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Abstract

In this paper we study some applications of the theory of differential
subordination defined on the space of univalent functions which are
defined by linear operators. Also, some examples are given.

Keywords and Phrases: Analytic functions, Convex functions, Linear op-
erators, Differential subordination.

1. Introduction

LetH (U) be the class of analytic functions in the open unit disc U={z ∈ C : |z| < 1}
and let H [a, n] be the subclass of H (U) consisting of functions of the form:

f(z) = a+ anz
n + an+1z

p+1 + ... (a ∈ C; z ∈ U) .

Also, let A be the subclass of the functions f ∈ H (U) of the form:

f(z) = z +
∞∑
n=2

anz
n, (1.1)
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and set A1= A the class of univalent functions. Let K denotes the class of all
convex functions in A which are satisfy the condition

K =

{
f ∈ A : Re

{
1 +

zf
′′
(z)

f ′(z)

}
> 0 (z ∈ U)

}
.

For f, g ∈ H(U), we say that f is subordinate to g, or g is superordinate to
f, written as f ≺ g or f(z) ≺ g(z), if there exists a Schwarz function ω (z),
which ( by definition ) is analytic in U with ω (0) = 0 and |ω (z)| < 1 (z ∈U)
such that f(z) = g(ω(z)) (z ∈U). Furthermore, if the function g is univalent
in U, then we have the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Let for m ∈ Z = {...,−2,−1, 0, 1, 2, ...} and µ > 0, λ ≥ 0, ` > −1, a, c ∈ C
be such that Re(c − a) > 0 and Re(a) > −µ, we consider the linear operator
Jm
λ,`(a, c, µ) : A −→ A was introduced by Raina and Sharma [13], where

Jm
λ,`(a, c, µ)f(z) = z +

Γ(c+ µ)

Γ(a+ µ)

∞∑
n=2

(
1 +

λ(n− 1)

1 + `

)m
Γ(a+ nµ)

Γ(c+ nµ)
anz

n. (1.2)

It is readily verified from (1.2) that

Jm
λ,`(a+1, c, µ)f(z) =

a

a+ µ
Jm
λ,`(a, c, µ)f(z)+

µ

a+ µ
z
(
Jm
λ,`(a, c, µ)f(z)

)′
(1.3)

and

Jm+1
λ,` (a, c, µ)f(z) = (1− λ

1 + `
)Jm

λ,`(a, c, µ)f(z)+
λ

1 + `
z
(
Jm,1
λ,`

(a, c, µ)f(z)
)′
.

(1.4)
We may point out here that some of the special cases of the operator defined

by (1.2) can be found in [1], [2], [3], [5], [6], [7], [9], [14], [15].

Suppose that ψ : C3×U −→ C and let h be univalent in U. If p(z) is analytic
in U and satisfies the following second-order differential subordination

ψ
(
p(z), zp′(z), z2p′′(z)

)
≺ h(z) (z ∈ U), (1.5)

then p(z) is called a solution of the differential subordination (1.5). The uni-
valent function q(z) is called a dominant of the solution of the differential
subordination (1.5) or more simply, a dominant if p(z) ≺ q(z) for all p(z)
satisfying (1.5). A dominant q̃(z) that satisfies q̃(z) ≺ q(z) for all dominants
q(z) of (1.5) is said to be the best dominant of (1.5).
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2. The Main Results

To prove main results, we need the following lemmas:

Lemma 1. (Hallenbeck and Ruscheweyh [4]; see also [10, Theorem 3.1.6,
p.71]). Let h be a convex function in U with h(0) = a, 0 6= γ ∈ C and
Re γ ≥ 0. If p(z) ∈ H [a, n] and

p(z) +
1

γ
zp′(z) ≺ h(z),

then
p(z) ≺ q(z) ≺ h(z),

where

q(z) =
γ

nz
γ
n

∫ z

0

h(t)t
γ
n
−1dt.

The function q is convex and is the best dominant.

