Generalization on uniqueness of non-linear differential polynomials sharing 1-points *

Harina P.Waghamore ${ }^{\dagger}$
Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560 056, INDIA. and Husna V. \ddagger
Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560 056, INDIA.

Received January 6, 2016, Accepted April 19, 2016.

Abstract

In this paper, we generalize two theorems on the uniqueness of nonlinear differential polynomials sharing 1-points, which improves a result of Indrajit Lahiri and Pulak Sahoo[14].

Keywords and Phrases: Uniqueness, meromorphic function, non-linear differential polynomial.

[^0]
1. Introduction and main results

Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C}. Let k be a positive integer or infinity and $a \in\{\infty\} \cup \mathbb{C}$. We denote by $E_{k)}(a ; f)$ the set of all a-points of f with multiplicities not exceeding k, where an a-point is counted according to its multiplicity. If for some $a \in\{\infty\} \cup \mathbb{C}, E_{\infty}(a ; f)=E_{\infty)}(a ; g)$, then we say that f, g share the value $a \mathrm{CM}$ (counting multiplicities).

In $[3,5]$, the problem of uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points was studied. Also in [3] the following question was asked: What can be said if two non-linear differential polynomials generated by two meromorphic functions share 1 CM ?

In the meantime some works have been done in this direction (cf.[1,7]). In 2001, Fang and Hong [1] have proved the following result.

Theorem $\mathbf{A}([\mathbf{1}])$. Let f and g be two transcendental entire functions and $n(\geq 11)$ be an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share 1 CM , then $f \equiv g$.

In 2005, Indrajit Lahiri and Pulak Sahoo [14] have proved the following result.

Theorem $\mathbf{B}([\mathbf{1 4}])$. Let f and g be two transcendental entire functions and $n(\geq 7)$ be an integer. If $E_{3)}\left(1 ; f^{n}(f-1) f^{\prime}\right)=E_{3)}\left(1 ; g^{n}(g-1) g^{\prime}\right)$, then $f \equiv g$.

Theorem $\mathbf{C}([\mathbf{1 4}])$. Let f and g be two transcendental meromorphic functions such that $\Theta(\infty ; f)>0, \Theta(\infty ; g)>0, \Theta(\infty ; f)+\Theta(\infty ; g)>\frac{4}{n+1}$, and $n(\geq 11)$ be an integer. If $E_{3)}\left(1 ; f^{n}(f-1) f^{\prime}\right)=E_{3)}\left(1 ; g^{n}(g-1) g^{\prime}\right)$, then $f \equiv g$.

Definition 1.1([4]). For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $N(r, a ; f \mid=1)$ the
counting functions of simple a-points of f.
For a positive integer m we denote by $N(r, a ; f \mid \leq m)(N(r, a ; f \mid \geq m))$ the counting function of those a-points of f whose multiplicities are not greater(less) than m, where each a-point is counted according to its multiplicity.
$\bar{N}(r, a ; f \mid \leq m)$ and $\bar{N}(r, a ; f \mid \geq m)$ are defined similarly, where in counting the a-points of f we ignore the multiplicities.

Also $N(r, a ; f \mid<m), N(r, a ; f \mid>m), \bar{N}(r, a ; f \mid<m)$ and $\bar{N}(r, a ; f \mid>m)$ are defined analogously.

Definition 1.2([cf. [12]]). For $a \in \mathbb{C} \cup\{\infty\}$ we put

$$
N_{2}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)
$$

In this paper we prove the following theorems which improves Theorem B and Theorem C.

Theorem 1.1. Let f and g be two transcendental entire functions and $n(\geq$ $5+2 m), m \geq 1$, are integers. If $E_{3)}\left(1 ; f^{n}\left(f^{m}-1\right) f^{\prime}\right)=E_{3)}\left(1 ; g^{n}\left(g^{m}-1\right) g^{\prime}\right)$, then $f \equiv g$.

Theorem 1.2. Let f and g be two transcendental meromorphic functions such that $\Theta(\infty ; f)>0, \Theta(\infty ; g)>0, \Theta(\infty ; f)+\Theta(\infty ; g)>\frac{4}{n+1}$, and $n(\geq$ $9+2 m), m \geq 1$ are integers. If $E_{3)}\left(1 ; f^{n}\left(f^{m}-1\right) f^{\prime}\right)=E_{3)}\left(1 ; g^{n}\left(g^{m}-1\right) g^{\prime}\right)$, then $f \equiv g$.

