Subordination Results for Classes of Functions of Reciprocal Order *

B.A. Frasin ${ }^{\dagger}$
Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan
Y. Talafha ${ }^{\ddagger}$
Department of Mathematics and Computer Science, Ta la Technical University, P.O. Box 179, Ta la 66110, Jordan
and
Tariq Al-Hawary ${ }^{\S}$
Department of Mathematics, Faculty of Science and Technology, Irbid National University, P.O. Box: 2600 Irbid, Jordan

Received October 13, 2014, Accepted December 30, 2014.

Abstract

In this paper, we introduce the subclasses $\mathcal{M}^{-1}(\alpha), \mathcal{N}^{-1}(\alpha),\left(\mathcal{M}^{*}\right)^{-1}(\alpha)$ and $\left(\mathcal{N}^{*}\right)^{-1}(\alpha)$ of analytic functions of reciprocal order α. Coefficient inequalities and an interesting subordination results are obtained.

Keywords and Phrases: Analytic functions, Convex, Hadamard product, Subordination principle, Subordinating factor sequence, Univalent.

[^0]
1. Introduction and Preliminaries

Let \mathcal{A} denote the class of functions $f(z)$ defined by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the open unit disk $\mathbb{U}=\{z:|z|<1\}$. A function $f \in \mathcal{A}$ is said to be starlike of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of \mathcal{A} consisting of functions which are starlike of order α in \mathbb{U}. Clearly $\mathcal{S}^{*}(\alpha) \subseteq \mathcal{S}^{*}(0)=\mathcal{S}^{*}$, where \mathcal{S}^{*} is the class of functions that are starlike in \mathbb{U}. Also, a function $f \in \mathcal{A}$ is said to be convex of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $\mathcal{K}(\alpha)$ the subclass of \mathcal{A} consisting of functions which are convex of order α in \mathbb{U}. Clearly $\mathcal{K}(\alpha) \subseteq \mathcal{K}(0)=\mathcal{K}$, the class of functions that are convex in \mathbb{U}.

A function $f \in \mathcal{A}$ is said to be starlike of reciprocal order α if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z f^{\prime}(z)}\right\}>\alpha \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote the class of such functions by $\mathcal{S}^{-1} *(\alpha)$. Also, a function $f \in \mathcal{A}$ is said to be convex of reciprocal order α if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1}{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}\right\}>\alpha \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. The class of all such convex functions of reciprocal order α is denoted by $\mathcal{K}^{-1}(\alpha)$.

We note that $\mathcal{S}^{-1 *}(0)=\mathcal{S}^{*}, \mathcal{K}^{-1}(0)=\mathcal{K}$ and $f(z) \in \mathcal{K}^{-1}(\alpha)$ if and only if $z f^{\prime}(z) \in \mathcal{S}^{-1} *(\alpha)$.
Example 1.1. The function $f(z)=z e^{(1-\alpha) z}$ is a starlike function of reciprocal order 1/(2- α) [9, Example 2].

2. Coefficient Estimates

In this section, we introduce the subclasses $\mathcal{M}^{-1}(\alpha)$ and $\mathcal{N}^{-1}(\alpha)$ of analytic functions of reciprocal order α. The sufficient conditions for $f(z)$ to be in the class $\mathcal{M}^{-1}(\alpha)$ and $\mathcal{N}^{-1}(\alpha)$ are given by using coefficient inequalities.

Definition 2.1. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{M}^{-1}(\alpha)$ of order α if and only if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z f^{\prime}(z)}\right\}<\alpha \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

for some $\alpha>1$.
Theorem 2.2. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}[|\lambda n-1|+2 n \alpha-n \lambda-1]\left|a_{n}\right| \leq 2(\alpha-1) \tag{2.2}
\end{equation*}
$$

for some $\lambda, 0 \leq \lambda \leq 1$ and some $\alpha>1$, then $f(z) \in \mathcal{M}^{-1}(\alpha)$.
Proof. To proceed, its sufficient to show that

$$
\left|\frac{\frac{f(z)}{z f^{\prime}(z)}-\lambda}{\frac{f(z)}{z f^{\prime}(z)}-(2 \alpha-\lambda)}\right|<1 .
$$