Lemma 2. ([11, Lemma 13.5.1, p.375]). Let g be a convex function in U and
let

h(z) = g(z) + nαzg′(z) (z ∈ U),

where α > 0 and n a positive integer. If

p(z) = g(0) + pnz
n + pn+1z

n+1 + ...(z ∈ U),

is holomorphic in U, and

p(z) + αzp′(z) ≺ h(z) (z ∈ U),

then
p(z) ≺ g(z)

and this result is sharp.

Lemma 3. ([10, p.7], see also [12]). For real or complex numbers a, b and c
(c 6= 0,−1,−2, ...), we have
(i) ∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt =
Γ (b) Γ (c− b)

Γ (c)
2F1 (a, b; c; z) ;
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(ii)

2F1 (a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
;

(iii)

2F1

(
1, 1; 3;

z

z − 1

)
=

2(z − 1)

z

[
1 +

ln(1− z)

z

]
.

Unless otherwise mentioned we assume throughout the paper that m ∈ Z, ` >
−1, λ ≥ 0, µ > 0, a, c ∈ C be such that Re(c− a) > 0 and Re(a) > −µ.

Theorem 1. Let

h(z) =

(
1 + Az

1 +Bz

)r
(|A| ≤ 1, |B| < 1, 0 < r ≤ 1). (2.1)

If f ∈ A satisfies the differential subordination:(
Jm+1
λ,` (a, c, µ)f(z)

)′ ≺ h(z) (z ∈ U), (2.2)

then (
Jm
λ,`(a, c, µ)f(z)

)′ ≺ q(z), (2.3)

where

q(z) =

{ (
A
B

)r∑
i≥0

(−r)i
i!

(
A−B
A

)i
(1 +Bz)−i2F1

(
i, 1, 1 + 1+`

λ
; Bz
1+Bz

)
(B 6= 0),

2F1(−r, 1+`λ , 1 + 1+`
λ

;−Az) (B = 0)
(2.4)

and the function q(z) is convex and is the best dominant.

Proof. We first observe ([16, p.16]; see also [12, p.132]) that the function
defined by (2.1) is analytic and convex univalent in U, since

Re

(
1 +

zh′′(z)

h′(z)

)
= −1 + (1− r) Re

(
1

1 + Az

)
+ (1 + r) Re

(
1

1 +Bz

)
> −1 +

1− r
1 + |A|

+
1 + r

1 + |B|
≥ 0 (z ∈ U).

Differentiating the recurrence relation (1.5) with respect to z, we get(
Jm+1
λ,` (a, c, µ)f(z)

)′
=
(
Jm
λ,`(a, c, µ)f(z)

)′
+

λz

1 + `

(
Jm
λ,`

(a, c, µ)f(z)
)′′

(2.5)
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By using (2.5) in view of (2.2), we have

(
Jm
λ,`(a, c, µ)f(z)

)′
+

λz

1 + `

(
Jm
λ,`

(a, c, µ)f(z)
)′′
≺ h(z) =

(
1 + Az

1 +Bz

)r
(z ∈ U)

(2.6)
Let

p(z) =
(
Jm
λ,`(a, c, µ)f(z)

)′
(2.7)

then (2.6) and (2.7) yield the differential subordination

p(z) +
λzp′(z)

1 + `
≺ h(z) =

(
1 + Az

1 +Bz

)r
(z ∈ U).

Applying now Lemma 1, we conclude that

p(z) ≺ q(z) =
1

( λ
1+`

)z
1+`
λ

∫ z

0

h(t)t
1+`
λ
−1

dt =
1

( λ
1+`

)z
1+`
λ

∫ z

0

(
1 + At

1 +Bt

)r
t
1+`
λ
−1

dt.

To evaluate the above integral, we first express the integrand in the form

t
1+`
λ
−1

(
1 + At

1 +Bt

)r
=

(
A

B

)r
t
1+`
λ
−1

(
1− A−B

A(1 +Bt)

)r
,

using Lemma 3 and some calculations, we have

q(z) =

(
A

B

)r∑
i≥0

(−r)i
i!