2. Some Lemmas

We denote by h the function

$$
h=\left(\frac{f^{\prime \prime}}{f^{\prime}}-\frac{2 f^{\prime}}{f-1}\right)-\left(\frac{g^{\prime \prime}}{g^{\prime}}-\frac{2 g^{\prime}}{g-1}\right) .
$$

Lemma $2.1([8,10])$. If f and g share 1 CM , then one of the following cases holds:
(i) $T(r, f)+T(r, g) \leq 2\left\{N_{2}(r, 0 ; f)+N_{2}(r, 0 ; g)+N_{2}(r, \infty ; f)+N_{2}(r, \infty ; g)\right\}+$ $S(r, f)+S(r, g)$,
(ii) $f \equiv g$, (iii) $f g \equiv 1$.

Lemma 2.2 $([\mathbf{1 4}])$. If $E_{3)}(1 ; f)=E_{3)}(1 ; g)$, then the conclusion of Lemma 2.1 holds.

Lemma 2.3([14]). Let f and g be two nonconstant meromorphic functions such that $\Theta(\infty ; f)+\Theta(\infty ; g)>\frac{4}{n+1}$, where $n(\geq 2)$ is an integer. Then $f^{n+1}(a f+b) \equiv g^{n+1}(a g+b)$ implies $f \equiv g$, where a, b are finite nonzero constants and n is an integer.
Lemma 2.4. Let f and g be nonconstant meromorphic functions. Then $f^{n}\left(f^{m}-1\right) f^{\prime} g^{n}\left(g^{m}-1\right) g^{\prime} \not \equiv 1$, where n is an integer.

Proof. If possible, let

$$
f^{n}\left(f^{m}-1\right) f^{\prime} g^{n}\left(g^{m}-1\right) g^{\prime} \equiv 1 .
$$

Let z_{0} be an 1-point of f with multiplicity $p(\geq 1)$. Then z_{0} is a pole of g with multiplicity $q(\geq 1)$, such that

$$
m p+p-1=(n+m+1) q+1
$$

$$
(m+1) p=(n+m+1) q+2 \geq n+m+3
$$

i.e., $\quad p \geq \frac{n+m+3}{m+1}$.

Let z_{0} be a zero of f with multiplicity $p(\geq 1)$ and it be a pole of g with multiplicity $q(\geq 1)$. Then
$n p+p-1=n q+m q+q+1$
i.e, $(n+1)(p-q)=m q+2$
i.e, $\quad p \geq \frac{n+m-1}{m}$.

Since a pole of f is either a zero of $g(g-1)$ or a zero of g^{\prime}, we see that

$$
\begin{aligned}
\bar{N}(r, \infty ; f) & \leq \bar{N}(r, 0 ; g)+\bar{N}(r, 1 ; g)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
& \leq \frac{m}{n+m-1} N(r, 0 ; g)+\frac{m+1}{n+m+3} N(r, 1 ; g)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
& \leq\left(\frac{m}{n+m-1}+\frac{m+1}{n+m+3}\right) T(r, g)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)
\end{aligned}
$$

Now by the second fundamental theorem we obtain

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, 0 ; f)+\bar{N}(r, 1 ; f)+\bar{N}(r, \infty ; f)-\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f) \\
& \leq \frac{m}{n+m-1} N(r, 0 ; f)+\frac{m+1}{n+m+3} N(r, 1 ; f)+\bar{N}(r, \infty ; f) \\
& -\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f)
\end{aligned}
$$

i.e.,

$$
\begin{align*}
\left(1-\frac{m}{n+m-1}-\frac{m+1}{n+m+3}\right) T(r, f) & \leq\left(\frac{m}{n+m-1}+\frac{m+1}{n+m+3}\right) T(r, g) \tag{1}\\
& +\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)-\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f)
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
\left(1-\frac{m}{n+m-1}-\frac{m+1}{n+m+3}\right) T(r, g) & \leq\left(\frac{m}{n+m-1}+\frac{m+1}{n+m+3}\right) T(r, f) \tag{2}\\
& +\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)-\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+S(r, g)
\end{align*}
$$

Adding (1) and (2) we get

$$
\left(1-\frac{2 m}{n+m-1}-\frac{2(m+1)}{n+m+3}\right)\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)
$$

which is a contradiction because

$$
1-\frac{m}{n+m-1}-\frac{m+1}{n+m+3}>0 .
$$

This proves the lemma.
Lemma 2.5([9]). Let f be a nonconstant meromorphic function and $P(f)=$ $a_{0}+a_{1} f+a_{2} f^{2}+\ldots+a_{n} f^{n}$, where $a_{0}, a_{1}, \ldots, a_{n}$ are constants and $a_{n} \neq 0$. Then $T(r, P(f))=n T(r, f)+O(1)$.
Lemma 2.6([11]). Let f be a nonconstant meromorphic function. Then
$N\left(r, 0 ; f^{(k)}\right) \leq k \bar{N}(r, \infty ; f)+N(r, 0 ; f)+S(r, f)$.
Lemma 2.7. Let f and g be two nonconstant meromorphic functions and $F=f^{n+1}\left(\frac{f^{m}}{n+m+1}-\frac{1}{n+1}\right)$ and $G=g^{n+1}\left(\frac{g^{m}}{n+m+1}-\frac{1}{n+1}\right)$, where $n(\geq 5-m)$ is an integer. Then $F^{\prime} \equiv G^{\prime}$ implies $F \equiv G$.

