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Abstract

We introduce the notion of Dunkl positive de�nite and strictly pos-

itive de�nite functions on Rd. This done by the use of the properties

of Dunkl translation. We establish the analogue of Bochner's theorem

in Dunkl setting. The case of radial functions is considered. We give a

su�cient condition for a function to be Dunkl strictly positive de�nite

on Rd:

Keywords and Phrases: Positive de�nite functions, Dunkl transform, Dunkl
translation.

1. Introduction

In classical analysis a complex valued continuous function is said positive def-
inite (resp. strictly positive de�nite) on R, if for every distinct real numbers
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x1; x2; :::; xn and every complex numbers z1; z2; :::; zn not all zero, the inequality

nX
j=1

nX
k=1

zjzkf(xj � xk) � 0 (resp: > 0)

hold true. (see [7])
In 1930, the class of positive de�nite functions is fully characterized by

Bochner's theorem [1], the function f being positive de�nite if and only if it
is the Fourier transform of a nonnegative �nite Borel measure on the real line
R:

In this work, we introduce the analogue of positive de�nite function in
Dunkl setting. This done by the use of the properties of the Dunkl transla-
tion. We establish a version of Bochner's theorem in Dunkl setting. We give
a su�cient condition for a function in A�(R

d) to be Dunkl strictly positive
de�nite.

Our paper is organized as follows: In section 2, we present some prelimi-
naries results and notations that will be useful in the sequel. In section 3, we
give some properties of the Dunkl transform, the Dunkl translation and the
Dunkl convolution. In section 4, we introduce the notion of the Dunkl positive
de�nite functions in studying their properties, some examples are given. We
prove that if ' 2 A�(R

d) is Dunkl positive de�nite, then the Dunkl transform
of ' is nonnegative and ' is bounded. The case of radial function is considered.
We state a version of Bochner's theorem in Dunkl setting. As application, we
are interested with the Dunkl heat kernel , and we get a new equality for the
modi�ed Bessel function. The section 5 is devoted to Dunkl strictly positive
de�nite functions.

2. Notations and preliminaries

Let R be a �xed root system in Rd, G the associated �nite reexion group,
and R+ a �xed positive subsystem of R; normalized so that < �; � >= 2 for
all � 2 R+, where < x; y > denotes the usual Euclidean inner product.

For a non zero � 2 Rd, let use de�ne the reexion �� by

��x = x� 2
< x; � >

< �; � >
�; x 2 Rd:

Let � be a nonnegative multiplicity function � 7�! �� de�ned on R+ with the
property that �� = �� where �� is conjugate to �� in G. The weight function



Dunkl positive de�nite functions 3

h� est de�ned by

h�(x) =
Y
�2R+

j < x; � > j�� ; x 2 Rd: (1)

This is a nonegative homogeneous function of degre � =
X
�2R+

��, which is

invariant under the reexion group G:
Let Ti denote Dunkl's di�erential-di�erence operator de�ned in [2] by

Tif(x) = @if(x) +
X
�2R+

��
f(x)� f(��x)

< �; x >
< �; ei >; 1 � i � d; (2)

where @i is the ordinary partial derivative with respect to xi, and e1; e2; :::; ed
are the standard unit vectors of Rd: It was proved in [2] that T1; T2; :::; Td com-
mute. Therefore we can naturally de�ne P (T ) for any polynomial P , where
T = (T1; T2; :::; Td):
Let Pd

n denote the space of homogeneous polynomials of degree n in d�variables.
The operators Ti; 1 � i � d map Pd

n to Pd
n�1: The intertwinig operator V� is

linear and determined uniquely as

V�Pd
n � Pd

n; V�1 = 1; TiV� = V�@i; 1 � i � d: (3)

The Dunkl kernel E� associated with G and � is de�ned by

E�(x; y) = V� (e
<:;y>) (x); x; y 2 Rd: (4)

Proposition 1. (see[8]) Let y 2 Cd. Then the function f = E�(:; y) is the
unique solution of the system

Tif =< ei; y > f; for all 1 � i � d; (5)

which is real-analytic in Rd and satis�es f(0) = 1:

We collect some further properties of the Dunkl kernel E�

Proposition 2. (see[4],[8]) For x; y 2 Cd; � 2 C
1. E� (x; y) = E� (y; x) ;

2. E� (�x; y) = E� (x; �y)
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3. E� (x; y) = E� (x; y)

4. jE�(�ix; y)j � 1.

