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Abstract

Row-cyclic array codes equipped with m-metric [13] suitable for par-
allel channel communication systems have been introduced by the first
author in [10] and the notion of cluster/burst array errors were intro-
duced by the first author in [6]. In this paper, we study cluster array
errors detection and correction in row-cyclic array codes.

Keywords and Phrases: Row-cyclic array codes , Cluster array errors

∗2000 Mathematics Subject Classification. Primary 94B05.
†Corresponding author. E-mail: sapnajain@gmx.com
‡E-mail: akshayam2001@yahoo.co.in



60 Sapna Jain and Akshaya Kumar Mishra

1. Introduction

Row-cyclic array codes equipped with m-metric [13] suitable for parallel chan-
nel communication systems have already been introduced by the first author
in [10]. The first author also gave decoding algorithm for the correction of
random array errors in row-cyclic array codes [10]. There are yet another kind
of errors during parallel channel communication systems known as cluster er-
rors or burst errors [6]. The errors in a burst error are not scattered through
out the array but are confined to a subarray part of it. These errors arise, for
example due to lightening, thundering etc. in deep space satellite communica-
tion. In this paper, we study burst error detection and correction in row-cyclic
array codes.

2. Definitions and Notations

Let Fq be a finite field of q elements. Let Matm×s(Fq) denote the linear space
of all m× s matrices with entries from Fq. An m-metric array code is a subset
of Matm×s(Fq) and a linear m-metric array code is an Fq-linear subspace of
Matm×s(Fq). Note that the space Matm×s(Fq) is identifiable with the space
Fms
q . Every matrix in Matm×s(Fq) can be represented as a 1 ×ms vector by

writing the first row of matrix followed by second row and so on. Similarly,
every vector in Fms

q can be represented as an m× s matrix in Matm×s(Fq) by
separating the co-ordinates of the vector into m groups of s-coordinates. The
m-metric on Matm×s(Fq) is defined as follows [13]:

Definition 2.1. Let Y ∈ Mat1×s(Fq) with Y = (y1, y2, · · · , ys). Define row
weight (or ρ-weight) of Y as

wtρ(Y ) =


max { i | yi 6= 0} if Y 6= 0

0 if Y = 0.

Extending the definitions of wtρ to the class of m× s matrices as

wtρ(A) =
m∑
i=1

wtρ(Ri)
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where A =


R1

R2

· · ·
Rm

 ∈ Matm×s(Fq) and Ri denotes the ith row of A. Then wtρ

satisfies 0 ≤ wtρ(A) ≤ n(= ms) ∀ A ∈ Matm×s(Fq) and determines a metric
on Matm×s(Fq) known as m-metric (or ρ-metric).

Now we define burst errors in linear array codes [6]:

Definition 2.2. A burst of order pr(or p × r)(1 ≤ p ≤ m, 1 ≤ r ≤ s) in
the space Matm×s(Fq) is an m× s matrix in which all the nonzero entries are
confined to some p × r submatrix which has non-zero first and last rows as
well as non-zero first and last columns.

Note. For p = 1, Definition 2.2 reduces to the definition of burst for classical
codes [5].

Definition 2.3. A burst of order pr or less (1 ≤ p ≤ m, 1 ≤ r ≤ s) in the
space Matm×s(Fq) is a burst of order cd(or c × d) where 1 ≤ c ≤ p ≤ m and
1 ≤ d ≤ r ≤ s.

The following theorem gives a bound for the correction of burst array errors
in linear m-metric array codes [6].