(
A−B
A

)i
(1+Bz)−i2F1

(
i, 1, 1 +

1 + `

λ
;

Bz

1 +Bz

)
(B 6= 0)

On the other hand, if B = 0, we have

q(z) =
1

( λ
1+`

)z
1+`
λ

∫ z

0

(1 + At)rt
1+`
λ
−1

dt,

which upon integrating similarly as above, we have

q(z) = 2F1

(
−r, 1 + `

λ
, 1 +

1 + `

λ
;−Az

)
. (2.8)

In view of Lemma 1 (for γ = 1+`
λ
, n = 1), we assert that(

Jm
λ,`(a, c, µ)f(z)

)′ ≺ q(z) ≺ h(z),
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where q(z) is given by (2.4) is convex and the best dominant, which completes
the proof of Theorem 1.

Remark. Putting r = 1, A = 2α− 1 (0 ≤ α < 1) and B = 0 in (2.8), we get

2F1

(
−1,

1 + `

λ
, 1 +

1 + `

λ
; (1− 2α)z

)
= 1 +

(2α− 1)(1 + `)

1 + `+ λ
z,

therefore, q(z) given by (2.4) becomes

q(z) =

{
2α− 1− 2(α− 1)(1 + z)−12F1(1, 1, 1 + 1+`

λ
, z
1+z

) for B = 1,

1 + (2α−1)(1+`)
1+`+λ

z for B = 0.

Example 1. Ifm = 0, r = 1, λ > 0, a, c ∈ C,Re(c−a) > 0,Re(a) > −µ,A = 1
and B = 0, then from Theorem 1, we deduce the following assertion:[

(1− λ

`+ 1
)Ia,cµ f(z) +

λ

`+ 1
z
(
Ia,cµ f(z)

)′]′ ≺ 1 + z (f(z) ∈ A , z ∈ U)

then [
Ia,cµ f(z)

]′ ≺ 1 +
1 + `

1 + `+ λ
z (z ∈ U),

where Ia,cµ is the Erdelyi-Kober type integral operator [8].

Theorem 2. Let q be a convex function in U with q(0) = 1 and let

h(z) = q(z) +
λ

`+ 1
zq′(z) (z ∈ U).

If f ∈ A satisfies the differential subordination:(
Jm+1
λ,` (a, c, µ)f(z)

)′ ≺ h(z), (2.9)

then (
Jm
λ,`(a, c, µ)f(z)

)′ ≺ q(z) (z ∈ U). (2.10)

Proof. Making use of (2.7) in (2.5), then the differential subordination (2.9)
becomes

p(z) +
λ

1 + `
zp′(z) ≺ h(z) = q(z) +

λ

1 + `
zq′(z).
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Applying Lemma 2, we have p(z) ≺ q(z), which implies that(
Jm
λ,`(a, c, µ)f(z)

)′ ≺ q(z).

The proof of Theorem 2 is completed.

Example 2. If m = 0, λ > 0, ` ≥ 0, a, c ∈ C,Re(c− a) > 0, Re(a) > −µ and
q(z) = 1−z

1+z
in Theorem 2, we obtain the following result:[

(1− λ

`+ 1
)Ia,cµ f(z) +

λ

`+ 1
z
(
Ia,cµ f(z)

)′]′ ≺ 1− 2λ
`+1

z − z2

(1 + z)2
(f(z) ∈ A , z ∈ U),

then [
Ia,cµ f(z)

]′ ≺ 1− z
1 + z

(z ∈ U).

Theorem 3. Let q be a convex function in U with q(0) = 1 and let

h(z) = q(z) + zq′(z) (z ∈ U).

If f ∈ A satisfies the differential subordination:(
Jm
λ,`(a, c, µ)f(z)

)′ ≺ h(z), (2.11)

then
Jm
λ,`(a, c, µ)f(z)

z
≺ q(z) (z ∈ U). (2.12)

Proof. Let
Jm
λ,`(a, c, µ)f(z)

z
= θ(z). (2.13)

Differentiating with respect to z, we have[
Jm
λ,`(a, c, µ)f(z)

]′
= θ(z) + zθ′(z), (2.14)

By using (2.11), we obtain the differential subordination relation

θ(z) + zθ′(z) ≺ h(z) = q(z) + zq′(z).

