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Abstract

In this paper, we obtain the general solution and the generalized
Hyers-Ulam-Rassias stability theorem for an Euler-Lagrange type quadratic
functional equation

f(ax + by) + f(ax− by) = b2f(x + y) + b2f(x− y) + 2(a2 − b2)f(x)

for any fixed integers a, b with a 6= −1, 0, 1, b 6= 0 and a ± b 6= 0. The
concept of Hyers-Ulam-Rassias stability originated from Th.M. Rassias’
stability Theorem that was proved in his paper: On the stability of the
linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978),
297-300.

Keywords and Phrases: Hyers-Ulam-Rassias stability, Quadratic mapping.

Tamsui Oxford Journal of Mathematical Sciences 23(4) (2007) 517-534
Aletheia University

1. Introduction

In 1940, S. M. Ulam [34] gave the following question concerning the stability
of homomorphisms: Let G1 be a group and let G2 be a metric group with the
metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a function
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h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1,
then there exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all
x ∈ G1? In other words, we are looking for situations when the homomorphisms
are stable, i.e., if a mapping is almost a homomorphism, then there exists a
true homomorphism near it. If we turn our attention to the case of functional
equations, we can ask the question: Under what conditions does there exist a
true solution near an approximate function differing slightly from a functional
equation? If the answer is affirmative, we say that the functional equation is
stable.

D.H. Hyers [11] gave a first affirmative answer to the question of Ulam for
Banach spaces. Let X and Y be Banach spaces. Assume that f : X → Y
satisfies

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X and for some ε ≥ 0. Then there exists a unique additive
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ X. Th.M. Rassias [26] succeeded in extending the result of Hy-
ers’ theorem by weakening the condition for the Cauchy difference to be un-
bounded. A number of mathematicians were attracted to this result of Th.M.
Rassias and stimulated to investigate the stability problems of functional equa-
tions. The stability phenomenon that was introduced and proved by Th.M.
Rassias in his 1978 paper is called the Hyers-Ulam-Rassias stability. And
then, G.L. Forti [8] and P. Gǎvruta [10] have generalized the result of Th.M.
Rassias’ theorem, which permitted the Cauchy difference to become arbitrary
unbounded. The terminology, generalized Hyers-Ulam-Rassias stability origi-
nates from these historical backgrounds. These terminologies are also applied
to the case of other functional equations. The stability problems of several
functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem. A large list of
references can be found, for example, in the papers [2, 9, 10, 13, 14, 17, 19, 23].

Now, a square norm on an inner product space satisfies the important
parallelogram equality

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

for all vectors x, y. If 4ABC is a triangle in a finite dimensional Euclidean
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space and I is the center of the side BC, then the following identity

‖
−→
AB‖2 + ‖

−→
AC‖2 = 2(‖

−→
AI‖2 + ‖

−→
CI‖2)

holds for all vectors A, B and C. The following functional equation which was
motivated by these equations

f(x + y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called a quadratic functional equation, and every solution of the equation
(1.1) is said to be a quadratic mapping. The quadratic functional equation
and several other functional equations are useful to characterize inner product
spaces ([7, 27]). It is well known that a mapping f is a solution of (1.1)
if and only if there exists a unique symmetric biadditive mapping Q such
that f(x) = Q(x, x) for all x, where the mapping Q is given by Q(x, y) =
1
4
(f(x + y) − f(x − y)). See [1, 14] for the details. A stability problem for

the quadratic functional equation (1.1) was solved by Skof [33] for mappings
f : E1 → E2, where E1 is a normed space and E2 is a Banach space. The
theorem of S. Czerwik [5] for the functional equation (1.1) states that if a
function f : G → Y , where G is a normed space and Y a Banach space,
satisfies the inequality

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for p 6= 2 and for all x, y ∈ G, then there exists a unique quadratic function q
such that

‖f(x)− q(x)‖ ≤ ε‖x‖p

|4− 2p|
+
‖f(0)‖

3

for all x ∈ G if p > 0, and for all x ∈ G \ {0} if p ≤ 0, where ‖f(0)‖ = 0
if p > 0. A stability problem for the quadratic functional equation (1.1) was
solved by a lot of authors [6, 15, 20, 29, 30, 31]. In particular, J. M. Rassias
[24, 25] has solved the stability problem of Ulam for the Euler-Lagrange type
quadratic functional equation.

