) q^{n} \equiv 6 \frac{f_{6}^{3} f_{9}^{2}}{f_{3}^{2} f_{18}}-12 q \frac{f_{6}^{2} f_{18}^{2}}{f_{3} f_{9}} \quad(\bmod 9) \tag{3.27}
\end{equation*}
$$

Congruence (3.11) follows by extracting the terms involving $q^{3 n+2}$ on both sides of (3.27).

Extracting the terms involving $q^{3 n+1}$ from (3.27) and dividing by q, then replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(36 n+18) q^{n} \equiv 6 \frac{f_{2}^{2} f_{6}^{2}}{f_{1} f_{3}} \quad(\bmod 9) \tag{3.28}
\end{equation*}
$$

It follows from (2.12) that

$$
\begin{equation*}
\frac{f_{2}^{2}}{f_{1}}=\frac{f_{6} f_{9}^{2}}{f_{3} f_{18}}+q \frac{f_{18}^{2}}{f_{9}} . \tag{3.29}
\end{equation*}
$$

Employing (3.29) into (3.28), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(36 n+18) q^{n} \equiv 6 \frac{f_{6}^{3} f_{9}^{2}}{f_{3}^{2} f_{18}}+6 q \frac{f_{6}^{2} f_{18}^{2}}{f_{3} f_{9}} \quad(\bmod 9) \tag{3.30}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+1}$ from (3.30) and dividing by q, then replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(108 n+54) q^{n} \equiv 6 \frac{f_{2}^{2} f_{6}^{2}}{f_{1} f_{3}} \quad(\bmod 9) \tag{3.31}
\end{equation*}
$$

In view of congruences (3.28) and (3.31), we have

$$
\begin{equation*}
\bar{p}_{3}(108 n+54) \equiv \bar{p}_{3}(36 n+18) \quad(\bmod 9) . \tag{3.32}
\end{equation*}
$$

Utilizing (3.32) and by mathematical induction on α, we get (3.8).
Extracting the terms involving $q^{3 n}$ from (3.27) and replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(36 n+6) q^{n} \equiv 6 \frac{f_{2}^{3} f_{3}^{2}}{f_{1}^{2} f_{6}} \quad(\bmod 9) \tag{3.33}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}$ from (3.30) and replacing q^{3} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(108 n+18) q^{n} \equiv 6 \frac{f_{2}^{3} f_{3}^{2}}{f_{1}^{2} f_{6}} \quad(\bmod 9) \tag{3.34}
\end{equation*}
$$

In view of congruences (3.33) and (3.34), we arrive at (3.10).
Extracting the terms involving $q^{2 n}$ from both sides of (3.22) and then replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n) q^{n} \equiv \frac{f_{1}^{3} f_{2}^{3}}{f_{3} f_{6}} \quad(\bmod 9) \tag{3.35}
\end{equation*}
$$

In view of congruences (3.21) and (3.35), we have

$$
\begin{equation*}
\bar{p}_{3}(12 n) \equiv \bar{p}_{3}(6 n) \quad(\bmod 9) . \tag{3.36}
\end{equation*}
$$

Utilizing (3.36) and by mathematical induction on α, we arrive at (3.7).
Extracting the terms involving $q^{2 n+1}$ from (3.19) and dividing by q, then replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+3) q^{n} \equiv \frac{f_{6}^{3}}{f_{1}^{4} f_{2}} \quad(\bmod 9) . \tag{3.37}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.22) and dividing by q, then replacing q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+6) q^{n} \equiv 6 \frac{f_{1}^{5} f_{6}^{3}}{f_{2} f_{3}^{3}} \quad(\bmod 9) \tag{3.38}
\end{equation*}
$$

Invoking (3.5) into (3.38), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+6) q^{n} \equiv 6 \frac{f_{6}^{3}}{f_{1}^{4} f_{2}} \quad(\bmod 9) \tag{3.39}
\end{equation*}
$$

In view of congruences (3.37) and (3.39), we arrive at (3.9).