Theorem 2.1. An (n, k) linear m-metric array code V ⊆ Matm×s(Fq) where
n = ms that corrects all bursts of order pr(1 ≤ p ≤ m, 1 ≤ r ≤ s) must satisfy

qn−k ≥ 1 +Bp×r
m×s(Fq), (2.1)

where Bp×r
m×s(Fq) is the number of bursts of order pr(1 ≤ p ≤ m, 1 ≤ r ≤ s) in
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Matm×s(Fq) and is given by

Bp×r
m×s(Fq) =



ms(q − 1) if p = 1, r = 1,

m(s− r + 1)(q − 1)2qr−2 if p = 1, r ≥ 2,

(m− p+ 1)s(q − 1)2qp−2 if p ≥ 2, r = 1

(m− p+ 1)(s− r + 1)qr(p−2)

×
[
(qr − 1)2 − 2(qr−1 − 1)2q2−p

+(qr−2 − 1)2q4−2p
]

if p ≥ 2, r ≥ 2.

(2.2)

Now, we give the definition of row-cyclic array codes [10].

Definition 2.4. An [m × s, k] linear array codes C ⊆ Matm×s(Fq) is said to
be row-cyclic if 

a11 a12 · · · a1s
a21 a22 · · · a2s
...

...
...

...
am1 am2 · · · ams

 ∈ C

=⇒


a1s a11 a12 · · · a1,s−1
a2s a21 a22 · · · a2,s−1
...

...
...

...
ams am1 am2 · · · am,s−1

 ∈ C

i.e. the array obtained by shifting the columns of a code array cyclically by
one position of the right and the last column occupying the first place is also
a code array. In fact, a row-cyclic array code C of order m × s turns out to

be C =
m⊕
i=1

Ci where each Ci is a classical cyclic code of length s. Also, every

matrix/array in Matm×s(Fq) can be identified with an m-tuple in A
(m)
s where

A
(m)
s is the direct product of algebra As taken m times and As is the algebra
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of all polynomials over Fq modulo the polynomial xs−1 and this identification
is given by

θ : Matm×s(Fq)→ A(m)
s

θ(A) = θ

 R1
...
Rm

 =


θ′R1

θ′R2
...

θ′Rm

 = (θ′R1, θ
′R2, · · · , θ′Rm)

where Ri(i = 1 to m) denotes the ith row of A and θ′ : F s
q −→ As is given by

θ′(a0, a1, · · · , as−1) = a0 + a1x+ · · ·+ as−1x
s−1.

An equivalent definition of row-cyclic array code is given by [10]:

Definition 2.5. An m× s linear array codes C ⊆ Matm×s(Fq) is said to be
row-cyclic if

C =
m⊕
i=1

Ci

where each Ci is an [s, ki, di] classical cyclic code equipped with m-metric. The

parameters of row-cyclic array code C are given by [m × s,
m∑
i=1

ki,
m

min
i=1

di]. If

gi(x) is the generator polynomial of classical cyclic code Ci, then the m-tuple
(g1(x) · · · , gm(x)) is called the generator m-tuple of row cyclic code C.

3. Detection of Cluster/Burst Array Errors in

Row-Cyclic Array Codes

In this section, we first obtain an upper bound on the order of burst array
errors that can be detected by a row-cyclic array code and then obtain the
ratio of bursts (of order exceeding the upper bound) that can go undetected.
The upper bound on the order of bursts that can be detected in a row-cyclic
array code is obtained in the following theorems:
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Theorem 3.1 Let C =
m⊕
i=1

Ci be an [m×s,
m∑
i=1

ki,
m

min
i=1

di] row-cyclic array code.

Then no code array is a burst of order m × r or less where r =
m

min
i=1
{s − ki}.

Therefore, every [m×s,
m∑
i=1

ki,
m

min
i=1

di] row-cyclic array code detects every burst

of order m×
m

min
i=1
{s− ki} or less.

Proof. Let

A = (0 B 0) =


b1

0 b2 0
...
bm



=


b1(x)

0 b2(x) 0
...

bm(x)

 ∈ A(m)
s

denote a burst of order m × r or less where r =
m

min
i=1
{s − ki} where B is

a m × r submatrix of A such that B has a submatrix D with the first
row, last row as well as first and the last column of D to be nonzero. Let
(g1(x), g2(x), · · · , gm(x)) be the generator m-tuple of row-cyclic array code C.
Then deg(gi(x)) = s − ki for all i = 1, 2, · · · ,m. Choose bi(x) such that
bi(x) 6= 0. Then such a bi(x) is a classical burst of order r or less. Let the first
nonzero component of the vector corresponding to bi(x) be the coefficient of
xj under the correspondence θ′ i.e.