Now, we are concerned with the following functional equations, which are
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related with each other to prove our main subject;

f(2x + y) + f(2x− y) = f(x + y) + f(x− y) + 6f(x), (1.2)

f(2x + y) + f(2x− y) + 4f(x) + f(y) + f(−y) (1.3)

= 2f(x + y) + 2f(x− y) + 2f(2x),

f(ax + y) + f(ax− y) (1.4)

= f(x + y) + f(x− y) + 2(a2 − 1)f(x)

for any fixed integer a with a 6= −1, 0, 1. More generally, we consider the
following Euler-Lagrange type quadratic functional equation

f(ax + by) + f(ax− by) (1.5)

= b2f(x + y) + b2f(x− y) + 2(a2 − b2)f(x)

for any fixed integers a, b with a 6= −1, 0 and 1, b 6= 0 and a ± b 6= 0. Let
both E1 and E2 be real vector spaces. The authors [4] proved that a mapping
f : E1 → E2 satisfies the functional equation (1.2) if and only if there exists
a mapping Q : E1 × E1 → E2 such that f(x) = Q(x, x) for all x ∈ E1,
where Q is symmetric biadditive. Thus f is a quadratic mapping. They have
also investigated the generalized Hyers-Ulam-Rassias stability problem for the
equation (1.2). However it should be noted that (1.2) is a special case of
the functional equation (1.4). The authors showed in [18] that a mapping
f : E1 → E2 satisfies the functional equation (1.3) if and only if there exist
mappings B : E1 × E1 × E1 → E2, Q : E1 × E1 → E2 and A : E1 → E2 such
that f(x) = B(x, x, x) + Q(x, x) + A(x) for all x ∈ E1, where B is symmetric
for each fixed one variable and additive for each fixed two variables, Q is
symmetric biadditive and A is additive.

In this paper, we will establish the general solutions of (1.4) which are
related with (1.2) and (1.3). Furthermore, we are going to solve the generalized
Hyers-Ulam-Rassias stability problem for the equation (1.5) and to extend
the results of the generalized Hyers-Ulam-Rassias stability problem for the
equation (1.2).

2. Solution of (1.4)

Let R+ denote the set of all nonnegative real numbers and let both E1 and E2

be real vector spaces. We first present the general solution of the functional
equation (1.4).
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Theorem 2.1. (A) A function f : E1 → E2 satisfies the functional equation
(1.1) if and only if (B) f : E1 → E2 satisfies the functional equation (1.2) if
and only if (C) f : E1 → E2 satisfies the functional equation (1.4). Therefore,
every solution of functional equations (1.2) and (1.4) is also a quadratic func-
tion.
Proof.Let f : E1 → E2 satisfy the functional equation (1.1). Then according
to [4, Theorem 2.1] the assertion (A) is equivalent to (B).

Let f : E1 → E2 satisfy the functional equation (1.2). Putting x = 0 = y
in (1.2), we get f(0) = 0. Set y = 0 in (1.2) to get f(2x) = 4f(x). Letting
y = x and y = 2x in (1.2) separately, we obtain that f(3x) = 9f(x) and
f(x) = f(−x) for all x ∈ E1. To use an induction argument we assume that
(C) is true for all n with 1 < n ≤ N. Putting y by x + y and y by x − y in
(1.4) separately, we obtain

f((N + 1)x + y) + f((N − 1)x− y) (2.1)

= f(2x + y) + f(y) + 2(N2 − 1)f(x),

f((N + 1)x− y) + f((N − 1)x + y) (2.2)

= f(2x− y) + f(y) + 2(N2 − 1)f(x).