Theorem 3.2. For $\alpha \geq 0$ and $n \geq 0$,

$$
\begin{equation*}
\bar{p}_{3}\left(6 \cdot 5^{2 \alpha+4} n+(30 i+25) 5^{2 \alpha+2}\right) \equiv 0 \quad(\bmod 18) \tag{3.40}
\end{equation*}
$$

where $i=1,2,3,4$.
Proof. Extracting the terms involving $q^{2 n}$ from (3.16) and replacing q^{2} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+1) q^{n} \equiv 2 f_{1}^{4} \quad(\bmod 18) \tag{3.41}
\end{equation*}
$$

Employing (2.1) into (3.41) and extracting the terms involving $q^{5 n+4}$, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(30 n+25) q^{n} \equiv 8 f_{5}^{4} \quad(\bmod 18) \tag{3.42}
\end{equation*}
$$

Extracting the terms involving $q^{5 n}$ from (3.42) and replacing q^{5} by q, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(150 n+25) q^{n} \equiv 8 f_{1}^{4} \quad(\bmod 18) \tag{3.43}
\end{equation*}
$$

From (3.41) and (3.43), we find that

$$
\begin{equation*}
\bar{p}_{3}(150 n+25) \equiv 4 \bar{p}_{3}(6 n+1) \quad(\bmod 18) \tag{3.44}
\end{equation*}
$$

Utilizing (3.44) and by mathematical induction on α, we obtain

$$
\begin{equation*}
\bar{p}_{3}\left(6 \cdot 5^{2 \alpha+2} n+5^{2 \alpha+2}\right) \equiv 4^{\alpha+1} \bar{p}_{3}(6 n+1) \quad(\bmod 18) . \tag{3.45}
\end{equation*}
$$

From (3.42), we get

$$
\begin{equation*}
\bar{p}_{3}(150 n+30 i+25) \equiv 0 \quad(\bmod 18), \quad i=1,2,3,4 . \tag{3.46}
\end{equation*}
$$

Using (3.45) and (3.46), we obtain (3.40).
Theorem 3.3. For $\alpha \geq 0$ and $n \geq 0$,

$$
\begin{align*}
\bar{p}_{3}(12 n+10) & \equiv 0 \quad(\bmod 27), \tag{3.47}\\
\bar{p}_{3}\left(3 \cdot 4^{\alpha+2} n+10 \cdot 4^{\alpha+1}\right) & \equiv 0 \quad(\bmod 27) . \tag{3.48}
\end{align*}
$$

Proof. From (3.15), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n+1) q^{n}=2 f_{2}^{4}\left(\frac{f_{3}}{f_{1}^{3}}\right)^{3} \tag{3.49}
\end{equation*}
$$

Employing (2.4) into (3.49) and invoking (3.6), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n+1) q^{n} \equiv 2 \frac{f_{4}^{18} f_{6}^{9}}{f_{2}^{23} f_{12}^{6}}+18 q \frac{f_{4}^{14} f_{6}^{7}}{f_{2}^{21} f_{12}^{2}} \quad(\bmod 27) \tag{3.50}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.50), dividing by q and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+4) q^{n} \equiv 18 \frac{f_{2}^{14} f_{3}^{7}}{f_{1}^{21} f_{6}^{2}} \quad(\bmod 27) \tag{3.51}
\end{equation*}
$$

Invoking (3.4) into (3.51), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+4) q^{n} \equiv 18 f_{2}^{5} f_{6} \quad(\bmod 27) \tag{3.52}
\end{equation*}
$$

Congruence (3.47) follows by extracting the terms involving $q^{2 n+1}$ from both sides of (3.52).

Extracting the terms involving $q^{2 n}$ from (3.52) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+4) q^{n} \equiv 18 f_{1}^{5} f_{3} \quad(\bmod 27) \tag{3.53}
\end{equation*}
$$

Using (3.4) into (3.53), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+4) q^{n} \equiv 18 f_{1}^{8} \quad(\bmod 27) \tag{3.54}
\end{equation*}
$$