(a0, a1, · · · , as−1)←→ a0 + a1x+ · · ·+ as−1x
s−1.

Then, the polynomial bi(x) can be written as

bi(x) = ajx
j + aj+1x

j+1 + · · ·+ aj+r−1x
j+r−1

= xj(aj + aj+1x+ · · ·+ aj+r−1x
r−1)

= xjp(x)

where deg p(x) ≤ r − 1 =
m

min
i=1
{s− ki} − 1 ≤ s− ki − 1 < s− ki = deg gi(x).
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Now gi(x) does not divide xj and also gi(x) does not divide p(x) as deg (p(x)) <
deg gi(x).

So, gi(x) does not divide bi(x).

This implies that bi(x) is not a code polynomial in classical code Ci which

further implies that A =


b1(x)

0 b2(x) 0
...

bm(x)

 is not an array of code polynomials

in C =
m⊕
i=1

Ci. Hence, the row-cyclic array code C detects every burst of order

m×
m

min
i=1
{s− ki} or less. 2

Another upper bound on the order of bursts that can be detected by a row-
cyclic array code is obtained in the following theorem:

Theorem 3.2. Let C =
m⊕
i=1

Ci be an [m × s,
m∑
i=1

ki,
m

min
i=1

di] row-cyclic array

code. Then no code array is a burst of order m× r where r ≤ max{s− k1, s−

km}. Therefore, every [m× s,
m∑
i=1

ki,
m

min
i=1

di] row-cyclic array code C =
m⊕
i=1

Ci

detects every burst of order m× r where r ≤ max{s− k1, s− km}.

Proof. Let

A = (0 B 0) =


b1

0 b2 0
...
bm



=


b1(x)

0 b2(x) 0
...

bm(x)

 ∈ A(m)
s

denote a burst of order m×r where r ≤ max{s−k1, s−km} and B is an m×r
submatrix of A with first and last rows as well as the first and last columns of
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B are nonzero. Let (g1(x), g2(x), · · · , gm(x)) be the generator m-tuple of row-
cyclic array code C. Then deg(gi(x)) = s− ki for all i = 1, 2, · · · ,m. Clearly
b1(x), bm(x) 6= 0. Let max{s− k1, s− km} = s− k1. Then as in Theorem 3.1,
we have

b1(x) = ajx
j + aj+1x

j+1 + · · ·+ aj+r−1x
j+r−1

= xj(aj + aj+1x+ · · ·+ aj+r−1x
r−1)

= xjp(x)

where

deg p(x) ≤ r − 1 ≤ max{s− k1, s− km} − 1

= s− k1 − 1 < s− k1 = deg g1(x)

Now g1(x) does not divide xj and also g1(x) does not divide p(x) as deg (p(x)) <
deg g1(x).

So g1(x) does not divide b1(x).

This implies that b1(x) is not a code polynomial in classical code C1.

This implies that A =


b1(x)

0 b2(x) 0
...

bm(x)

 is not an array of code polynomials

in C =
m⊕
i=1

Ci. Again, when max{s − k1, s − km} = s − km, we arrive at the

same conclusion by considering bm(x) to be a classical burst of length r or less
in classical code Cm. 2

Remark 3.1. Clearly bound obtained in Theorem 3.2 is better than obtained

in Theorem 3.1 as
m

min
i=1
{s−ki} ≤ max{s−k1, s−km} with the only constraint

in Theorem 3.2 that order of nonzero submatrix in burst A is m× r and not
m × r or less where (r ≤ max{s − k1, s − km}). We may also take the order
m× r or less in Theorem 3.2 but with the constraint that b1(x), bm(x) 6= 0 i.e.
the first and last rows of burst A are nonzero.

