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Abstract

In this paper, we introduce the subclassesM−1(α),N−1(α), (M∗)−1(α)
and (N ∗)−1(α) of analytic functions of reciprocal order α. Coefficient
inequalities and an interesting subordination results are obtained.
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1. Introduction and Preliminaries

Let A denote the class of functions f(z) defined by

f(z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic and univalent in the open unit disk U = {z : |z| < 1}. A
function f ∈ A is said to be starlike of order α if it satisfies

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U) (1.2)

for some α(0 ≤ α < 1). We denote by S∗(α) the subclass of A consisting of
functions which are starlike of order α in U. Clearly S∗(α) ⊆ S∗(0) = S∗,
where S∗is the class of functions that are starlike in U . Also, a function f ∈ A
is said to be convex of order α if it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U) (1.3)

for some α(0 ≤ α < 1). We denote by K(α) the subclass of A consisting of
functions which are convex of order α in U. Clearly K(α) ⊆ K(0) = K, the
class of functions that are convex in U.

A function f ∈ A is said to be starlike of reciprocal order α if

Re

{
f(z)

zf ′(z)

}
> α (z ∈ U) (1.4)

for some α(0 ≤ α < 1). We denote the class of such functions by S−1∗(α).
Also, a function f ∈ A is said to be convex of reciprocal order α if

Re

{
1

1 + zf ′′(z)
f ′(z)

}
> α ( z ∈ U) (1.5)

for some α(0 ≤ α < 1). The class of all such convex functions of reciprocal
order α is denoted by K−1

(α).
We note that S−1∗(0) = S∗, K−1

(0) = K and f(z) ∈ K−1
(α) if and only if

zf ′(z) ∈ S−1∗(α).

Example 1.1. The function f(z) = ze(1−α)z is a starlike function of reciprocal
order 1/(2− α) [9, Example 2].
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2. Coefficient Estimates

In this section, we introduce the subclasses M−1(α) and N−1(α) of analytic
functions of reciprocal order α. The sufficient conditions for f(z) to be in the
class M−1(α) and N−1(α) are given by using coefficient inequalities.

Definition 2.1. A function f ∈ A is said to be in the class M−1(α)of order
α if and only if it satisfies the condition

Re

{
f(z)

zf ′(z)

}
< α (z ∈ U) (2.1)

for some α > 1.

Theorem 2.2. If f ∈ A satisfies

∞∑
n=2

[|λn− 1|+ 2nα− nλ− 1] |an| ≤ 2 (α− 1) (2.2)

for some λ, 0 ≤ λ ≤ 1and some α > 1, then f(z) ∈M−1(α).

Proof. To proceed, its sufficient to show that∣∣∣∣∣
f(z)
zf ′(z)

− λ
f(z)
zf ′(z)

− (2α− λ)

∣∣∣∣∣ < 1.

By using the Cauchy-Schwarz inequality together with the use (2.2), we have

∣∣∣∣∣
f(z)
zf ′(z)

− λ
f(z)
zf ′(z)

− (2α− λ)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1− λ+

∞∑
n=2

(1− λn) anz
n−1

1− 2α + λ+
∞∑
n=2

(1− n (2α− λ)) anzn−1

∣∣∣∣∣∣∣∣
≤

1− λ+
∞∑
n=2

|λn− 1| |an| |z|n−1

|1− 2α + λ| −
∞∑
n=2

|1− n (2α− λ)| |an| |z|n−1

<

1− λ+
∞∑
n=2

|λn− 1| |an|

2α− λ− 1−
∞∑
n=2

(n (2α− λ)− 1) |an|
.
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It follows that the last term is bounded by 1 if

1− λ+
∞∑
n=2

|λn− 1| |an| ≤ 2α− λ− 1−
∞∑
n=2

(2nα− nλ− 1) |an|

which is equivalent to (2.2). The desired result follows.

Corollary 2.3. If f ∈ A satisfies

∞∑
n=2

(αn− 1) |an| ≤ α− 1, (2.3)

for some α > 1, then f(z) ∈M−1(α).