By using the Cauchy-Schwarz inequality together with the use (2.2), we have

$$
\begin{aligned}
\left|\frac{\frac{f(z)}{z f^{\prime}(z)}-\lambda}{\frac{f(z)}{z f^{\prime}(z)}-(2 \alpha-\lambda)}\right| & =\left|\frac{1-\lambda+\sum_{n=2}^{\infty}(1-\lambda n) a_{n} z^{n-1}}{1-2 \alpha+\lambda+\sum_{n=2}^{\infty}(1-n(2 \alpha-\lambda)) a_{n} z^{n-1}}\right| \\
& \leq \frac{1-\lambda+\sum_{n=2}^{\infty}|\lambda n-1|\left|a_{n}\right||z|^{n-1}}{|1-2 \alpha+\lambda|-\sum_{n=2}^{\infty}|1-n(2 \alpha-\lambda)|\left|a_{n}\right||z|^{n-1}} \\
& <\frac{1-\lambda+\sum_{n=2}^{\infty}|\lambda n-1|\left|a_{n}\right|}{2 \alpha-\lambda-1-\sum_{n=2}^{\infty}(n(2 \alpha-\lambda)-1)\left|a_{n}\right|} .
\end{aligned}
$$

It follows that the last term is bounded by 1 if

$$
1-\lambda+\sum_{n=2}^{\infty}|\lambda n-1|\left|a_{n}\right| \leq 2 \alpha-\lambda-1-\sum_{n=2}^{\infty}(2 n \alpha-n \lambda-1)\left|a_{n}\right|
$$

which is equivalent to (2.2). The desired result follows.
Corollary 2.3. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty}(\alpha n-1)\left|a_{n}\right| \leq \alpha-1 \tag{2.3}
\end{equation*}
$$

for some $\alpha>1$, then $f(z) \in \mathcal{M}^{-1}(\alpha)$.
Example 2.4. The function $f(z)$ given by
$f(z)=z+\sum_{n=2}^{\infty} \frac{2(\alpha-1) \varphi_{n}}{n(n-1)(|\lambda n-1|+2 n \alpha-n \lambda-1)} z^{n} \in \mathcal{M}^{-1}(\alpha) ; \quad\left(\left|\varphi_{n}\right|=1\right)$
Next, we introduce the class $\mathcal{N}^{-1}(\alpha)$ defined as follows.
Definition 2.5. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{N}^{-1}(\alpha)$ of order α if and only if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1}{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}\right\}<\alpha \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

for some $\alpha>1$.
It can be seen that from (2.1) and (2.4) that

$$
\begin{equation*}
f(z) \in \mathcal{N}^{-1}(\alpha) \text { if and only if } z f^{\prime}(z) \in \mathcal{M}^{-1}(\alpha) \tag{2.5}
\end{equation*}
$$

In view of (2.5), we can conclude the following result.
Corollary 2.6. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n[|\lambda n-1|+2 n \alpha-n \lambda-1]\left|a_{n}\right| \leq 2(\alpha-1) \tag{2.6}
\end{equation*}
$$

for some $\lambda, 0 \leq \lambda \leq 1$ and some $\alpha>1$, then $f(z) \in \mathcal{N}^{-1}(\alpha)$.

Corollary 2.7. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(\alpha n-1)\left|a_{n}\right| \leq \alpha-1 \tag{2.7}
\end{equation*}
$$

for some $\alpha>1$, then $f(z) \in \mathcal{N}^{-1}(\alpha)$.
Example 2.8. The function $f(z)$ given by
$f(z)=z+\sum_{n=2}^{\infty} \frac{2(\alpha-1) \varphi_{n}}{n^{2}(n-1)(|\lambda n-1|+2 n \alpha-n \lambda-1)} z^{n} \in \mathcal{N}^{-1}(\alpha) ; \quad\left(\left|\varphi_{n}\right|=1\right)$

3. Subordination Results

To proceed our main results, let us first recall the following definitions and lemma.

Definition 3.1. (Hadamard Product). For two functions $f(z), g(z) \in \mathcal{A}$, where $f(z)$ is given by (1.1) and $g(z)$ is given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then Hadamard product (convolution) $f * g$ is defined as follows

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \tag{3.1}
\end{equation*}
$$

Definition 3.2. (Subordination Principle). Given two functions $f(z)$, $g(z) \in \mathcal{A}$ in \mathbb{U}, g be univalent in $\mathbb{U}, f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$, then we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and write $f(z) \prec g(z)$, $z \in \mathbb{U}$. Moreover, we say that $g(z)$ is superordinate to $f(z)$ in \mathbb{U}.