5. j E� (x; y) j� ekxk:kyk;

6. Let �(z) = z21 + :::+ z2d; zi 2 C: For z; ! 2 Cd;

c�

Z
Rd

E� (x; z)E� (x; !)h
2
� (x) e

�
kxk2

2 dx = e
(�(z)+�(!))

2 E� (z; !) ;

where c� denotes the Mehta-type costant de�ned by

c�1� =

Z
Rd

h2�(x)e
�

kxk2

2 dx: (6)

In particular, the function

E�(x; y) = V (x)
� (e<x;y>) ; x; y 2 Rd;

plays the role of ei<x;y> in the ordinary Fourier analysis. Trought this paper,
we �x the values of  and � as

 := � =
X
�2R+

k� and � :=  +
d� 2

2
: (7)

Let us recall some classical functional spaces:

� C(Rd) the set of continuous functions on Rd and C0(R
d) its subspace of

continuous functions on Rd vanishing at infnity.

� S(Rd) the Schwartz space of infnitely di�erentiable functions on Rd which
are rapidly decreasing as their derivatives.

� Lp
�
R
d; h2�

�
; 1 � p < 1, the space of measurable functions on Rd such

that

k f k�;p=
�Z

Rd

jf(x)jph2�(x)dx
� 1

p

<1:
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3. Harmonic analysis related to the Dunkl op-

erator

In this section, we present some properties of the Dunkl transform, the Dunkl
translation and the Dunkl convolution studied and developed in great detail
in [4,6,10,11].
The Dunkl transform is de�ned for f 2 L1

�
R
d; h2�

�
by

D�f(x) = c�

Z
Rd

f(y)E� (�ix; y)h2�(y)dy; x 2 Rd: (8)

If � = 0, then V� = id and the Dunkl transform coincides with the usual
Fourier transform. If d = 1 and G = Z2, then the Dunkl transform is related
closely to the Hankel transform on the real line.
In fact, in this case,

E� (x; �iy) = �

�
�+

1

2

�� j xy j
2

���+ 1
2 h
J�� 1

2
(j xy j)� i sign(xy) J�+ 1

2
(j xy j)

i
;

where J� denotes the usual Bessel function of �rst kind and order �:

Theorem 1. (see [10])

1. For f 2 L1
�
R
d; h2k

�
; we have D�f 2 C0

�
R
d
�
; and

k D�f kC0�k f k�;1 :

2. When both f and D�f 2 L1
�
R
d; h2k

�
; we have the inversion formula

f(x) = c�

Z
Rd

D�f(y)E�(ix; y)h
2
�(y)dy a:e:

3. The Dunkl transform D� is an isomorphism of the Schwartz class S(Rd)
onto it self, and D2

�f(x) = f(�x):
4. The Dunkl transform D� on S(Rd) extends uniquely to an isometry of
L2
�
R
d; h2k

�
:

5. If f; g 2 L2
�
R
d; h2k

�
thenZ

Rd

D�f(y)g(y)h
2
�(y)dy =

Z
Rd

f(y)D�g(y)h
2
�(y)dy:
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Let y 2 Rd be given. The Dunkl translation operator f 7�! �yf is de�ned
in L2

�
R
d; h2k

�
by the equation

D�(�yf)(x) = E�(iy; x)D�f(x); x 2 Rd: (9)

The above de�nition gives �yf as an L2 function.
Let

A�(R
d) =

�
f 2 L1(Rd; h2�) : D�f 2 L1(Rd; h2�)

	
: (10)

Note that A�(R
d) is contained in the intersection of L1(Rd; h2�) and L

1 and
hence is a subspace of L2(Rd; h2�). For f 2 A�(R

d) we have

�yf(x) =

Z
Rd

E�(ix; y)E�(�iy; �)D�f(�)h
2
�(�)d�; 8x 2 Rd: (11)

Theorem 2. (see [10]) Assume that f 2 A�(R
d) and g 2 L1(Rd; h2�) is

bounded. Then

1.