Proof. If $F^{\prime} \equiv G^{\prime}$ then $F=G+c$, where c is a constant. If possible, let $c \neq 0$. Then by the second fundamental theorem and Lemma 2.5 we get

$$
\begin{aligned}
(n+m+1) T(r, f) & \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+\bar{N}(r, c ; F)+S(r, f) \\
& =\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; f)+\bar{N}\left(r, \frac{n+m+1}{n+1} ; f\right) \\
& +\bar{N}(r, 0 ; g)+\bar{N}\left(r, \frac{n+m+1}{n+1} ; g\right)+S(r, f) \\
& \leq 3 T(r, f)+2 T(r, g)+S(r, f)
\end{aligned}
$$

i.e.,

$$
(n+m-2) T(r, f) \leq 2 T(r, g)+S(r, f)
$$

Similarly, we get

$$
(n+m-2) T(r, g) \leq 2 T(r, f)+S(r, g)
$$

This shows that

$$
(n+m-4) T(r, f)+(n+m-4) T(r, g) \leq S(r, f)+S(r, g)
$$

which is a contradiction.
Therefore $c=0$ and so $F \equiv G$.
This proves the Lemma.

3. Proof of Theorems

Proof of Theorem 1.2. Let F and G be defined as in Lemma 2.7. Now in view of the first fundamental theorem and Lemma 2.5 we get

$$
\begin{aligned}
T(r, F) & =T\left(r, \frac{1}{F}\right)+O(1) \\
& =N\left(r, \frac{1}{F}\right)+m\left(r, \frac{1}{F}\right)+O(1) \\
& \leq N\left(r, \frac{1}{F}\right)+m\left(r, \frac{F^{\prime}}{F}\right)+m\left(r, \frac{1}{F^{\prime}}\right) \\
& =T\left(r, F^{\prime}\right)+N(r, 0 ; F)-N\left(r, 0 ; F^{\prime}\right)+S(r, F) \\
& =T\left(r, F^{\prime}\right)+(n+1) N(r, 0, f)+N\left(r, \frac{n+m+1}{n+1} ; f^{m}\right) \\
& -n N(r, 0 ; f)-N\left(r, 1 ; f^{m}\right)-N\left(r, 0 ; f^{\prime}\right)+S(r, f) \\
& =T\left(r, F^{\prime}\right)+N(r, 0 ; f)+N\left(r, \frac{n+m+1}{n+1} ; f^{m}\right) \\
& -N\left(r, 1 ; f^{m}\right)-N\left(r, 0 ; f^{\prime}\right)+S(r, f) .
\end{aligned}
$$

If possible, suppose that

$$
\begin{align*}
T\left(r, F^{\prime}\right)+T\left(r, G^{\prime}\right) & \leq 2\left\{N_{2}\left(r, 0 ; F^{\prime}\right)+N_{2}\left(r, 0 ; G^{\prime}\right)+N_{2}\left(r, \infty ; F^{\prime}\right)\right. \tag{3}\\
& \left.+N_{2}\left(r, \infty ; G^{\prime}\right)\right\}+S\left(r, F^{\prime}\right)+S\left(r, G^{\prime}\right)
\end{align*}
$$

Then we get by Lemma 2.6,

$$
\begin{aligned}
& T(r, F)+T(r, G) \leq T\left(r, F^{\prime}\right)+T\left(r, G^{\prime}\right)+N(r, 0 ; f)+N\left(r, \frac{n+m+1}{n+1} ; f^{m}\right) \\
&-N\left(r, 1 ; f^{m}\right)-N\left(r, 0 ; f^{\prime}\right)+N(r, 0 ; g)+N\left(r, \frac{n+m+1}{n+1} ; g^{m}\right) \\
&-N\left(r, 1 ; g^{m}\right)-N\left(r, 0 ; g^{\prime}\right)+S(r, f)+S(r, g) \\
& \leq 2 N_{2}\left(r, 0 ; F^{\prime}\right)+2 N_{2}\left(r, 0 ; G^{\prime}\right)+2 N_{2}\left(r, \infty ; F^{\prime}\right) \\
&+2 N_{2}\left(r, \infty ; G^{\prime}\right)+N(r, 0 ; f)+N\left(r, \frac{n+m+1}{n+1} ; f^{m}\right) \\
&-N\left(r, 1 ; f^{m}\right)-N\left(r, 0 ; f^{\prime}\right)+N(r, 0 ; g)+N\left(r, \frac{n+m+1}{n+1} ; g^{m}\right) \\
& \quad N\left(r, 1 ; g^{m}\right)-N\left(r, 0 ; g^{\prime}\right)+S(r, f)+S(r, g) \\
& \leq \\
& \leq \\
&+2 m T(r, f)+2 m T(r, f)+2 T(r, f)+2 \bar{N}(r, \infty ; f)+4 T(r, g) \\
&+ S(r, f)+S(r, g) \\
& \leq(6+2 m) T(r, f)+(6+2 m) T(r, g)+5 \bar{N}(r, \infty ; f) \\
&+5 \bar{N}(r, \infty ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

