
A Note on Unsteady Viscous Flow with

General Free Stream Velocity∗

R. Mohyuddin†

Department of Science in Engineering, Kulliyyah

of Engineering, International Islamic University

Malaysia, Jalan Gombak 53100 Kuala Lumpur

Received April 6, 2006, Accepted May 24, 2006.

Tamsui Oxford Journal of Mathematical Sciences 23(4) (2007) 473-478
Aletheia University

Abstract

We have presented exact solutions of incompressible, Navier-Stokes
equations when fluid at infinity is in general function of time. Laplace
transform is used to find the general solution. Few special cases are dis-
cussed when the general free stream velocity is zero, oscillating (damped
and undamped) and linearly increasing.
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1. Formulation of the Problem

A general class of non-steady solutions of the Navier-Stokes equations
which possess boundary layer character is obtained in the special case when
the velocity component are independent of the longitudinal coordinate, x. In
this case we choose the velocity field of the form

V = [u (y, t) , v (t) , 0] . (1.1)
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Then the Navier-Stokes equations with negligible body force take the form
[1]

∂u

∂t
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
, (1.2)

∂v

∂t
= −1

ρ

∂p

∂y
, (1.3)

where ν is the kinematic viscosity, p the pressure, ρ is the density.
We note that for constant velocity, v = V0 < 0 (at the wall ‘suction’) the

above equation is satisfied identically and pressure ‘p’ becomes independent of
‘y’. We put

−1

ρ

∂p

∂x
=

dU

dt
, (1.4)

where U(t) denotes the free stream velocity at a very large distance from the
wall, so that we obtain [2]

∂u

∂t
+ V0

∂u

∂y
=

dU

dt
+ ν

∂2u

∂y2
. (1.5)

According to the Stuart [3] there exist an exact solution of equation (1.5)
for the arbitrary velocity

U (t) = U0 [1 + f (t)] . (1.6)

The solution is

u (y, t) = U0 [ξ (y) + g (y, t)] , (1.7)

where
ξ (y) = 1− e

V0
ν

y. (1.8)

The information from equations (1.6)− (1.8) reduces the equation (1.5) to
the form

∂g

∂t
+ V0

∂g

∂y
=

df

dt
+ ν

∂2g

∂y2
. (1.9)

Using the non-dimensional parameters

η = −yV0

ν
, T =

tV 2
0

4ν
(1.10)
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the above equation reduces to the form

∂g

∂T
− 4

∂g

∂η
=

df

dT
+ 4

∂2g

∂η2
. (1.11)

For the problem under consideration we assume the following boundary
conditions

g = 0 at η = 0, (1.12a)

g = f at η = ∞. (1.12b)

2. Solution

Applying Laplace transform, equations (1.11) and (1.12)a,b transform as

4
d2g

dη2
+ 4

dg

dη
− sg (η, s) = −sF (s) , (2.1)

g (0, s) = 0, (2.2a)

g (∞, s) = F (s) , (2.2b)

where F (s) is the Laplace transform of f (t) [4].
In the special case when the external flow is independent of time, f (t) = 0,

equation (1.11) leads to a simple solution g (η, T ) = 0.
For non-homogeneous case the solution of equation (2.1) is given by

g (η, s) = Ae−m1η + Bem2η + F (s) , (2.3)

where

m1 =
1 +

√
1 + s

2
, m2 =

−1 +
√

1 + s

2
.

Using the boundary conditions (2.2)a,b in equation (2.3) we obtain

g (η, s) = F (s)− F (s) e−m1η. (2.4)

Finally, the Laplace inversion of equation (2.4) gives
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g (η, T ) = f (T )− ηe−
η
2

4
√

π

∫ T

0

f (T − τ) e−τe−
η2

16τ τ−
3
2 dτ. (2.5)

In order to understand some physical aspects of the solution (2.5) we con-
sider a few special cases.

3. Special Cases

3.1 Trivial case f (T ) = 0

For f (T ) = 0, equation (2.5) leads to the simple or trivial solution

g (η, T ) = 0. (3.1)

3.2 Free stream oscillations f (T ) = 1 + εeiωT

For
f (T ) = 1 + εeiωT (3.2)

equation (2.5) takes the following integral form

g (η, T ) =
(
1 + εeiωT

)
− ηe−

η
2

4
√

π

[
I1 + εeiωT I2

]
, (3.3)

where ω = 4νω/V 2
0 and

I1 =

∫ T

0

τ−
3
2 e−τ− η2

16τ dτ, (3.4)

I2 =

∫ T

0

τ−
3
2 e−(1+iω)τ− η2

16τ dτ. (3.5)

In order to get the complete solution the integrals are evaluated and the
solution (3.3) is given as

g (η, T ) =
(
1 + εeiωT

)
+

ηe−
η
2
−T− η2

16T

4
√

πT

[
1

T − η2

16T

+
ε

(iω + 1) T − η2

16T

]
. (3.6)
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3.3 Linear increase f (T ) = T

For linear increase i.e.,

f (T ) = T (3.7)

the integral form of equation (2.5) becomes

g (η, T ) = T − ηe−
η
2

4
√

π
[TI3 − I4] , (3.8)

where

I3 =

∫ T

0

τ−
3
2 e−τ− η2

16τ dτ, (3.9)

I4 =

∫ T

0

τ−
1
2 e−τ− η2

16τ dτ. (3.10)

The integrals (3.9) and (3.10) are also evaluated to have the following form
of the solution (3.8)

g (η, T ) = T. (3.11)

which shows that the flow velocity field g (η, T ) increases linearly with the
increase of free stream velocity f (T ) .

3.4 Elliptic oscillations f (T ) = aeiωT + be−iωT

In this case we consider damped and undamped (elliptic) oscillations by taking
the free stream velocity of the form

f (T ) = aeiωT + be−iωT , (3.12)

where a, b are complex constants.
The integral form of equation (2.5) is given as

g (η, T ) = aeiωT + be−iωT − ηe−
η
2

4
√

π

[
aeiωT I5 + be−iωT I6

]
, (3.13)

where

I5 =

∫ T

0

τ−
3
2 e−(1+iω)τ− η2

16τ dτ, (3.14)
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I6 =

∫ T

0

τ−
3
2 e−(1−iω)τ− η2

16τ dτ. (3.15)

Equation (3.13) after evaluating the integrals (3.14) and (3.15) becomes

g (η, T ) =
(
aeiωT + be−iωT

)
+

ηe−
η
2
−T− η2

16T

4
√

πT

[
a

(1 + iω) T − η2

16T

+
b

(1− iω) T − η2

16T

]
.

(3.16)

4. Conclusion

In this note we have furnished the results for unidimensional two direc-
tional incompressible Navier-Stokes equations when the boundary is porous.
The flow is subject to pressure gradient in x−direction which is considered in
general a function of time. Several limiting situations are discussed by letting
the general free stream velocity of a special form.
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