Now, we obtain the ratio of bursts of orders m × r where r > max{s −
k1, s − km} that go undetected in row-cyclic array codes. We shall be using
the notation |J | for the cardinality of a set J .
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Theorem 3.3. Let C =
m⊕
i=1

Ci be a row-cyclic array code over Fq where each Ci

is a [s, ki, di] classical cyclic code equipped with m-metric and having generator
polynomial gi(x). Then the ratio of bursts of order m× r (where r > max{s−
k1, s− km}) that go undetected in a row-cyclic array code C is given by

(s− r + 1)(α− 2β)

Bm×r
m×s(Fq)

(3.1)

where

α =

(
q

(|J |−2)(r−s)+
∑

i∈J/{1,m}

ki)
× (qr−s+k1 − 1)× (qr−s+km − 1), (3.2)

β =

(
q

(|J |−2)(r−s−1)+
∑

i∈J/{1,m}

ki)
× (q(r−1)−(s−k1) − 1)×

×(q(r−1)−(s−km) − 1), (3.3)

and J is a subset of N = {1, 2, · · · ,m} such that i ∈ J1 ⇔ r − 1 ≥ s− ki and
Bm×r
m×s(Fq) is given by (2).

Proof. Consider a burst A of order m× r where r > max{s− k1, s− km}. We
can write A as

A = (0 B 0) =


b1

0 b2 0
...
bm



=


b1(x)

0 b2(x) 0
...

bm(x)

 (under the identification θ).

where B =


b1(x)
b2(x)

...
bm(x)

 is an m × r submatrix of A such that first row and

first column as well as last row and last column of B are nonzero.
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Now, the burst A will go undetected if gi(x) divides bi(x)∀ i ∈ N .

Without any loss of generality, we may assume that deg bi(x) ≤ r−1 for all i ∈ N .
Let i ∈ N . We find possible number of ways of choosing bi(x).

There are two mutually cases to consider:

Case 1. When i ∈ N/J .

In this case, r − 1 < s − ki. Since deg bi(x) ≤ r − 1 and deg gi(x) = (s− ki)
and r − 1 < s− ki, therefore gi(x) divides bi(x) iff bi(x) = 0.

So there is only one way of choosing bi(x) and hence the possible number of
ways of choosing bi(x)for all i ∈ N/J

= (1)|N/J | = 1. (3.4)

Case 2. When i ∈ J .

In this case, r − 1 ≥ s − ki. Now gi(x) divides bi(x) iff bi(x) = gi(x)qi(x) for
some qi(x).

Since deg gi(x) = s− ki and deg bi(x) ≤ r− 1, therefore deg qi(x) ≤ (r− 1)−
(s− ki).
Denote (r − 1)− (s− ki) by P . Then deg qi(x) ≤ P .

Now, the number of possibilities for qi(x) for i ∈ J/{1,m}

= number of polynomials of dgree upto P

= q + (q − 1)q + (q − 1)q2 + · · ·+ (q − 1)qP

= qP+1 = qr−s+ki .

Also, the number of possible ways of choosing q1(x) and qm(x) are (qr−s+k1−1)
and (qr−s+km − 1) respectively (because when q1(x) or qm(x) is a polynomial
of degree zero then it has to be a nonzero constant).

So the total number of possible ways of choosing gi(x) and hence bi(x)∀ i ∈ J

=
∏

i∈J/{1,m}

qr−s+ki × (qr−s+k1 − 1)× (qr−s+km − 1)

=

(
q

(|J |−2)(r−s)+
∑

i∈J/{1,m}

ki)
× (q(r−s+k1) − 1)××(q(r−s+km) − 1)

= α (3.5)
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So the total number of possible ways of choosing qi(x) and hence bi(x) ∀ i ∈ N

= (6)× (7)

= α× 1 = α. (3.6)

Out of all these possible ways, we have to eliminate those possibilities which
gives rise to either first column or last column of B to be zero.