Z
Rd

�yf(�)g(�)h
2
�(�)d� =

Z
Rd

f(�)��yf(�)h(�)d�:

2. �yf(x) = ��xf(�y):
Theorem 3. (see[10]) Let f 2 A�

�
R
d
�
be a radial and nonnegative function.

Then Tyf � 0, Tyf 2 L1
�

�
R
d
�
andZ

Rd

Tyf(x)h
2
�(x)dx =

Z
Rd

f(x)h2�(y)dx: (12)

The Dunkl convolution operator is de�ned on L2
�
R
d; h2k

�
by: for f; g 2

L2
�
R
d; h2k

�
,

f ?� g(x) =

Z
Rd

f(y)�xg
_(y)h2�(y)dy; (13)

where g_(y) = g(�y):
Note that as �xg

_ 2 L2
�
R
d; h2k

�
, the above convolution is well de�ned. We

can also write the de�nition as

f ?� g(x) =

Z
Rd

D�f(�)D�g(�)E�(ix; �)h
2
�(�)d�: (14)
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Theorem 4. (see [9,10,11])

1. Let f; g 2 L2
�
R
d; h2�

�
, then

(a) D�(f ?� g) = D�f:D�g:

(b) f ?� g = g ?� f:

2. Let f 2 L2
�
R
d; h2�

�
and g 2 L1 \ L2

�
R
d; h2�

�
, then f ?� g 2 L2

�
R
d; h2�

�
and

k f ?� g k�;2�k g k�;1k f k�;2 : (15)

4. Dunkl Positive de�nite Functions

De�nition 1. A continuous function ' of L2
�
R
d; h2k

�
is said Dunkl positive

de�nite (resp. stictly Dunkl positive de�nte) if for every �nite distinct real
numbers x1; :::; xn; and every complex numbers �1 ; :::; �n, not all zero, the
inequality

nX
j=1

nX
k=1

�j�k�xj (') (xk) � 0; (resp: > 0)

holds true. Where �x denotes the Dunkl translation.

From de�nition.1 we can read of the elementary properties of a Dunkl
positive de�nite function.

Proposition 3. (Properties of Dunkl positive de�nte functions)

1. A nonnegative �nite linear combination of Dunkl positive de�nite func-
tions is Dunkl positive de�nite.

2. Let ' be a Dunkl positive de�nite function, then

(a) The function �x'(x) � 0; for all x 2 Rd. In particular, '(0) � 0:

(b) '(�x) = '(x), for all x 2 Rd:

Proof. 1. The �rst property is immediate consequence of the de�nition 1.

2. The second property follows by choosing n = 1, �1 = 1 and x1 = x in
the de�nition 1.
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3. In the de�nition 1, let n = 2, x1 = 0, �1 = 1, �2 = c and x2 = x, then

'(0)+ j c j2 �x'(x) + c'(�x) + c'(x) � 0:

Setting c = 1 and c = i, respectively, we deduce that '(x) + '(�x)
and i('(�x) � '(x) must be reals. This can only be satis�ed when
'(�x) = '(x).

�

Corollary 1. Let ' 2 A�(R
d) be a Dunkl positive de�nite function, then

D�(') is real.

Proof. For ' 2 A�(R
d), we have

D�(')(x) = c�

Z
Rd

E�(y;�ix)'(y)h2�(y)dy:

Hence

D�(')(x) = c�

Z
Rd

E�(y;�ix) '(y)h2�(y)dy:

Since E�(x; y) = E�(x; y) for x; y 2 Cd, we obtain

D�(')(x) = c�

Z
Rd

E�(y; ix)'(y)h
2
�(y)dy

= c�

Z
Rd

E�(�y; ix) '(�y)h2�(y)dy:

So, by proposition 3, we have

'(�x) = '(x);

and E�(�x; y) = E�(x; �y), for any � 2 C we obtain

D�(')(x) = D�(')(x):

�

We begin by seeking su�cient conditions for a function to be Dunkl positive
de�nite.
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Theorem 5. Let ' 2 A�(R
d) be a nonnegative function, then D�(') is Dunkl

positive de�nite.