Adding (2.1) to (2.2) and using an inductive assumption for N − 1 together
with (1.2), we lead to

f((N + 1)x + y) + f((N + 1)x− y) (2.3)

= f(x + y) + f(x− y) + 2[(N + 1)2 − 1]f(x),

which proves the validity of (C) for N + 1.

For a negative integer n < −1, replacing n by −n > 1 and using the
evenness of f , one can easily prove the validity of (C).

Therefore (1.2) implies (1.4) for all a ∈ Z with a 6= 0, 1,−1.

Now, let f : E1 → E2 satisfy the functional equation (1.4). Putting x =
0 = y in (1.4), we get f(0) = 0. Letting y = 0 in (1.4), we obtain that
f(ax) = a2f(x) for all x ∈ E1. Replacing x and y by 2x and ay in (1.4),
respectively, we have

a2f(2x + y) + a2f(2x− y) (2.4)

= f(2x + ay) + f(2x− ay) + 2(a2 − 1)f(2x)
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for all x, y ∈ E1. Putting y by x + ay in (1.4), we obtain

f(a(x + y) + x) + f(a(x− y)− x) (2.5)

= f(2x + ay) + f(−ay) + 2(a2 − 1)f(x).

Interchange y with −y in (2.5) to get the relation

f(a(x− y) + x) + f(a(x + y)− x) (2.6)

= f(2x− ay) + f(ay) + 2(a2 − 1)f(x).

Adding (2.5) to (2.6), by use of (1.4) we lead to

f(2x + y) + f(y) + 2(a2 − 1)f(x + y) (2.7)

+f(2x− y) + f(−y) + 2(a2 − 1)f(x− y)

= f(2x + ay) + f(2x− ay) + 4(a2 − 1)f(x) + a2f(y) + a2f(−y)

for all x, y ∈ E1. Subtracting (2.7) from (2.4) side by side and that dividing
by a2 − 1, we obtain the result,

f(2x + y) + f(2x− y) + 4f(x) + f(y) + f(−y) (2.8)

= 2f(x + y) + 2f(x− y) + 2f(2x),

from which it follows that f is quadratic by [18, Theorem 2.1] since f(ax) =
a2f(x) for all x ∈ E1. �

We note that (1.4) implies (1.5). In fact, if b = ±1 in (1.4), the equation
(1.4) reduces (1.5) of itself. Let b 6= ±1 in (1.4). Then the equation (1.4)
implies by Theorem 2.1

f(bx + y) + f(bx− y) = f(x + y) + f(x− y) + 2(b2 − 1)f(x). (2.9)

Setting y = 0 in (2.9), one gets f(bx) = b2f(x), and thus f(x
b
) = 1

b2
f(x).

Replacing y by by in (2.9), we obtain

f(x + by) + f(x− by) + 2(b2 − 1)f(x) = b2f(x + y) + b2f(x− y). (2.10)
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Thus we figure out by (2.10)

f(ax + by) + f(ax− by)

= b2
[
f(a · x

b
+ y) + f(a · x

b
− y)

]
= b2

[
f(

x

b
+ y) + f(

x

b
− y) + 2(a2 − 1)f(

x

b
)
]

= [f(x + by) + f(x− by) + 2(a2 − 1)f(x)]

= [b2f(x + y) + b2f(x− y)− 2(b2 − 1)f(x) + 2(a2 − 1)f(x)]

= b2f(x + y) + b2f(x− y) + 2(a2 − b2)f(x).

Therefore (1.4) implies (1.5) as desired.

3. Stability of (1.5)

From now on, let X be a real vector space and let Y be a Banach space unless
we give any specific reference. We will investigate the generalized Hyers-Ulam-
Rassias stability problem for the functional equation (1.5). Thus we find the
condition that there exists a true quadratic function near a approximately
quadratic function. For convenience, we use the following abbreviation: for
any fixed integers a, b with a 6= −1, 0, 1, b 6= 0 and a ± b 6= 0 and for all
x, y ∈ X

Da,bf(x, y)

:= f(ax + by) + f(ax− by)− b2f(x + y)− b2f(x− y)− 2(a2 − b2)f(x),

which is called the approximate remainder of the functional equation (1.5) and
acts as a perturbation of the equation.