Now, first column of B is zero when constant term of qi(x) = 0 ∀i ∈ J .

The number of ways in which constant term of qi(x) = 0 for i ∈ J/({1,m}

= 1 + (q − 1) + (q − 1)q + · · ·+ (q − 1)qp−1

= 1 + (q − 1)

(
qP − 1

q − 1

)
= qP = q(r−1)−(s−ki).

Also, the number of ways in which constant term of qi(x) and qm(x) is zero
are (q(r−1)−(s−k1) − 1) and (q(r−1)−(s−km) − 1) respectively.

So the number of ways which give rise to first column of B to be zero are given
by

=
∏

i∈J/{1,m}

q(r−1)−(s−ki) × (q(r−1)−(s−k1) − 1)× (q(r−1)−(s−km) − 1)

=

(
q

(|J |−2)(r−1−s)+
∑

i∈J/{1,m}

ki)
× (q(r−1)−(s−k1) − 1)× (q(r−1)−(s−km) − 1)

= β

Similarly, the last column of submatrix B is zero where qi(x) is a polynomial
of degree upto P − 1 ∀ i ∈ J .

Now, the number of possible ways of choosing qi(x) (i ∈ J/{1,m}) such that
qi(x) is a polynomial of degree upto P − 1 is given by

q + (q − 1)q + · · ·+ (q − 1)qP−1

= q + (q − 1)q(1 + q + · · ·+ qP−2)

= qP = q(r−1)−(s−ki)

Also, for i ∈ {1,m}, the number of possible ways of choosing qi(x) such that
qi(x) is a polynomial of degree upto P − 1 is given by (q(r−1)−(s−ki) − 1).
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So the number of ways which give rise to the last column of B as zero are
given by

=
∏

i∈J/{1,m}

q(r−1)−(s−ki) × (q(r−1)−(s−k1) − 1)× (q(r−1)−(s−km) − 1)

=

(
q

(|J |−2)(r−1−s)+
∑

i∈J/{1,m}

ki)
× (q(r−1)−(s−k1) − 1)×

×(q(r−1)−(s−km) − 1)

= β

So the number of ways which gives rise to either first column or last column
of B to be zero

= β + β = 2β (3.7)

Subtracting (9) and (8) and using the fact that the burst A of order m× r can
have first (s− r + 1) positions as the starting positions, we get total number
of bursts of order m × r(r > max{s − k1, s − km}) that go undetected in the
row-cyclic array code C and is given by

(s− r + 1)(α− 2β) (3.8)

where α and β are given by (4) and (5) respectively.

Also, total number of bursts of order m × r viz. Bm×r
m×s(Fq) is given by (2).

Therefore, the required ratio is obtained on dividing (10) by (2). 2

Example 3.1. Let C be the binary [2×2, 1+1] row-cyclic array code of order
2 × 2 generated by (g1(x), g2(x)) = (1 + x, 1 + x). Then C = C1 ⊕ C2 where
C1 and C2 are classical cyclic codes of length 2 each generated by 1 + x.

Here k1 = k2 = 1 and s = 2.

Therefore, s−k1 = s−k2 = 1. Let r = 2. Then 2 = r > max{= s−k1, s−k2} =
1.

Here N = J = {1, 2}.
The ratio computed in (3) for this example turns out to be 1/7. The ratio is
justified by the fact that there are 7 bursts of order 2× 2 in Mat2×2(F2) given
by (

1 0
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)(
1 1
1 0

)
,
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(
1 1
0 1

)
,

(
1 1
1 1

)
. and out of these 7 bursts, only one burst viz.

(
1 1
1 1

)
is undetected by the row-cyclic array code C.

Example 3.2. Let C = C1 ⊕ C2 be a row-cyclic array code of order 2 × 2
generated by (g1(x), g2(x)) = (1, 1 +x). It is clear that C1 and C2 are classical
cyclic codes of length 2 generated by 1 and 1 + x respectively.

Here k1 = 2, k2 = 1 and s = 2.