Example 2.4. The function f(z) given by

f(z) = z +
∞∑
n=2

2(α− 1)ϕn
n(n− 1)(|λn− 1|+ 2nα− nλ− 1)

zn ∈M−1(α); (|ϕn| = 1)

Next, we introduce the class N−1(α) defined as follows.

Definition 2.5. A function f ∈ A is said to be in the class N−1(α)of order
α if and only if it satisfies the condition

Re

{
1

1 + zf ′′(z)
f ′(z)

}
< α (z ∈ U) (2.4)

for some α > 1.

It can be seen that from (2.1) and (2.4) that

f(z) ∈ N−1(α) if and only if zf ′(z) ∈M−1(α). (2.5)

In view of (2.5), we can conclude the following result.

Corollary 2.6. If f ∈ A satisfies

∞∑
n=2

n [|λn− 1|+ 2nα− nλ− 1] |an| ≤ 2 (α− 1) (2.6)

for some λ, 0 ≤ λ ≤ 1and some α > 1, then f(z) ∈ N−1(α).
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Corollary 2.7. If f ∈ A satisfies

∞∑
n=2

n (αn− 1) |an| ≤ α− 1, (2.7)

for some α > 1, then f(z) ∈ N−1(α).

Example 2.8. The function f(z) given by

f(z) = z +
∞∑
n=2

2(α− 1)ϕn
n2(n− 1)(|λn− 1|+ 2nα− nλ− 1)

zn ∈ N−1(α); (|ϕn| = 1)

3. Subordination Results

To proceed our main results, let us first recall the following definitions and
lemma.

Definition 3.1. (Hadamard Product ). For two functions f(z), g(z) ∈ A,

where f(z) is given by (1.1) and g(z) is given by g(z) = z +
∞∑
n=2

bnz
n, then

Hadamard product (convolution) f ∗ g is defined as follows

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n. (3.1)

Definition 3.2. (Subordination Principle). Given two functions f(z),
g(z) ∈ A in U, g be univalent in U, f(0) = g(0) and f(U) ⊂ g(U), then we
say that the function f(z) is subordinate to g(z) in U, and write f(z) ≺ g(z),
z ∈ U. Moreover, we say that g(z) is superordinate to f(z) in U.

Definition 3.3. A sequence {bn}∞n=1 of complex numbers is said to be a subor-
dinating factor sequence if, whenever f(z) of the form (1.1), a1 = 1 is analytic,
univalent and convex in U, we have the subordination given by

∞∑
n=1

bnanz
n ≺ f(z), z ∈ U. (3.2)
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Lemma 3.4. ( [8]). The sequence {bn}∞n=1 is subordinating factor sequence if
and only if

Re

{
1 + 2

∞∑
n=1

bnz
n

}
> 0 (z ∈ U). (3.3)

Let (M∗)−1(α) ⊆M−1(α) and (N ∗)−1(α) ⊆ N−1(α) denote the subclasses
of functions f ∈ A whose coefficients an satisfy the inequalities (2.2) and
(2.6)for all α > 1, respectively. Employing the techniques used by Srivastava
and Attiya [7], Attiya [2] and Singh [6]( see also, [1], [3], [4] and [5]), we state
and prove the following theorems.

Theorem 3.5. Let the function f(z) be in the class (M∗)−1(α). Then

|2λ− 1|+ 4α− 2λ− 1

2 [6α− 2λ− 3 + |2λ− 1|]
(f ∗ g)(z) ≺ g(z), (3.4)

(0 ≤ λ ≤ 1; g ∈ K) ,

and

Re (f(z)) > −6α− 2λ− 3 + |2λ− 1|
|2λ− 1|+ 4α− 2λ− 1

. (3.5)

The constant |2λ−1|+4α−2λ−1
2[6α−2λ−3+|2λ−1|] is the best estimate.

Proof. Now we can follow the same techniques in. Let f(z) ∈ (M∗)−1(α) and

suppose that g(z) = z +
∞∑
n=2

cnz
n ∈ K. It follows that

|2λ− 1|+ 4α− 2λ− 1

2 [6α− 2λ− 3 + |2λ− 1|]
(f ∗ g)(z)

=
|2λ− 1|+ 4α− 2λ− 1

2 [6α− 2λ− 3 + |2λ− 1|]

(
z +

∞∑
n=2

ancnz
n

)
.