Proof. For ' 2 A�(R
d), we have

�y (D�(')) (x) =

Z
Rd

E�(�iy; �)E�(ix; �)'(��)h2�(�)d�:

Thus,

nX
j=1

nX
l=1

�j�k�xj (D�(')) (xl)

=

Z
Rd

"
nX

j=1

nX
l=1

�j�l (E�(�ixj; �)E(ixl; �))
#
'(��)h2�(�)d�

=

Z
Rd

"
NX
j=1

�jE�(�ixj; �)
#"

NX
l=1

�lE�(�ixl; �)
#
'(��)h2�(�)d�

=

Z
Rd

����
NX
j=1

�jE�(�ixj; �)
����
2

'(��)h2�(�)d� � 0:

Which completes the proof. �

Example 1. For t > 0, the function

Ft(x) = e�tkxk
2

is Dunkl positive de�nite.
Indeed, put

Gt(x) =
c�

(4t)+
d
2

e�
kxk2

4t :

Thus, Gt is nonnegative function of L1
�
R
d; h2�

�
: Moreover, (see [9])

Ft(x) = D�(Gt)(x): (16)

Since Ft(x) 2 L1
�
R
d; h2�

�
, we conclude by theorem 5.
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Example 2. Consider the modi�ed Bessel function of the second kind of order
� de�ned by

K�(x) =

Z +1

0

e�x cosh(t) cosh(�t)dt; x > 0:

Using the integral representation [5,(7.12.24]

2K�(ax) = a�
Z +1

0

t�1��e�
x
2
(t+a2

t
)dt;

by setting a = r; x = 1 and substituting u = 2t, and using K� = K��, we
have

K�(r) = r��2��1
Z +1

0

u��1e�ue�
r2

4udu; : (17)

Now, putting

�(y) =
1

(1+ k y k22)p
; y 2 Rd;

with p 2 N; such that p > d
2
+  + 1:

Since p > d
2
++1; the function � is in (L1\L2)

�
R
d; h2�

�
. From, the integral

representation of the gamma function, for p > 0, we have

�(p) =

Z 1

0

tp�1e�tdt

= sp
Z 1

0

up�1e�sudu:

Let s = 1+ k y k22, then we get

�(y) =
1

�(p)

Z 1

0

up�1e�ue�ukyk
2
2du:
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Thus

D�(�)(!) = c�

Z
Rd

�(x)E�(x;�i!)h2�(x)dx

=
c�

�(p)

Z
Rd

Z 1

0

up�1e�ue�ukyk
2
2E�(y;�i!)h2�(y)dydu

=
1

�(p)

Z 1

0

up�1e�u
�
c�

Z
Rd

e�ukyk
2
2E�(y;�i!)h2�(y)dy

�
du

=
1

�(p)

Z 1

0

up�1e�uD� (Fu(:)) (!)du

=
c�

�(p)2+
d
2

Z 1

0

up��
d
2
�1e�ue�

k!k22
4u du

Using the relation (17) we obtain

D�(�)(!) =
c�

2p�1
k ! kp��

d
2

2 Kp�� d
2
(k ! k2): (18)

Since for � > 0, the even function x�K�(x) is positive and belongs to
L1([0;+1[; x2�+1dx), by the inversion formula and theorem 5 we deduce that
�(y) = 1

(1+kyk22)
p is a Dunkl positive de�nite function.

Example 3. Let ' 2 L2
�
R
d; h2�

�
be a continuous function. We consider the

functions t; t > 0, de�ned by

t(y) =
NX
j=1

�j�xj (Gt(y)) ; y 2 Rd

where �j 2 C; xj 2 Rd for all 1 � j � N and Gt is the function de�nite in
example1.

If < ' ?� t; t >� 0, then ' is Dunkl positive de�nite.