Using Lemma 2, we deduce that θ(z) ≺ q(z), which implies that

Jm
λ,`(a, c, µ)f(z)

z
≺ q(z).



108 R. M. EL-Ashwah and M. E. Drbuk

The proof of Theorem 3 is completed.

Example 3. If m = 0, a = c ∈ C, and q(z) = 1−z
1+z

in Theorem 3, we obtain
the following result:

[f(z)]′ ≺ 1− 2z − z2

(1 + z)2
(f(z) ∈ A , z ∈ U),

then
f(z)

z
≺ 1− z

1 + z
(z ∈ U).

Theorem 4. Let h(z) is given by (2.1). If f ∈ A satisfies the differential
subordination: (

Jm
λ,`(a, c, µ)f(z)

)′ ≺ h(z) (z ∈ U), (2.15)

then
Jm
λ,`(a, c, µ)f(z)

z
≺ φ(z),

where

φ(z) =

 (A
B

)r
∞∑
i≥0

(−r)i
i!

(
A−B
A

)i
(1 +Bz)−i2F1(i, 1, 2,

Bz
1+Bz

) (B 6= 0),

2F1(−r, 1, 2,−Az) (B = 0),
(2.16)

and the function φ(z) is the best dominant.

Proof. Using (2.14), the differential subordination (2.15) becomes

θ(z) + zθ′(z) ≺ h(z) =

(
1 + Az

1 +Bz

)r
,

and applying Lemma 1, we have

θ(z) ≺ φ(z) =
1

z

∫ z

0

(
1 + At

1 +Bt

)r
dt,

which upon integration gives (2.16), and hence it follows that(
Jm
λ,`(a, c, µ)f(z)

)
z

≺ φ(z).
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The proof of Theorem 4 is completed.

Theorem 5. Let h be a convex function in U with h(0) = 1. If f ∈ A satisfies
the differential subordination:(

Jm
λ,`(a, c, µ)f(z)

)′ ≺ h(z), (2.17)

then
Jm
λ,`(a, c, µ)f(z)

z
≺ ϕ(z) =

1

z

∫ z

0

h(t)dt,

and ϕ is convex and is the best dominant.

Proof. Using (2.14) in (2.17), we have

p(z) + zp′(z) ≺ h(z).

From Lemma 1, we obtain

p(z) ≺ ϕ(z) =
1

z

∫ z

0

h(t)dt,

and using (2.13), we conclude the result:

Jm
λ,`(a, c, µ)f(z)

z
≺ ϕ(z) =

1

z

∫ z

0

h(t)dt.

This completes the proof of Theorem 5.

Example 4. If m = ` = 0, a = c ∈ C and h(z) = 1−z
1+z

in Theorem 5, we
obtain the following result:

[f(z)]′ ≺ 1− z
1 + z

(f(z) ∈ A , z ∈ U),

then
f(z)

z
≺ 2 log (1 + z)− z

z
(z ∈ U).

Theorem 6. Let h(z) is given by (2.1). If f ∈ A satisfies the differential
subordination: (

Jm
λ,`(a+ 1, c, µ)f(z)

)′ ≺ h(z) (z ∈ U), (2.18)
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then (
Jm
λ,`(a, c, µ)f(z)

)′ ≺ q(z), (2.19)

where

q(z) =


(
A
B

)r∑
i≥0

(−r)i
i!

(
A−B
A

)i
(1 +Bz)−i2F1

(
i, 1, 1 + a+µ

µ
; Bz
1+Bz

)
(B 6= 0),

2F1(−r, a+µµ , 1 + a+µ
µ

;−Az) (B = 0),

(2.20)
and the function q(z) is convex and is the best dominant.