Invoking (2.9) into (3.54), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+4) q^{n} \equiv 18 \frac{f_{4}^{20}}{f_{2}^{4} f_{8}^{8}}+18 q^{2} \frac{f_{2}^{4} f_{8}^{8}}{f_{4}^{4}}+18 q f_{4}^{8} \quad(\bmod 27) \tag{3.55}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.55), dividing by q and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(24 n+16) q^{n} \equiv 18 f_{2}^{8} \quad(\bmod 27) \tag{3.56}
\end{equation*}
$$

We can rewrite the above equation as

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(24 n+16) q^{n} \equiv 18 f_{2}^{5} f_{6} \quad(\bmod 27) \tag{3.57}
\end{equation*}
$$

In view of congruences (3.52) and (3.57), we have

$$
\begin{equation*}
\bar{p}_{3}(6 n+4) \equiv \bar{p}_{3}(24 n+16) \quad(\bmod 27) . \tag{3.58}
\end{equation*}
$$

Utilizing (3.58) and by mathematical induction on α, we arrive at

$$
\begin{equation*}
\bar{p}_{3}(6 n+4) \equiv \bar{p}_{3}\left(6 \cdot 4^{\alpha+1} n+4^{\alpha+2}\right) \quad(\bmod 27) \tag{3.59}
\end{equation*}
$$

Using (3.59) and (3.47), we get (3.48).
Theorem 3.4. For each $\alpha \geq 0$ and $n \geq 0$,

$$
\begin{align*}
\bar{p}_{3}\left(3^{\alpha} n\right) & \equiv \bar{p}_{3}(n) \quad(\bmod 8), \tag{3.60}\\
\bar{p}_{3}(18 n+6) & \equiv 2 \bar{p}_{3}(9 n+3) \quad(\bmod 8), \tag{3.61}\\
\bar{p}_{3}\left(3 \cdot 4^{\alpha+1} n+10 \cdot 4^{\alpha}\right) & \equiv 0 \quad(\bmod 16), \tag{3.62}\\
\bar{p}_{3}\left(6 \cdot 4^{\alpha+1} n+5 \cdot 4^{\alpha+1}\right) & \equiv 0 \quad(\bmod 32), \tag{3.63}\\
\bar{p}_{3}(6 n+5) & \equiv 0 \quad(\bmod 32), \tag{3.64}\\
\bar{p}_{3}(18 n+15) & \equiv 0 \quad(\bmod 8) . \tag{3.65}
\end{align*}
$$

Proof. Invoking (3.3) into (3.17), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n) q^{n} \equiv \frac{f_{2} f_{6}}{f_{1}^{2} f_{3}^{2}} \quad(\bmod 8) \tag{3.66}
\end{equation*}
$$

In view of congruences (3.13) and (3.66), we have

$$
\begin{equation*}
\bar{p}_{3}(3 n) \equiv \bar{p}_{3}(n) \quad(\bmod 8) . \tag{3.67}
\end{equation*}
$$

Utilizing (3.67) and by mathematical induction on α, we arrive at (3.60).
Invoking (3.3) into (3.15), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n+1) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 16) \tag{3.68}
\end{equation*}
$$

Using (2.3) in (3.68) and extracting the terms involving $q^{2 n+1}$, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+4) q^{n} \equiv 2 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 16), \tag{3.69}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\bar{p}_{3}(12 n+10) \equiv 0 \quad(\bmod 16) \tag{3.70}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+4) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 16) \tag{3.71}
\end{equation*}
$$

Using (3.68) and (3.71), we find that

$$
\begin{equation*}
\bar{p}_{3}(12 n+4) \equiv \bar{p}_{3}(3 n+1) \quad(\bmod 16) \tag{3.72}
\end{equation*}
$$

By mathematical induction on α, we get

$$
\begin{equation*}
\bar{p}_{3}\left(3 \cdot 4^{\alpha+1} n+4^{\alpha+1}\right) \equiv \bar{p}_{3}(3 n+1) \quad(\bmod 16) \tag{3.73}
\end{equation*}
$$

Congruence (3.62) follows from (3.70) and (3.73).
Equating the terms containing $q^{3 n+2}$ from both sides of (3.14), dividing by q^{2} and then replacing q^{3} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n+2) q^{n}=4 \frac{f_{2}^{3} f_{6}^{3}}{f_{1}^{8}} \tag{3.74}
\end{equation*}
$$