Therefore, s− k1 = 0 and s− k2 = 1.

Let r = 2. Then 2 = r > max{s− k1, s− k2} = 1.

Here N = J = {1, 2}.
The ratio computed in (3) for this example turns out to be 3/7 and is justified
by the fact that out of 7 bursts of order 2× 2 in Mat2×2(F2) listed in Example
3.1, there are 3 burst viz.(

1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 1

)
that go undetected in the row-cyclic array code C. 2

Example 3.3. Let C = C1 ⊕ C2 be a row-cyclic array code of order 2 × 2
generated by (g1(x), g2(x)) = (1, 1).

Here k1 = k2 = 2 and s = 2.

Therefore, s− k1 = s− k2 = 0.

Let r = 1. Then 1 = r > max{= s− k1, s− k2} = 0.

The ratio computed in (3) for this example turns out to be 2/2=1 and is
justified by the fact that there are 2 bursts of order 2× 1 in Mat2×2(F2) viz.(

1 0
1 0

)
,

(
0 1
0 1

)
,

and both of which go undetected by the row-cyclic array code C.

Similarly, on taking r = 2 in this example, the ratio compared in (3) turns
out to be 7/7=1 (Note that for this case α = 9, β = 1) and is justified by the
fact that all the 7 bursts of order 2 × 2 in Mat2×2(F2) listed in Example 3.1
go undetected.
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4. Decoding Algorithm for Burst Error Correc-

tion

In this section, we give decoding algorithm for burst error correction in row-
cyclic array codes.

Algorithm.

Let C =
m⊕
i=1

Ci be a q-ary [m × s,
m∑
i=1

ki,
m

min
i=1

di] row-cyclic array code having

generator m-tuple of polynomials (g1(x), g2(x), · · · , gm(x)) and correcting all
burst errors of ordermr or less (1 ≤ r ≤ s). Let w(x) = (w1(x), w2(x), · · · , wm(x))
be a received array with an error pattern e(x) = (e1(x), e2(x), · · · , em(x)) such
that e(x) is a burst of order mr or less (1 ≤ r ≤ s). The goal is to determine
e(x). This is obtained in the following four steps:

Step 1. Compute the syndrome m-tuple (S
(1)
j (x), S

(2)
j (x), · · · , S(m)

j (x)) for j =

0, 1, 2, · · · where for all i = i to m, S
(i)
j (x) is given by

S
(i)
j (x) = syndrome of xjwi(x).

Step 2. Find the m-tuple of nonnegative integers (l1, l2, · · · , lm) such that
syndrome for xliwi(x)(1 ≤ i ≤ m) is a classical burst of length r or less. (Note
that here less also means length of zero.)

Step 3. Compute the remainder m-tuple e(x) = (e1(x), · · · , em(x)) where for
all i = i to m, ei(x) is given by

ei(x) = xs−liS
(i)
li

(x)(mod (xs − 1)).

Step 4. Decode (w1(x), · · · , wm(x)) to (w1(x)− e1(x), · · · , wm(x)− em(x)).

Proof of Algorithm. First of all, we show the existence of m-tuple of non-
negative integers (l1, l2, · · · , lm) in Step 2. By the assumption, there exists
an error pattern e(x) = (e1(x), · · · , em(x)) such that e(x) is a burst of or-
der mr or less which in turn implies that each ei(x)(1 ≤ i ≤ m) has a
cyclic run of zeros of length s − r. (A cyclic run of zeros of length l of an
s-tuple is a succession of l cyclically consecutive zero components). Thus
there exists an m-tuple (l1, l2, · · · , lm) such that cyclic array shift of the er-
ror (e1(x), · · · , em(x)) through (l1, l2, · · · , lm) positions (or equivalently, cyclic
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shift of error ei(x) through li positions (1 ≤ i ≤ m) in classical sense) has
all its nonzero components confined to first r columns of e (Note that we are
identifying e(x)↔ e under the map θ). The cyclic shift of error ei(x) through
li positions (1 ≤ i ≤ m) is in fact the remainder of xliwi(x)(mod (xs − 1))
divided by gi(x).