Indeed, by the de�nition of the generalized translation operator and equation
(16), we have

D�(t)(!) =
1

c�

NX
j=1

�jE�(�ixj; !)e�2tkj!kj2 ;
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which leads to

D�

�
t ?� _t

�
(!) =j D�(t) j2 (!)

=
1

c2k

����
NX
j=1

�jE�(�ixj; !)
����
2

e�2tk!k
2

=
1

ck

NX
j;l=1

�j�lE�(�ixj; !)E�(�ixl; !)e�2tk!k2

= D�

 
NX

j;l=1

�j�l�xj [��xlG2t(:)]

!
(!):

(19)

Since the Dunkl transform is a topological automorphism of the Schwartz space
S(Rd), then

t ?� _t() =
NX

j;l=1

�j�l�xj [��xlG2t(:)] (!);

i.e

t ?� _t(!) =
NX

j;l=1

�j�l�xj (��(2t; xl; :)) (!);

where �� is the Dunkl type heat kernel. Thus,Z
Rd

'(y) t ?� _t (y)h
2
�(y)dy =

NX
j;l=1

�j�k

Z
Rd

'(y)�xj��(2t; xl; y)h
2
�(y)dy;

=
NX

j;l=1

�j�l

Z
Rd

�xj'(y) ��(2t; xl; y)h
2
�(y)dy:

By theorem 4.7 in [9], we have

lim
t�!0

Z
Rd

'(y)t ?� _t (y)h
2
�(y)dy =

NX
j;l=1

�j�l �xj'(xl):

Which completes the proof.

Proposition 4. Let ' 2 A�(R
d). If ' is Dunkl positive de�nite function and

f 2 L2
�
R
d; h2�

�
, then

< ' ?� f; f >� 0: (20)
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Proof. Since ' 2 A�(R
d); and f 2 L2

�
R
d; h2�

�
; then ' ?� f 2 L2

�
R
d; h2�

�
;

and

' ?� f(x) =

Z
Rd

�x �'(y)f(y)h
2
�(y)dy:

Since ' is Dunkl positive de�nite function, then ' = �', so

' ?� f(x) =

Z
Rd

�x(')(y)f(y)h
2
�(y)dy:

Thus, for f 2 L2
�
R
d; h2�

�
,

< ' ?� f; f >=

Z
Rd

Z
Rd

�x(')(y)f(y)f(x)h
2
�(y)dyh

2
�(x)dx:

Let f 2 S(Rd), its known that, for � > 0, there exists a closed cube W � R
d,

such that����
Z
Rd

Z
Rd

�x(')(y)f(y)f(x)h
2
�(y)dyh

2
�(x)dx�

Z
W

Z
W

�x(')(y)f(y)f(x)h
2
�(y)dyh

2
�(x)dx

���� < �

2
:

But the double integral over the cubes is the limit of Riemannian sums. Hence,
we can �nd x1; :::; xN 2 Rd and weights !1; :::; !N such that����
Z
W

Z
W

�x(')(y)f(y)f(x)h
2
�(y)dyh

2
�(x)dx�

NX
j;l=1

�xj'(xl)f(xj)!jf(xl)!l

���� < �

2
:

This means thatZ
Rd

Z
Rd

�x(')(y)f(y)f(x)h
2
�(y)dyh

2
�(x)dx >

NX
j;l=1

�xj'(xl)f(xj)!jf(xl)!l � �:

Letting � tend to zero and using that ' is Dunkl positive de�nite function
shows that (20) is true for all f 2 L2

�
R
d; h2�

�
: �

Corollary 2. Let ' 2 A�(R
d) be a Dunkl positive de�nite function, we de�ne

� : S(Rd) �! C by

�() =

Z
Rd

'(x)D�1
� ()(x)h2�(x)dx: (21)

If  = j j2 with  2 S(Rd) and even, then �() is nonnegative.
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Proof. Put f = D�1
� ( ). Since  is even, then f and D�(f) are even, and

D�(f)(x) =  (x):
Thus,

(x) =  (x) (x) = D�f(x):D�f(x) = D�f(x):D�f(x) = D�

�
f ?� f

�
(x):