So by Lemma 2.5 we obtain

$$
\begin{align*}
(n-4-2 m) T(r, f)+(n-4-2 m) T(r, g) & \leq 5 \bar{N}(r, \infty ; f)+5 \bar{N}(r, \infty ; g) \tag{4}\\
& +S(r, f)+S(r, g)
\end{align*}
$$

Let us choose ϵ such that
$0<\epsilon<n-9-2 m+\min \{\Theta(\infty, f), \Theta(\infty, g)\}$.
Then from (4) we get
$(n-9-2 m+\Theta(\infty ; f)-\epsilon) T(r, f)+(n-9-2 m+\Theta(\infty ; g)-\epsilon) T(r, g) \leq S(r, f)+S(r, g)$,
which is a contradiction.
Therefore inequality (3) does not hold.
Since $E_{3)}\left(1 ; F^{\prime}\right)=E_{3)}\left(1 ; G^{\prime}\right)$ by Lemmas 2.2,2.3,2.4 and 2.7 we get $f \equiv g$. This proves the theorem.

Proof of Theorem 1.1.

If (3) holds, then from (4) we get
$(n-4-2 m) T(r, f)+(n-4-2 m) T(r, g) \leq S(r, f)+S(r, g)$
which is a contradiction.
Therefore inequality (3) does not hold.
Since
$E_{3)}\left(1 ; F^{\prime}\right)=E_{3)}\left(1 ; G^{\prime}\right)$, by Lemmas 2.2,2.3,2.4 and 2.7 we get $f \equiv g$.
This proves the theorem.

Acknowledgement: The author (HV) is grateful to the University Grants Commission (UGC), New Delhi, India for supporting her research work by providing her with a Maulana Azad National Fellowship (MANF).

References

[1] M.L.Fang and W.Hong, A unicity theorem for entire functions concerning differential polynomials. Indian J.Pure Appl.Math.32(2001), No.9, 1343-1348.
[2] W.K.Hayman, Meromorphic functions.Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
[3] I.Lahiri, Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points.Ann.Polon.Math.71(1999), No.2, 113-128.
[4] I.Lahiri, Value distribution of certain differential polynomials.Int.J.Math.Math.Sci.28(2001), No.2, 83-91.
[5] I.Lahiri,Linear differential polynomials sharing the same 1-points with weight two, Ann.Polon.Math.79(2002), No.2, 157-170.
[6] I.Lahiri, On a question of Hong Xun Yi.Arch.Math.(Brno) 38(2002), No.2, 119128.
[7] W.C.Lin,Uniqueness of differential polynomials and a problem of Lahiri.(Chinese) Pure Appl.Math.(Xi'an)17(2001), No.2, 104-110.
[8] E.Mues and M.Reinders,Meromorphic functions sharing one value and unique range sets.Kodai.Math.J.18(1995), No.3, 515-522.
[9] C.C.Yang, On deficiencies of differential polynomials II, Math.Z., 125(1972), 107-112.
[10] C.C.Yang and X.H.Hua, Uniqueness and value sharing of meromorphic functions. Ann.Acad.Sci.Fenn.Math.22(1997), No.2, 395-406.
[11] H.X.Yi, Uniqueness of meromorphic functions and a question of C.C.Yang .Complex Variables Theory Appl.14(1990), No.1-4, 169-176.
[12] H.X.Yi, On characteristic function of a meromorphic function and its derivative.Indian J.Math,33(1991), No.2, 119-133.
[13] H.X.Yi,Some further results on uniqueness of meromorphic functions.Complex Variables Theory Appl.38(1999), No.4, 375-385.
[14] I.Lahiri and Pulak Sahoo, Uniqueness of Non-linear differential polynomials sharing 1-points. Georgian Math.J.12(2005), No.1, 131-138.

[^0]: *2010 Mathematics Subject Classification. Primary 30D35.
 ${ }^{\dagger}$ Corresponding author. E-mail: harinapw@gmail.com ,harinapw@bub.ernet.in
 ${ }^{\ddagger}$ E-mail: husnav43@gmail.com , husnav@bub.ernet.in