Proof. Differentiating the recurrence relation (1.4) with respect to z, we get(
Jm
λ,`(a+ 1, c, µ)f(z)

)′
=
(
Jm
λ,`(a, c, µ)f(z)

)′
+

µz

a+ µ

(
Jm
λ,`

(a, c, µ)f(z)
)′′
(2.21)

By using (2.21) in view of (2.18), we have

(
Jm
λ,`(a, c, µ)f(z)

)′
+

µz

a+ µ

(
Jm
λ,`

(a, c, µ)f(z)
)′′
≺ h(z) =

(
1 + Az

1 +Bz

)r
(z ∈ U)

(2.22)
Let

p(z) =
(
Jm
λ,`(a, c, µ)f(z)

)′
(2.23)

then (2.22) and (2.23) yield the differential subordination

p(z) +
µ

a+ µ
zp′(z) ≺ h(z) =

(
1 + Az

1 +Bz

)r
(z ∈ U).

Now, applying Lemma 1, we conclude that

p(z) ≺ q(z) =
1

( µ
a+µ

)z
a+µ
µ

∫ z

0

h(t)t
a+µ
µ −1

dt =
1

( µ
a+µ

)z
a+µ
µ

∫ z

0

(
1 + At

1 +Bt

)r
t
a+µ
µ −1

dt,

where

t

a+µ
µ −1

(
1 + At

1 +Bt

)r
=

(
A

B

)r
t

a+µ
µ −1

(
1− A−B

A(1 +Bt)

)r
,

using Lemma 3 and some calculations, we have

q(z) =

(
A

B

)r∑
i≥0

(−r)i
i!

(
A−B
A

)i
(1 +Bz)−i2F1

(
i, 1, 1 +

a+ µ

µ
;

Bz

1 +Bz

)
(B 6= 0)
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On the other hand, if B = 0, we have

q(z) =
1

( µ
a+µ

)z
a+µ
µ

∫ z

0

(1 + At)rt

a+µ
µ −1

dt,

which upon integrating similarly as above, we have

q(z) = 2F1

(
−r, a+ µ

µ
, 1 +

a+ µ

µ
;−Az

)
. (2.24)

In view of Lemma 1 (for γ = a+µ
µ
, n = 1), we assert that(

Jm
λ,`(a, c, µ)f(z)

)′ ≺ q(z) ≺ h(z),

where q(z) is given by (2.20) is convex and the best dominant, which completes
the proof of Theorem 6.

Example 5. If m ∈ Z, ` > −1, λ ≥ 0, r = 1, a = c = 1, µ > −1, A = 1 and
B = 0, then from Theorem 6, we deduce the following assertion:[

(1− µ

1 + µ
)Jm

λ,`f(z) +
µ

1 + µ
z
(
Jm
λ,`f(z)

)′]′ ≺ 1 + z (f(z) ∈ A , z ∈ U)

then [
Jm
λ,`f(z)

]′ ≺ 1 +
1 + µ

1 + 2µ
z (z ∈ U).

Theorem 7. Let q be a convex function in U with q(0) = 1 and let

h(z) = q(z) +
µ

a+ µ
zq′(z) (z ∈ U).

If f ∈ A satisfies the differential subordination:(
Jm
λ,`(a+ 1, c, µ)f(z)

)′ ≺ h(z), (2.25)

then (
Jm
λ,`(a, c, µ)f(z)

)′ ≺ q(z) (z ∈ U). (2.26)

Proof. Making use of (2.23) in (2.21), then the differential subordination
(2.25) becomes
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p(z) +
µ

a+ µ
zp′(z) ≺ h(z) = q(z) +

µ

a+ µ
zq′(z).

Applying Lemma 2, we have p(z) ≺ q(z), which implies that(
Jm
λ,`(a, c, µ)f(z)

)′ ≺ q(z).

The proof is completed of Theorem 7.

Example 6. If m ∈ Z, ` > −1, λ ≥ 0, a = c = 1, µ > −1 and q(z) = 1−z
1+z

, then
from Theorem 7, we obtain the following result:[
(1− µ

1 + µ
)Jm

λ,`f(z) +
µ

1 + µ
z
(
Jm
λ,`f(z)

)′]′ ≺ 1− 2µ
1+µ

z − z2

(1 + z)2
(f(z) ∈ A , z ∈ U)

then [
Jm
λ,`f(z)

]′ ≺ 1− z
1 + z

(z ∈ U).