Definition 3.3. A sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever $f(z)$ of the form (1.1), $a_{1}=1$ is analytic, univalent and convex in \mathbb{U}, we have the subordination given by

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} a_{n} z^{n} \prec f(z), \quad z \in \mathbb{U} . \tag{3.2}
\end{equation*}
$$

Lemma 3.4. ([8]). The sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is subordinating factor sequence if and only if

$$
\begin{equation*}
R e\left\{1+2 \sum_{n=1}^{\infty} b_{n} z^{n}\right\}>0 \quad(z \in \mathbb{U}) \tag{3.3}
\end{equation*}
$$

Let $\left(\mathcal{M}^{*}\right)^{-1}(\alpha) \subseteq \mathcal{M}^{-1}(\alpha)$ and $\left(\mathcal{N}^{*}\right)^{-1}(\alpha) \subseteq \mathcal{N}^{-1}(\alpha)$ denote the subclasses of functions $f \in \mathcal{A}$ whose coefficients a_{n} satisfy the inequalities (2.2) and (2.6)for all $\alpha>1$, respectively. Employing the techniques used by Srivastava and Attiya [7], Attiya [2] and Singh [6](see also, [1], [3], [4] and [5]), we state and prove the following theorems.

Theorem 3.5. Let the function $f(z)$ be in the class $\left(\mathcal{M}^{*}\right)^{-1}(\alpha)$. Then

$$
\begin{gather*}
\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[6 \alpha-2 \lambda-3+|2 \lambda-1|]}(f * g)(z) \prec g(z), \tag{3.4}\\
(0 \leq \lambda \leq 1 ; g \in \mathcal{K}),
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{Re}(f(z))>-\frac{6 \alpha-2 \lambda-3+|2 \lambda-1|}{|2 \lambda-1|+4 \alpha-2 \lambda-1} . \tag{3.5}
\end{equation*}
$$

The constant $\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[6 \alpha-2 \lambda-3+|2 \lambda-1|]}$ is the best estimate.
Proof. Now we can follow the same techniques in. Let $f(z) \in\left(\mathcal{M}^{*}\right)^{-1}(\alpha)$ and suppose that $g(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in \mathcal{K}$. It follows that

$$
\begin{aligned}
& \frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[6 \alpha-2 \lambda-3+|2 \lambda-1|]}(f * g)(z) \\
& =\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[6 \alpha-2 \lambda-3+|2 \lambda-1|]}\left(z+\sum_{n=2}^{\infty} a_{n} c_{n} z^{n}\right) .
\end{aligned}
$$

By using Subordinating Factor definition and the subordination result (3.4) will hold true if the sequence

$$
\begin{equation*}
\left\{\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[6 \alpha-2 \lambda-3+|2 \lambda-1|]} a_{n}\right\}_{n=1}^{\infty} \tag{3.6}
\end{equation*}
$$

is a subordinating factor sequence, with $a_{1}=1$. By virtue of Lemma 3.4, the sequence (3.6) is a subordinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\sum_{n=1}^{\infty} \frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{6 \alpha-2 \lambda-3+|2 \lambda-1|} a_{n} z^{n}\right\}>0 \tag{3.7}
\end{equation*}
$$

Since $\phi(n)=|\lambda n-1|+2 n \alpha-n \lambda-1$ is an increasing function of $n(n \geq 0)$ for $0 \leq \lambda \leq 1$ and $\alpha>1$, we obtain

$$
\begin{aligned}
& \operatorname{Re}\left\{1+\sum_{n=1}^{\infty} \frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{6 \alpha-2 \lambda-3+|2 \lambda-1|} a_{n} z^{n}\right\} \\
& =\operatorname{Re}\left\{1+\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{6 \alpha-2 \lambda-3+|2 \lambda-1|} z+\right. \\
& \left.\frac{1}{6 \alpha-2 \lambda-3+|2 \lambda-1|} \sum_{n=2}^{\infty}(|2 \lambda-1|+4 \alpha-2 \lambda-1) a_{n} z^{n}\right\} \\
& \geq 1-\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{6 \alpha-2 \lambda-3+|2 \lambda-1|} r- \\
& \frac{1}{6 \alpha-2 \lambda-3+|2 \lambda-1|} \sum_{n=2}^{\infty}(|\lambda n-1|+2 n \alpha-n \lambda-1)\left|a_{n}\right| r^{n} \\
& >1-\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{6 \alpha-2 \lambda-3+|2 \lambda-1|} r-\frac{2(\alpha-1)}{6 \alpha-2 \lambda-3+|2 \lambda-1|} r \\
& >0 \quad(|z|=r<1),
\end{aligned}
$$

where we have been used inequality (2.2) in Lemma 3.4. The inequality (3.7) is thus proved. We can also obtain the result (3.5) from (3.4) by setting

$$
g(z)=\frac{z}{1-z}=z+\sum_{n=1}^{\infty} z^{n} .
$$

To prove the sharpness, let us introduce $f_{0}(z) \in\left(\mathcal{M}^{*}\right)^{-1}(\alpha)$ by

$$
f_{0}(z)=z-\frac{2(\alpha-1)}{|2 \lambda-1|+4 \alpha-2 \lambda-1} z^{2} .
$$

Then by using (3.4), we obtain

$$
\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[6 \alpha-2 \lambda-3+|2 \lambda-1|]} f_{0}(z) \prec \frac{z}{1-z} .
$$