Theorem 3.1 [15]. Let φ : X2 → R+ be a function such that

∞∑
i=0

φ(aix, 0)

|a|2i

( ∞∑
i=1

|a|2iφ(
x

ai
, 0), respectively

)
(3.1)

converges and

lim
n→∞

φ(anx, any)

|a|2n
= 0

(
lim

n→∞
|a|2nφ(

x

an
,

y

an
) = 0

)
(3.2)
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for all x, y ∈ X. Suppose that a function f : X → Y satisfies

‖Da,bf(x, y)‖ ≤ φ(x, y) (3.3)

for all x, y ∈ X. Then there exists a unique quadratic function T : X → Y
which satisfies the equation (1.5) and the inequality

‖f(x)− T (x)‖ ≤ 1

2|a|2
∞∑
i=0

φ(aix, 0)

|a|2i
(3.4)

(
‖f(x)− T (x)‖ ≤ 1

2|a|2
∞∑
i=1

|a|2iφ(
x

ai
, 0)
)

for all x ∈ X. The function T is given by

T (x) = lim
n→∞

f(anx)

a2n

(
T (x) = lim

n→∞
a2nf(

x

an
)
)

(3.5)

for all x ∈ X. Further, if either f is measurable or the mapping t 7→ f(tx)
from R to Y is continuous for each fixed x ∈ X, then T (rx) = r2T (x) for all
r ∈ R.
Proof. Putting y = 0 in (3.3) and dividing by 2|a|2, we have∥∥∥∥f(ax)

a2
− f(x)

∥∥∥∥ ≤ 1

2|a|2
φ(x, 0) (3.6)

for all x ∈ X. Replacing x by ax in (3.6) and dividing by |a|2 and summing
the resulting inequality with (3.6), we get∥∥∥∥f(a2x)

a4
− f(x)

∥∥∥∥ ≤ 1

2|a|2

[
φ(x, 0) +

φ(ax, 0)

|a|2

]
(3.7)

for all x ∈ X. Using the induction on a positive integer n, we obtain that∥∥∥∥f(anx)

a2n
− f(x)

∥∥∥∥ ≤ 1

2|a|2
n−1∑
i=0

φ(aix, 0)

|a|2i
(3.8)

≤ 1

2|a|2
∞∑
i=0

φ(aix, 0)

|a|2i
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for all x ∈ X. In order to prove the convergence of the sequence {f(anx)
a2n }, we

divide inequality (3.8) by |a|2m and also replace x by amx to find that for
n > m ≥ 0,∥∥∥∥f(anamx)

a2n+2m
− f(amx)

a2m

∥∥∥∥ =
1

|a|2m

∥∥∥∥f(anamx)

a2n
− f(amx)

∥∥∥∥ (3.9)

≤ 1

2|a|2 · a2m

n−1∑
i=0

φ(aiamx, 0)

a2i

≤ 1

2|a|2
∞∑
i=0

φ(aiamx, 0)

a2m+2i
.

Since the right hand side of the inequality tends to 0 as m tends to infinity,
the sequence {f(anx)

a2n } is a Cauchy sequence in the Banach space Y . Therefore,
we may define

T (x) = lim
n→∞

f(anx)

a2n

for all x ∈ X. By letting n →∞ in (3.8), we arrive at the formula (3.4).
To show that T satisfies the equation (1.5), replace x, y by anx, any, re-

spectively, in (3.3) and divide by |a|2n, then it follows that

a−2n‖f(an(ax + y)) + f(an(ax− y))− f(an(x + y))

−f(an(x− y))− 2(a2 − 1)f(anx))‖
≤ a−2nφ(anx, any).