Then,

�() =

Z
Rd

'(x)D�1
� ()(x)h2�(x)dx

=

Z
Rd

'(x)
�
f ?� f

�
(�x)h2�(x)dx

=

Z
Rd

'(x)

�Z
Rd

��xf(y)f(y)h
2
�(y)dy

�
h2�(x)dx

=

Z
Rd

f(y)

�Z
Rd

'(x)��xf(y)h
2
�(x)dx

�
h2�(y)dy

=

Z
Rd

f(y)

�Z
Rd

'(x)��yf(x)h
2
�(x)dx

�
h2�(y)dy

=

Z
Rd

f(y) (' ?� f) (�y)h2�(y)dy

=

Z
Rd

f(�y) (' ?� f) (y)h2�(y)dy

=

Z
Rd

f(y) (' ?� f) (y)h
2
�(y)dy

=< ' ?� f; f >� 0:

�

Proposition 5. Let ' 2 A�(R
d). If ' is a Dunkl positive de�nite function,

then

D�'(x) � 0; 8x 2 Rd:
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Proof. For '; f 2 A�(R
d), we have

Z
Rd

jD�(f)j2(�)D�(')(�)h
2
�(�)d� =

Z
Rd

D�(f)(�)D�(f)(�)D�(')(�)h
2
�(�)d�

= c2�

Z
Rd

D�(')(�)

�Z
Rd

f(x)E�(x;�i�)h2�(x)dx
�

�
�Z

Rd

f(y)E�(y; i�)h
2
�(y)dy

�
h2�(�)d�

= c2�

Z
Rd

Z
Rd

f(x)f(y)
h Z

Rd

E�(x;�i�)E�(y; i�)

D�(')(�)h
2
�(�)d�

i
� h2�(x)dxh

2
�(y)dy

= c2�

Z
Rd

Z
Rd

f(x)f(y)�x'(y)h
2
�(x)dxh

2
�(y)dy

= c2� < ' ?� f; f >� 0:

Since ' is Dunkl positive de�nite then D�' is real. Since the last inequality
holds for an arbtitrary function f 2 A�(R

d); we conclude. �

Corollary 3. Let ' 2 A�(R
d). If ' is a Dunkl positive de�nite function, then

' is bounded and

j'(x)j � '(0); 8x 2 Rd:

Proof. In de�nition 1, let n = 2; �1 = j'(x)j; �2 = �'(x); x1 = 0 and x2 = x;

we have

'(0)j'(x)j2 � '(�x)j'(x)j'(x)� '(x)j'(x)j'(x) + j'(x)j2�x'(x) � 0:

Since '(�x) = '(x), we obtain

j'(x)j2 ['(0)� 2j'(x)j+ �x'(x)] � 0

i.e

j'(x)j � 1

2
('(0) + �x'(x)): (22)
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Furthermore, by the de�nition of Dunkl translation, and since ' is Dunkl
positive de�nite function, we have

�x'(x) =
���x'(x)�� =

����
Z
Rd

��E�(ix; �)
��2D�'(�)h

2
�(�)d�

����
�
Z
Rd

��D�'(�)
��h2�(�)d�

=

Z
Rd

D�'(�)h
2
�(�)d�

= '(0):

(23)

The relations (22) and (23) lead to

j'(x)j � '(0):

�

Corollary 4. Let '1; '2 2 A�(R
d): If '1; '2 are Dunkl positive de�nite func-

tions, then the convolution product '1 ?� '2 is also.

Proof. For '1; '2 2 A�(R
d), we have

'1 ?� '2 2 L1
�
R
d; h2�

�
;

and
D� ('1 ?� '2) = D�'1:D�'2 2 L1

�
R
d; h2�

�
:

Now, for every complex numbers �1; ::: �n and for every distinct real numbers
x1; ::: ; xn, we have

nX
j=1

nX
l=1

�j�l�xj ('1 ?� '2) (xl)

=

Z
Rd

NX
j=1

NX
l=1

�j�lE� (ixj; �)E� (�ixl; �)D� ('1 ?� '2) (�)h
2
k(�)d�

=

Z
Rd

����
nX

j=1

�jE� (ixj; �)

����
2

D� ('1) (�)D� ('2) (�)h
2
k(�)d�

� 0;
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where the last inequality follows from Proposition 5. �

Proposition 6. Let ' 2 A�(R
d) be a radial and Dunkl positive de�nite

function. If f 2 A�(R
d) is a positive radial function, then the product 'D�f

is a Dunkl positive de�nite function.