Invoking (3.3) into (3.74), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n+2) q^{n} \equiv 4 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 32) \tag{3.75}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\bar{p}_{3}(6 n+5) \equiv 0 \quad(\bmod 32) \tag{3.76}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+2) q^{n} \equiv 4 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 32) \tag{3.77}
\end{equation*}
$$

Employing (2.3) into (3.77), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+2) q^{n} \equiv 4 \frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+4 q \frac{f_{12}^{3}}{f_{4}} \quad(\bmod 32) \tag{3.78}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.78), dividing by q and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(12 n+8) q^{n} \equiv 4 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 32) \tag{3.79}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\bar{p}_{3}(24 n+20) \equiv 0 \quad(\bmod 32) \tag{3.80}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(24 n+8) q^{n} \equiv 4 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 32) \tag{3.81}
\end{equation*}
$$

In view of congruences (3.77) and (3.81), and by mathematical induction on α, we find that

$$
\begin{equation*}
\bar{p}_{3}\left(6 \cdot 4^{\alpha+1} n+2 \cdot 4^{\alpha+1}\right) \equiv \bar{p}_{3}(6 n+2) \quad(\bmod 32) \tag{3.82}
\end{equation*}
$$

Congruence (3.63) follows from (3.80) and (3.82).
Invoking (3.3) into (3.17), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n) q^{n} \equiv \frac{f_{2} f_{3}^{6}}{f_{1}^{2} f_{6}^{3}} \quad(\bmod 8) \tag{3.83}
\end{equation*}
$$

Employing (2.13) into (3.83), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(3 n) q^{n} \equiv \frac{f_{6} f_{9}^{6}}{f_{3}^{2} f_{18}^{3}}+2 q \frac{f_{9}^{3}}{f_{3}}+4 q^{2} \frac{f_{18}^{3}}{f_{6}} \quad(\bmod 8) \tag{3.84}
\end{equation*}
$$

Extracting the terms involving $q^{3 n+2}$ from (3.84), dividing by q^{2} and replacing q^{3} by q, we get

$$
\sum_{n=0}^{\infty} \bar{p}_{3}(9 n+6) q^{n} \equiv 4 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 8)
$$

which implies

$$
\begin{equation*}
\bar{p}_{3}(18 n+15) \equiv 0 \quad(\bmod 8) \tag{3.85}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(18 n+6) q^{n} \equiv 4 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 8) \tag{3.86}
\end{equation*}
$$

Again extracting the terms involving $q^{3 n+1}$ from (3.84), dividing by q and replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(9 n+3) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 8) \tag{3.87}
\end{equation*}
$$

Congruence (3.61) follows from (3.86) and (3.87).
Theorem 3.5. For $\alpha \geq 0$ and $n \geq 0$,

$$
\begin{gather*}
\bar{p}_{3}\left(4^{\alpha} n\right) \equiv \bar{p}_{3}(n) \quad(\bmod 4), \tag{3.88}\\
\bar{p}_{3}(6(4 n+i)+1) \equiv 0 \quad(\bmod 4), \tag{3.89}
\end{gather*}
$$

where $i=1,2,3$.

$$
\begin{equation*}
\bar{p}_{3}\left(24 \cdot 25^{\alpha+2} n+(120 j+25) \cdot 25^{\alpha+1}\right) \equiv 0 \quad(\bmod 4), \tag{3.90}
\end{equation*}
$$

where $j=1,2,3,4$.

$$
\begin{align*}
\bar{p}_{3}\left(2^{2 \alpha+2} n+2^{2 \alpha+1}\right) & \equiv 0 \quad(\bmod 4), \tag{3.91}\\
\bar{p}_{3}\left(2 \cdot 3^{\alpha+2} n+5 \cdot 3^{\alpha+1}\right) & \equiv 0 \quad(\bmod 16), \tag{3.92}\\
\bar{p}_{3}(6 n+5) & \equiv 0 \quad(\bmod 16) . \tag{3.93}
\end{align*}
$$