Taking the limit as n →∞, we find that T satisfies (1.5) for all x, y ∈ X.
To prove the uniqueness of the quadratic function T subject to (3.4), let

us assume that there exists a quadratic function S : X → Y which satisfies
(1.5) and the inequality (3.4). Obviously, we have S(anx) = a2nS(x) and
T (anx) = a2nT (x) for all x ∈ X and n ∈ N. Hence it follows from (3.4) that

‖S(x)− T (x)‖ = |a|−2n‖S(anx)− T (anx)‖
≤ |a|−2n(‖S(anx)− f(anx)‖+ ‖f(anx)− T (anx)‖)

≤ 1

|a|2
∞∑
i=0

φ(aianx, 0)

|a|2n+2i
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for all x ∈ X. By letting n →∞ in the preceding inequality, we find immedi-
ately the uniqueness of T.

The proof of assertion indicated by parentheses in the theorem is similarly
proved by the following inequality originated from (3.6),∥∥∥f(x)− a2nf(

x

an
)
∥∥∥ ≤ 1

2|a|2
n∑

i=1

|a|2iφ(
x

ai
, 0).

In this case, f(0) = 0 since
∑∞

i=1 a2iφ(0, 0) < ∞ and so φ(0, 0) = 0 by assump-
tion.

The last assertion of homogeneous of degree two of T in the theorem follows
by the same reasoning as the proof of [6]. This completes the proof of the
theorem. �

From the main Theorem 3.1,we obtain the following corollary concerning
the stability of the equation (1.5). We note that p need not be equal to q.

Corollary 3.2.Let X and Y be a real normed space and a Banach space,
respectively, and let ε, p, q be real numbers such that ε ≥ 0, q > 0 and either
p, q < 2 or p, q > 2. Suppose that a function f : X → Y satisfies

‖Da,bf(x, y)‖ ≤ ε(‖x‖p + ‖y‖q) (3.10)

for all x, y ∈ X. Then there exists a unique quadratic function T : X → Y
which satisfies the equation (1.5) and the inequality

‖f(x)− T (x)‖ ≤ ε‖x‖p

2|a2 − |a|p|

for all x ∈ X and for all x ∈ X \ {0} if p < 0. The function T is given by

T (x) = lim
n→∞

f(anx)

a2n
if p, q < 2

(
T (x) = lim

n→∞
a2nf(

x

an
) if p, q > 2

)
for all x ∈ X. If moreover either f is measurable or for each fixed x ∈ X the
mapping t 7→ f(tx) from R to Y is continuous, then T (rx) = r2T (x) for all
r ∈ R.

It is significant for us to decrease the possible estimator of the stability
problem for the functional equations. This work is possible if we consider the
stability problem in the sense of Hyers and Ulam for the functional equation
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(1.5) with an appropriate large integer a. As a result, the following corollary
is an immediate consequence of Theorem 3.1

Coeollery 3.3.Let X and Y be a real normed space and a Banach space,
respectively, and let ε ≥ 0 be a real number. Suppose that a function f : X → Y
satisfies

‖Da,bf(x, y)‖ ≤ ε (3.11)

for all x, y ∈ X. Then there exists a unique quadratic function T : X → Y
defined by T (x) = limn→∞

f(anx)
a2n which satisfies the equation (1.5) and the

inequality

‖f(x)− T (x)‖ ≤ ε

2(|a|2 − 1)
(3.12)

for all x ∈ X. Furthermore, if either f is measurable or for each fixed x ∈ X
the mapping t 7→ f(tx) from R to Y is continuous, then T (rx) = r2T (x) for
all r ∈ R.

4. Stability in Banach modules over Banach

∗-algebras

In the last part of this paper, let A be a unital Banach ∗-algebra with norm
| · | and let AB1 and AB2 be Banach left A-modules with norms || · || and
‖ · ‖, respectively. We denote â := aa∗, a∗a, or aa∗+a∗a

2
for each a ∈ A.