Proof. Since '; f 2 A�(R
d), and radials we have

'D�f 2 A�(R
d);

and radial function. Thus,

nX
j=1

nX
l=1

�j�l�xj('D�f)(xl) =

Z
Rd

����
nX

j=1

�jE�(ixj; �)

����
2

D� ('D�f) (�)h
2
�(�)d�

=

Z
Rd

����
nX

j=1

�jE�(ixj; �)

����
2

D�' ?� f(�)h
2
�(�)d�:

Moreover, by the de�nition of Dunkl convolution, we can write

D�' ?� f(x) =

Z
Rd

D�'(t)�x �f(t)h
2
�(t)dt: (24)

From proposition 5 and theorem 3.4 in [10], we have

D�' ?� f(x) � 0:

Which completes the proof. �

Corollary 5. Let '1; '2 2 A�(R
d) are radials. If '1; '2 are Dunkl positive

de�nite functions, then the product '1'2 is also.

Proof. Let  = D�'2, then D� = '2; and since '2 is radial, we have  is
radial. So, by proposition 5, we have

 � 0:

By proposition 6, we conclude. �

In the following we state a version of Bochner's theorem in Dunkl setting and
we establish a necessary and su�cient condition for a function to be a Dunkl
positive de�nite.
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Theorem 6. (Bochner) Let ' 2 A�(R
d): Then, ' is Dunkl positive de�nite,

if and only if, there exist a nonnegative function  2 A�(R
d) such that

' = D� : (25)

Proof. Since ' is Dunkl positive de�nite function, we have '(�x) = '(x); and
D�' is even real function (see corollary 1). By the inversion formula we have

'(x) = D2
�'(x); 8x 2 Rd:

Let
 (x) = D�'(x):

By proposition 5, we deduce that  is nonnegative function of A�(R
d):

Inversely, since  is nonnegative function and belong to A�(R
d); by theorem

5 we deduce that ' = D� is Dunkl positive de�nite function. �

4.1. Applications

Proposition 7. Let ' 2 A�(R
d) be a radial function. If ' is Dunkl positive

de�nite function, then there exist a nonnegative radial function  2 A�(R
d)

such that

1. �y � 0;

2. �y 2 L1
�
R
d; h2�

�
;

and
k �y k1;�=k  k1;�= '(0):

Proof. Bochner's theorem asserts that there exist a nonegative function  such
that

' = D� :

Since ' is radial, then  = D�' is radial, nonnegative and belongs to A�(R
d).

Using theorem 3.4 in [10], we get

(i) �y � 0; �y 2 L1
�
R
d; h2�

�
:

(ii) k �y k1;�=k  k1;�= '(0):
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�

Corollary 6. For t > 0 and x 2 Rd, we have

��(t; x; y) � 0; 8y 2 Rd

��(t; x; y) 2 L1
�
R
d; h2�(y)

�
;

and Z
Rd

��(t; x; y)h
2
�(y)dy = 1: (26)

Where ��(t; x; y) is the Dunkl type heat kernel de�ned by

��(t; x; y) =
c�

(4t)+
d
2

e
�

�
kxk2+kyk2

4t

�
E�

�
xp
2t
;
yp
2t

�
:

Proof. For t > 0; the function '(x) = e�tkxk
2
= Ft(x) is Dunkl positive de�nite

function (see example 1), radial and belongs to A�(R
d): Moreover,

 (x) = D�(')(x) =
c�

(4t)+
d
2

e�
kxk2

4t :

Then
��(t; x; y) = �x( )(y) = �x(D�')(y):