It follows that

$$
\min _{z \in \mathbb{U}}\left\{\operatorname{Re}\left(\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[6 \alpha-2 \lambda-3+|2 \lambda-1|]} f_{0}(z)\right)\right\}=\frac{-1}{2} .
$$

Thus, the proof is completed.
By using the similar argument in Theorem 3.5, we obtain that the following result.
Theorem 3.6. Let the function $f(z)$ be in the class $\left(\mathcal{N}^{*}\right)^{-1}(\alpha)$. Then

$$
\begin{gathered}
\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[5 \alpha-2 \lambda-2+|2 \lambda-1|]}(f * g)(z) \prec g(z), \\
(0 \leq \lambda \leq 1 ; g \in \mathcal{K}),
\end{gathered}
$$

and

$$
\operatorname{Re}(f(z))>-\frac{5 \alpha-2 \lambda-2+|2 \lambda-1|}{|2 \lambda-1|+4 \alpha-2 \lambda-1} .
$$

The constant $\frac{|2 \lambda-1|+4 \alpha-2 \lambda-1}{2[5 \alpha-2 \lambda-2+|2 \lambda-1|]}$ is the best estimate.
Putting $\lambda=\frac{1}{2}$ in Theorems 3.5 and 3.6 , we have the following results.
Corollary 3.7. Let the function $f(z)$ be in the class $\left(\mathcal{M}^{*}\right)^{-1}(\alpha)$. Then

$$
\frac{2 \alpha-1}{6 \alpha-4}(f * g)(z) \prec g(z) \text {, where } g \in \mathcal{K}
$$

and

$$
\operatorname{Ref}(z)>-\frac{3 \alpha-2}{2 \alpha-1}
$$

The constant $\frac{2 \alpha-1}{6 \alpha-4}$ is the best estimate.
Corollary 3.8. Let the function $f(z)$ be in the class $\left(\mathcal{N}^{*}\right)^{-1}(\alpha)$. Then

$$
\frac{2 \alpha-1}{5 \alpha-3}(f * g)(z) \prec g(z) \text {, where } g \in \mathcal{K}
$$

and

$$
\operatorname{Re}(f(z))>-\frac{5 \alpha-3}{4 \alpha-2}
$$

The constant $\frac{2 \alpha-1}{5 \alpha-3}$ is the best estimate.
Acknowledgements. The authors are grateful to the referee for careful reading of the article and suggested improvements.

References

[1] M. K. Aouf, A. Shamandy, A. O. Mostafa and E. A. Adwan, Subordination theorem of analytic functions defined by convolution, Complex Anal. Oper. Theory, 7 (2013),1117-1126.
[2] A.A. Attiya, On some application of a subordination theorems, J. Math. Anal. Appl. 311 (2005), 489-494.
[3] B. A. Frasin, A subordination result for a class of analytic functions, Acta Univ. Apulensis Math. Inform. No. 29 (2012), 99-103.
[4] B. A. Frasin, Subordination results for a class of analytic functions defined by a linear operator, J. Inequal. Pure Appl. Math. 7 (2006), no. 4, Article 134, 7 pp.
[5] B. A. Frasin and M. Darus, Subordination results on subclasses concerning Sakaguchi functions, J. Inequal. Appl. 2009, Art. ID 574014, 7 pp.
[6] S. Singh, A subordination theorems for spirallike functions, Int. J. Math. and Math. Sci., 24 (7) (2000), 433-435.
[7] H.M. Srivastava and A.A. Attiya, Some subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 5 (4) (2004), Article 82, 1-6.
[8] H.S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.
[9] M. Nunokawa, S. Owa, J. Nishiwaki, K. Kuroki and T. Hayami, Differential subordination and argumental property, Comput. Math. Appl. 56 (10) (2008) 2733-2736.

[^0]: *2000 Mathematics Subject Classification. Primary 30C45.
 †E-mail: bafrasin@yahoo.com
 ${ }^{\ddagger}$ E-mail: y.a.talafha@gmail.com
 §E-mail: tariq_amh@yahoo.com