Also, for all i = 1 to m

S
(i)
li

(x) = (xliwi(x)(mod (xs − 1))(mod gi(x))

= (xliwi(x)(mod gi(x)).

Therefore, each S
(i)
li

(x)(1 ≤ i ≤ m) is a classical burst of length r or less. Now,
for all i = 1 to m, the word

ti(x) = (xs−liS
(i)
li

(x))(mod (xs − 1))

is a cyclic shift of (S
(i)
li
, 0) through s − li positions, where S

(i)
li

is a vector in

F s−ki
q corresponding to the polynomial S

(i)
li

. It is clear that each ti(x) is a
classical burst of order r or less. Also, for all i = 1 to m, we have

xli(wi(x)− ti(x)) = xli(wi(x)− xs−liS(i)
li

(x))

= xliwi(x)− xsS(i)
li

(x)

= S
(i)
li

(x)− xsS(i)
li

(x)

= (1− xs)S(i)
li

(x)

≡ 0(mod (gi(x))). (4.1)

Since gi(x) and xli are coprime to each other, therefore from (11), we get

gi(x)|(wi(x)− ti(x)) ∀ i = 1, 2, · · · ,m

⇒ wi(x)− ti(x) ∈ Ci i = 1 to m.

Also wi(x) − ei(x) ∈ Ci implies ei(x) − ti(x) ∈ Ci which further implies that
ei(x) and ti(x) belong to the same coset (mod gi(x)). Since both ei(x) and
ti(x) are the classical bursts of length r or less and each Ci is r burst error

correcting classical cyclic code (since C =
m⊕
i=1

Ci corrects all bursts of order

m× r, we get

ei(x) = ti(x) = (xs−liS
(i)
li

(x))(mod (xs − 1)).
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2

Remark 4.1 The above algorithm also holds for the correction of all bursts
of order pr or less (1 ≤ p ≤ m, 1 ≤ r ≤ s).

Example 4.1. Consider the binary row-cyclic array code C = ⊕2
i=1Ci where

C1 and C2 are [7,4,4] classical cyclic codes in F 7
2 equipped with m-metric and

generated by g1(x) = 1 + x2 + x3 and g2(x) = 1 + x + x3 respectively. Then
parameters of row cyclic code C are [2 × 7, 4 + 4, 4]. A simple calculation
shows that code C satisfies the sufficient condition for burst error correction
[7, Theorem 4.2] for p = 2 and r = 1. Alternatively, this can also be seen from
the fact that syndromes 2-tuples of all burst array errors of order 2× 1 or less
are all distinct as shown in Table 4.1.
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Table 4.1

Bursts of order 2× 1 Syndrome 2-tuple
or less in Mat2×7(F2)(
1 0 0 0 0 0 0
1 0 0 0 0 0 0

)
(100, 100)(

0 1 0 0 0 0 0
0 1 0 0 0 0 0

)
(010, 010)(

0 0 1 0 0 0 0
0 0 1 0 0 0 0

)
(001, 001)(

0 0 0 1 0 0 0
0 0 0 1 0 0 0

)
(101, 110)(

0 0 0 0 1 0 0
0 0 0 0 1 0 0

)
(111, 011)(

0 0 0 0 0 1 0
0 0 0 0 0 1 0

)
(110, 111)(

0 0 0 0 0 0 1
0 0 0 0 0 0 1

)
(011, 101)(

1 0 0 0 0 0 0
0 0 0 0 0 0 0

)
(100, 000)(

0 1 0 0 0 0 0
0 0 0 0 0 0 0

)
(010, 000)(

0 0 1 0 0 0 0
0 0 0 0 0 0 0

)
(001, 000)(

0 0 0 1 0 0 0
0 0 0 0 0 0 0

)
(101, 000)(

0 0 0 0 1 0 0
0 0 0 0 0 0 0

)
(111, 000)(

0 0 0 0 0 1 0
0 0 0 0 0 0 0

)
(110, 000)(

0 0 0 0 0 0 1
0 0 0 0 0 0 0

)
(011, 000)