Proof. Employing (2.8) into (3.13), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(n) q^{n}=\frac{f_{8}^{5} f_{24}^{5}}{f_{2}^{4} f_{6}^{4} f_{16}^{2} f_{48}^{2}}+2 q \frac{f_{4}^{4} f_{12}^{4}}{f_{2}^{5} f_{6}^{5}}+4 q^{4} \frac{f_{4}^{2} f_{12}^{2} f_{16}^{4} f_{48}^{2}}{f_{2}^{4} f_{6}^{4} f_{8} f_{24}} \tag{3.94}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.94), dividing by q and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(2 n+1) q^{n}=2 \frac{f_{2}^{4} f_{6}^{4}}{f_{1}^{5} f_{3}^{5}} \tag{3.95}
\end{equation*}
$$

Invoking (3.3) into (3.95), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(2 n+1) q^{n} \equiv 2 f_{1}^{3} f_{3}^{3} \quad(\bmod 16) \tag{3.96}
\end{equation*}
$$

Employing (2.10) into (3.96), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(2 n+1) q^{n} \equiv 2 \frac{f_{3}^{2} f_{6} f_{9}^{6}}{f_{18}^{3}}+8 q^{3} \frac{f_{3}^{5} f_{18}^{6}}{f_{6}^{2} f_{9}^{3}}-6 q f_{3}^{3} f_{9}^{3} \quad(\bmod 16) . \tag{3.97}
\end{equation*}
$$

Congruence (3.93) follows by extracting the terms involving $q^{3 n+2}$ on both sides of (3.97).

Extracting the terms involving $q^{3 n+1}$ from (3.97), dividing by q and replac$\operatorname{ing} q^{3}$ by q, we get

$$
\begin{equation*}
\bar{p}_{3}(6 n+3) q^{n} \equiv 10 f_{1}^{3} f_{3}^{3} \quad(\bmod 16) \tag{3.98}
\end{equation*}
$$

Using (3.96) and (3.98), we have

$$
\begin{equation*}
\bar{p}_{3}(6 n+3) \equiv 5 \bar{p}_{3}(2 n+1) \quad(\bmod 16) \tag{3.99}
\end{equation*}
$$

Utilizing (3.99) and by mathematical induction on α, we get

$$
\begin{equation*}
\bar{p}_{3}\left(6 \cdot 3^{\alpha} n+3^{\alpha+1}\right) \equiv 5^{\alpha+1} \bar{p}_{3}(2 n+1) \quad(\bmod 16) \tag{3.100}
\end{equation*}
$$

Using (3.100) and (3.93), we get (3.92).

Extracting the terms involving $q^{2 n}$ from (3.94) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(2 n) q^{n}=\frac{f_{4}^{5} f_{12}^{5}}{f_{1}^{4} f_{3}^{4} f_{8}^{2} f_{24}^{2}}+4 q^{2} \frac{f_{2}^{2} f_{6}^{2} f_{8}^{4} f_{24}^{2}}{f_{1}^{4} f_{3}^{4} f_{4} f_{12}} \tag{3.101}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(2 n) q^{n} \equiv \frac{f_{4}^{5} f_{12}^{5}}{f_{1}^{4} f_{3}^{4} f_{8}^{2} f_{24}^{2}} \quad(\bmod 4) \tag{3.102}
\end{equation*}
$$

Invoking (3.2) into (3.102), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(2 n) q^{n} \equiv \frac{f_{4} f_{12}}{f_{2}^{2} f_{6}^{2}} \quad(\bmod 4) \tag{3.103}
\end{equation*}
$$

Extracting the terms involving $q^{2 n+1}$ from (3.103), we obtain

$$
\begin{equation*}
\bar{p}_{3}(4 n+2) \equiv 0 \quad(\bmod 4) \tag{3.104}
\end{equation*}
$$

Again extracting the terms involving $q^{2 n}$ from (3.103) and replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(4 n) q^{n} \equiv \frac{f_{2} f_{6}}{f_{1}^{2} f_{3}^{2}} \quad(\bmod 4) \tag{3.105}
\end{equation*}
$$

In view of congruences (3.13) and (3.105), we have

$$
\begin{equation*}
\bar{p}_{3}(4 n) \equiv \bar{p}_{3}(n) \quad(\bmod 4) . \tag{3.106}
\end{equation*}
$$

Utilizing (3.106) and by mathematical induction on α, we get (3.88). Using (3.104) in (3.88), we obtain (3.91).