By the last proposition ��(t; x; y) is nonnegative, belongs to L
1
�
R
d; h2�

�
; and

we have Z
Rd

��(t; x; y)h
2
�(y)dy =

Z
Rd

�x( )(y)h
2
�(y)dy

=

Z
Rd

 (y)h2�(y)dy

=

Z
Rd

D�'(y)h
2
�(y)dy

= '(0) = 1:

�
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Corollary 7. For p �  + d
2
+ 1, let K� be the modi�ed Bessel of the second

kind and order �, thenZ
Rd

�y

�
k x kp�� d

2 Kp�� d
2
(k x k)

�
(�)h2�(�)d�

=

Z
Rd

k x kp�� d
2 Kp�� d

2
(k x k)h2�(x)dx =

�(p)

c�2p�1
:

Proof. Let p � + d
2
+1, be an integer. Put '(y) = 1

(1+kyk2)p
, then ' is Dunkl

positive de�nite function (see example 2), we have

 (�) = D�(')(�) =
c�

�(p)2p�1
k � kp�� d

2 Kp�� d
2
(k � k):

By the last proposition we haveZ
Rd

�x( )(y)h
2
�(y)dy =

Z
Rd

 (y)h2�(y)dy

=

Z
Rd

D�'(y)h
2
�(y)dy

= '(0) = 1:

�

5. Strictly Dunkl Positive De�nite Functions

Lemma 1. Let U � R
d is open. Suppose that x1; ::: ; xn 2 Rd, are pairwise

distinct and that � = (�1; :::; �n) 2 Cn. If
nX

j=1

�jE� (ixj; !) = 0, for all ! 2 U ,

then � � 0:

Proof. Suppose that

nX
j=1

�jE� (ixj; !) = 0; 8! 2 U:
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Since z �! E�(y; z) is analytic on C, by analytic continuation, we get

nX
j=1

�jE� (ixj; !) = 0; 8! 2 Rd:

Let f be a C1 function with compactly supported, we know that

D� (�xf) (�) = E�(�ix; �)D�f(�):

Then
nX

j=1

�jE� (ixj; !) = D�

 
nX

j=1

�j�xjf

!
(�) = 0:

Since for all j 2 f1; :::; ng ; �xi is C
1 function with compactly supported,

then we get
nX

j=1

�j�xjf(�) = 0; 8� 2 Rd: (27)

If the support of f is conatained in the ball around zero with radius
� < min

j 6=k

�� k xk k � k xj k
��, we have (see [10] proposition 3.13), �xjf is sup-

ported in fx; k x k� �+ k xj kg :
Thus

�xjf(xk) = 0; 8 k 6= j; �xjf(xj) 6= 0; 8j; k 2 f1; :::; ng
Using (27), we obtain

�j�xjf(xj) = 0; 8 j 2 f1; :::; ng :
We coclude. �

Theorem 7. Let ' 2 A�(R
d), be a nonidentically zero and Dunkl positive

de�nite function. Then ' is Dunkl strictly positive de�nite.

Proof. Let ' 2 A�(R
d) be nonidentically zero and Dunkl positive de�nite

function. Suppose that there exist distinct reals points x1; :::; xn and complex
numbers �1; :::; �n not all zero, such that

nX
j=1

nX
l=1

�j�l�xj'(xl) = 0:
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By (11), we get

Z
Rd

����
nX

j=1

�jE�(�ixj; �)
����
2

D�'(�)h
2
�(�)d� = 0:

Since ' is Dunkl positive de�nite and belongs to A�(R
d), we have D�' is

nonnegative continuous function. Then����
nX

j=1

�jE�(�ixj; �)
����
2

D�'(�) = 0; 8� 2 Rd:

Since D�' is nonidentically zero, then there exist an open U � R
d such that

D�'(�) 6= 0; 8� 2 U:
Thus ����

nX
j=1

�jE�(�ixj; �)
���� = 0;8� 2 U:

Using, lemma 1, we get

�j = 0; 8j 2 f1; :::; ng :
We conclude. �

Example 4. The functions '(x) = e�tkxk
2
; t > 0, and  (x) = 1

(1+kxk2)p
; p �

 + d
2
+ 1 are Dunkl strictly positive de�nite functions.
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