Table contd.
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Bursts of order 2× 1 or less Syndrome 2-tuple
in Mat2×7(F2)(

0 0 0 0 0 0 0
1 0 0 0 0 0 0

)
(000, 100)(

0 0 0 0 0 0 0
0 1 0 0 0 0 0

)
(000, 010)(

0 0 0 0 0 0 0
0 0 1 0 0 0 0

)
(000, 001)(

0 0 0 0 0 0 0
0 0 0 1 0 0 0

)
(000, 110)(

0 0 0 0 0 0 0
0 0 0 0 1 0 0

)
(000, 011)(

0 0 0 0 0 0 0
0 0 0 0 0 1 0

)
(000, 111)(

0 0 0 0 0 0 0
0 0 0 0 0 0 1

)
(000, 101)

The syndrome 2-tuple S = (S1, S2) for a burst b =

(
b1
b2

)
of order 2 × 1 or

less for the code C have been found by using the relation S = bHT where H
is the parity check matrix of the code C and is given by

H =

(
H1 0
0 H2

)
,

where

H1 =

 1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1


and

H2 =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

Now, consider the received array

w =

(
w1

w2

)
=

(
1 0 1 1 1 0 0
1 1 0 1 1 0 0

)
∈ Mat2×7(F2).
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Under the identification θ : Matm×s(F2)←→ A
(m)
s , w can be identified as

w =

(
1 + x2 + x3 + x4

1 + x+ x3 + x4

)
=

(
w1(x)
w2(x)

)
.

We compute the syndrome S
(i)
j (x) of xjwi(x)(1 ≤ i ≤ 2) until S

(i)
j is a classical

burst of length 1 or less.

Table 4.2

j S
(1)
j (x) S

(2)
j (x)

0 1 + x+ x2 x+ x2

1 1 + x 1 + x+ x2

2 x+ x2 1 + x2

3 1 1

Therefore, l1 = l2 = 3 i.e. (l1, l2) = (3, 3).

Decode w1(x) = (1011100) = 1 + x2 + x3 + x4 to w1(x)− t1(x) where

t1(x) = e1(x) = xs−l1S
(1)
l1

(x)(mod (xs − 1))

= x7−3S
(1)
3 (x)(mod (x7 − 1))

= x4

Thus w1(x) is decoded to

w1(x)− t1(x) = 1 + x2 + x3 + x4 − x4 = 1 + x2 + x3 = 1011000

Similarly, decode w2(x) = 1101100 = 1 + x+ x3 + x4 to w2(x)− t2(x) where

t2(x) = e2(x) = xs−l2S
(2)
l2

(x)(mod (xs − 1))

= x7−3S
(2)
3 (x)(mod (x7 − 1))

= x4

Therefore, w2(x) is decoded to

w2(x)− t2(x) = 1 + x+ x3 + x4 − x4 = 1 + x+ x3 = 1101000.
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Hence

w =

(
w1

w2

)
=

(
1 0 1 1 1 0 0
1 1 0 1 1 0 0

)

is decoded to

(
1 0 1 1 0 0 0
1 1 0 1 0 0 0

)
.

Remark 4.2. Since the [2 × 7, 4 + 4, 4] row-cyclic array code C of Example
4.1 corrects all bursts of order 2× 1 or less, therefore the code C must satisfy
the Rieger’s bound for an [m× s, k] m-metric array code correcting all bursts
or order pr or less (1 ≤ p,m, 1 ≤ r ≤ s) obtained in [6] and is given by

ms− k ≥ 2pr

or

ms−
m∑
i=1

ki ≥ 2pr (as k =
m∑
i=1

ki for row-cyclic array codes)

which is true as

14− 8 ≥ 2× 2× 1

or

6 ≥ 4.
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