Extracting the terms involving $q^{3 n}$ from (3.97) and replacing q^{3} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+1) q^{n} \equiv 2 \frac{f_{1}^{2} f_{2} f_{3}^{6}}{f_{6}^{3}}+8 q \frac{f_{1}^{5} f_{6}^{6}}{f_{2}^{2} f_{3}^{3}} \quad(\bmod 16) \tag{3.107}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+1) q^{n} \equiv 2 \frac{f_{1}^{2} f_{2} f_{3}^{6}}{f_{6}^{3}} \quad(\bmod 4) \tag{3.108}
\end{equation*}
$$

Invoking (3.1) into (3.108), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(6 n+1) q^{n} \equiv 2 f_{4} \quad(\bmod 4) \tag{3.109}
\end{equation*}
$$

Congruence (3.89) follows by extracting the terms involving $q^{4 n+i}$ on both sides of (3.109).

Extracting the terms involving $q^{4 n}$ from (3.109) and replacing q^{4} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(24 n+1) q^{n} \equiv 2 f_{1} \quad(\bmod 4) \tag{3.110}
\end{equation*}
$$

Employing (2.1) into (3.110) and extracting the term $q^{5 n+1}$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(120 n+25) q^{n} \equiv 2 f_{5} \quad(\bmod 4) \tag{3.111}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+i}$ from (3.111), we get

$$
\begin{equation*}
\bar{p}_{3}(600 n+120 i+25) \equiv 0 \quad(\bmod 4), \quad i=1,2,3,4 \tag{3.112}
\end{equation*}
$$

Extracting the terms involving $q^{5 n}$ from (3.111) and replacing q^{5} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{3}(600 n+25) q^{n} \equiv 2 f_{1} \quad(\bmod 4) \tag{3.113}
\end{equation*}
$$

Using (3.110) and (3.113), we get

$$
\begin{equation*}
\bar{p}_{3}(600 n+25) \equiv \bar{p}_{3}(24 n+1) \quad(\bmod 4) \tag{3.114}
\end{equation*}
$$

Utilizing (3.114) and by mathematical induction on α, we get

$$
\begin{equation*}
\bar{p}_{3}\left(600 \cdot 25^{\alpha} n+25^{\alpha+1}\right) \equiv \bar{p}_{3}(24 n+1) \quad(\bmod 4) \tag{3.115}
\end{equation*}
$$

Utilizing (3.112) and (3.115), we get (3.90).

Acknowledgement: This research was partially supported by DST Govt. of India under the project grant SR/S4/MS:739/11.

References

[1] B. C. Berndt, Ramanujan's Notebooks, PartIII, Springer-Verlag, New York, 1991.
[2] M. D. Hirschhorn, F. Garvan and J. Borwein, Cubic analogues of the Jacobian theta function $\theta(z, q)$, Canad.J.Math., 45 (1993), 673-694.
[3] M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partition with odd parts distinct, RamanujanJ., 22 (2010), 273-284.
[4] N. D. Baruah and K. K. Ojah, Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations, RamanujanJ., 28 (2012), 385-407.
[5] N. D. Baruah and K. K. Ojah, Partitions with designated summands in which all parts are odd, Integers, 15 (2015), \#A9.
[6] S. Corteel and J. Lovejoy, Overpartitions, Trans.Amer.Math.Soc., 356 (2004), 1623-1634.
[7] S. Ramanujan, Collected papers, Cambridge university Press, Cambridge (1927), reprinted by Chelsea, New York (1962), reprinted by the American mathematical society, Providence, RI, 2000.

[^0]: *2010 Mathematics Subject Classification. Primary 11P83, 05A15, 05A17.
 ${ }^{\dagger}$ Corresponding author. E-mail: msmnaika@rediffmail.com
 ${ }^{\ddagger}$ E-mail: shivprasadnayaks@gmail.com
 §E-mail: shankars224@gmail.com