Theorem 8. Let q be a convex function in U with q(0) = 1 and let

h(z) = q(z) + zq′(z) (z ∈ U).

If f ∈ A satisfies the differential subordination:(
Jm
λ,`(a, c, µ)f(z)

)′ ≺ h(z), (2.27)

then
Jm
λ,`(a, c, µ)f(z)

z
≺ q(z) (z ∈ U). (2.28)

Proof. Let
Jm
λ,`(a, c, µ)f(z)

z
= θ(z). (2.29)

Differentiating with respect to z, we have[
Jm
λ,`(a, c, µ)f(z)

]′
= θ(z) + zθ′(z), (2.30)

By using (2.27), we obtain the differential subordination relation

θ(z) + zθ′(z) ≺ h(z) = q(z) + zq′(z).
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Using Lemma 2, we deduce that θ(z) ≺ q(z), which implies that

Jm
λ,`(a, c, µ)f(z)

z
= q(z).

The proof of Theorem 8 is completed.

Example 7. If m ∈ Z, ` > −1, λ ≥ 0, a = c = 1, and q(z) = 1−z
1+z

, then from
Theorem 8, we obtain the following result:

[(
Jm
λ,`f(z)

)]′ ≺ 1− 2z − z2

(1 + z)2
(f(z) ∈ A , z ∈ U),

then
Jm
λ,`f(z)

z
≺ 1− z

1 + z
(z ∈ U).

Theorem 9. Let h(z) is given by (2.1). If f ∈ A satisfies the differential
subordination: (

Jm
λ,`(a, c, µ)f(z)

)′ ≺ h(z) (z ∈ U), (2.31)

then
Jm
λ,`(a, c, µ)f(z)

z
≺ φ(z),

where

q(z) =

 (A
B

)r
∞∑
i≥0

(−r)i
i!

(
A−B
A

)i
(1 +Bz)−i2F1(i, 1, 2,

Bz
1+Bz

) (B 6= 0),

2F1(−r, 1, 2,−Az) (B = 0),
(2.32)

and the function φ(z) is the best dominant.

Proof. Using (2.30), the differential subordination (2.31) becomes

θ(z) + zθ′(z) ≺ h(z) =

(
1 + Az

1 +Bz

)r
,

and applying Lemma 1, we have

θ(z) ≺ φ(z) =
1

z

∫ z

0

(
1 + At

1 +Bt

)r
dt,
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which upon integration gives (2.32), and hence it follows that(
Jm
λ,`(a, c, µ)f(z)

)′
z

≺ φ(z).

The proof of Theorem 9 is completed.

Theorem 10. Let h be a convex function in U with h(0) = 1, If f ∈ A
satisfies the differential subordination:(

Jm
λ,`(a, c, µ)f(z)

)′ ≺ h(z), (2.33)

then
Jm
λ,`(a, c, µ)f(z)

z
≺ ϕ(z) =

1

z

∫ z

0

h(t)dt,

and ϕ is convex and is the best dominant.

Proof. Using (2.30) in (2.33), we have

p(z) + zp′(z) ≺ h(z).

From Lemma 1, we obtain

p(z) ≺ ϕ(z) =
1

z

∫ z

0

h(t)dt,

and using (2.29), we conclude the result:

Jm
λ,`(a, c, µ)f(z)

z
≺ ϕ(z) =

1

z

∫ z

0

h(t)dt.

This completes the proof of Theorem 10.

Example 8. If m ∈ Z, ` > −1, λ ≥ 0, a = c = 1, and h(z) = 1−z
1+z

, then
Theorem 10, yields the following result:[(

Jm
λ,`f(z)

)]′ ≺ 1− z
1 + z

(f(z) ∈ A , z ∈ U),

then
Jm
λ,`f(z)

z
≺ 2 log (1 + z)− z

z
(z ∈ U).
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