By using Subordinating Factor definition and the subordination result (3.4)
will hold true if the sequence{

|2λ− 1|+ 4α− 2λ− 1

2 [6α− 2λ− 3 + |2λ− 1|]
an

}∞
n=1

(3.6)
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is a subordinating factor sequence, with a1 = 1. By virtue of Lemma 3.4, the
sequence (3.6) is a subordinating factor sequence if and only if

Re

{
1 +

∞∑
n=1

|2λ− 1|+ 4α− 2λ− 1

6α− 2λ− 3 + |2λ− 1|
anz

n

}
> 0. (3.7)

Since φ(n) = |λn− 1|+ 2nα−nλ− 1 is an increasing function of n(n ≥ 0) for
0 ≤ λ ≤ 1 and α > 1, we obtain

Re

{
1 +

∞∑
n=1

|2λ− 1|+ 4α− 2λ− 1

6α− 2λ− 3 + |2λ− 1|
anz

n

}

= Re

{
1 +
|2λ− 1|+ 4α− 2λ− 1

6α− 2λ− 3 + |2λ− 1|
z +

1

6α− 2λ− 3 + |2λ− 1|

∞∑
n=2

(|2λ− 1|+ 4α− 2λ− 1) anz
n

}

≥ 1− |2λ− 1|+ 4α− 2λ− 1

6α− 2λ− 3 + |2λ− 1|
r−

1

6α− 2λ− 3 + |2λ− 1|

∞∑
n=2

(|λn− 1|+ 2nα− nλ− 1) |an| rn

> 1− |2λ− 1|+ 4α− 2λ− 1

6α− 2λ− 3 + |2λ− 1|
r − 2(α− 1)

6α− 2λ− 3 + |2λ− 1|
r

> 0 (|z| = r < 1),

where we have been used inequality (2.2) in Lemma 3.4. The inequality (3.7)
is thus proved. We can also obtain the result (3.5) from (3.4) by setting

g(z) =
z

1− z
= z +

∞∑
n=1

zn.

To prove the sharpness, let us introduce f0(z) ∈ (M∗)−1(α) by

f0(z) = z − 2(α− 1)

|2λ− 1|+ 4α− 2λ− 1
z2.

Then by using (3.4), we obtain

|2λ− 1|+ 4α− 2λ− 1

2 [6α− 2λ− 3 + |2λ− 1|]
f0(z) ≺ z

1− z
.
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It follows that

min
z∈U

{
Re

(
|2λ− 1|+ 4α− 2λ− 1

2 [6α− 2λ− 3 + |2λ− 1|]
f0(z)

)}
=
−1

2
.

Thus, the proof is completed.

By using the similar argument in Theorem 3.5, we obtain that the following
result.

Theorem 3.6. Let the function f(z) be in the class (N ∗)−1(α). Then

|2λ− 1|+ 4α− 2λ− 1

2 [5α− 2λ− 2 + |2λ− 1|]
(f ∗ g)(z) ≺ g(z),

(0 ≤ λ ≤ 1; g ∈ K) ,

and

Re (f(z)) > −5α− 2λ− 2 + |2λ− 1|
|2λ− 1|+ 4α− 2λ− 1

.

The constant |2λ−1|+4α−2λ−1
2[5α−2λ−2+|2λ−1|] is the best estimate.

Putting λ = 1
2

in Theorems 3.5 and 3.6 , we have the following results.

Corollary 3.7. Let the function f(z) be in the class (M∗)−1(α). Then

2α− 1

6α− 4
(f ∗ g)(z) ≺ g(z),where g ∈ K

and

Ref(z) > −3α− 2

2α− 1
.

The constant 2α−1
6α−4 is the best estimate.

Corollary 3.8. Let the function f(z) be in the class (N ∗)−1(α). Then

2α− 1

5α− 3
(f ∗ g)(z) ≺ g(z),where g ∈ K

and

Re (f(z)) > −5α− 3

4α− 2
.

The constant 2α−1
5α−3 is the best estimate.
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