A mapping Q : AB1 → AB2 is called Asa-quadratic if Q(ax) = âQ(x) and
Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y) for all a ∈ A and all x ∈ AB1 [22]. If
two Banach spaces E1 and E2 are considered as Banach modules over A := C,
then the Asa-quadratic mapping Q : E1 → E2 implies Q(ax) = |a|2Q(x) for all
a ∈ C. We are going to prove the generalized Hyers-Ulam stability problem of
the functional equation (1.5) in Banach modules over a unital Banach algebra.
As an application of the above Theorem 3.1, we have the following.

Theorem 4.1. Suppose that a mapping f : AB1 → AB2 satisfies

‖Da,b,uf(x, y)‖ := ‖f(aux + buy) + f(aux− buy) (4.1)

−b2ûf(x + y)− b2ûf(x− y)− 2(a2 − b2)ûf(x)‖
≤ φ(x, y)
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for all u ∈ A (|u| = 1) and for all x, y ∈ AB1, and that the upper bound
φ : AB1 × AB1 → R+ for the approximate remainder Da,b,uf satisfies the
assumptions of Theorem 3.1.

If either f is measurable or f(tx) is continuous in t ∈ R for each fixed
x ∈ AB1, then there exists a unique Asa-quadratic mapping Q : AB1 → AB2,
defined by

Q(x) = lim
i→∞

f(aix)

a2i

(
Q(x) = lim

i→∞
a2if(

x

ai
)
)
, (4.2)

which satisfies the equation (1.5) and the inequality (3.4)
Proof.By Theorem 3.1, it follows from the inequality of the statement for
u = 1 that there exists a unique quadratic mapping Q : AB1 → AB2 defined
by (4.2) which satisfies the equation (1.5) and the inequality (3.4).

Under the assumption that either f is measurable or f(tx) is continuous in
t ∈ R for each fixed x ∈ AB1, the quadratic mapping Q : AB1 → AB2 satisfies
the following equation by the same reasoning as the proof of [6]

Q(tx) = t2Q(x), ∀x ∈ AB1,∀t ∈ R.

That is, Q is R-quadratic.
Replacing x, y by ai−1x, 0 in (4.1) respectively, we obtain that for each

u ∈ A (|u| = 1)

2‖f(aiux)− a2ûf(ai−1x)‖ ≤ φ(ai−1x, 0) (4.3)

for all x ∈ AB1. Using the fact that there exists a positive constant K such
that ‖uz‖ ≤ K|u|‖z‖ for all u ∈ A and for each z ∈ AB2 [3], one can show
from (4.3) that

‖ûf(aix)− ûa2f(ai−1x)‖ ≤ K|û|‖f(aix)− a2f(ai−1x)‖

≤ Kφ(ai−1x, 0)

2

for all u ∈ A(|u| = 1) and all x ∈ AB1. Thus we get by the last inequality

‖f(aiux)− ûf(aix)‖

≤
∥∥∥f(aiux)− a2ûf(ai−1x)

∥∥∥+
∥∥∥a2ûf(ai−1x)− ûf(aix)

∥∥∥
≤ φ(ai−1x, 0)

2
+

Kφ(ai−1x, 0)

2
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for all u ∈ A(|u| = 1) and all x ∈ AB1. Dividing the last inequality by |a|2i

and then taking the limit, we have

‖Q(ux)− ûQ(x)‖ = lim
i→∞

∥∥∥f(aiux)− ûf(aix)

a2i

∥∥∥
≤ lim

i→∞

φ(ai−1x, 0) + Kφ(ai−1x, 0)

2|a|2i

= 0.

Hence Q satisfies the equation Q(ux) = ûQ(x) for all u ∈ A(|u| = 1) and all
x ∈ AB1. The last equality is also true for u = 0. Since Q is R-quadratic and
Q(ux) = ûQ(x) for each element u ∈ A(|u| = 1), we figure out

Q(ax) = Q(|a| · a

|a|
x) = |a|2 ·Q(

a

|a|
x) = |a|2 · â

|a|2
·Q(x)

= âQ(x)

for all a ∈ A(a 6= 0) and all x ∈ AB1. So the unique R-quadratic mapping
Q : AB1 → AB2 is also Asa-quadratic, as desired.

The proof of assertion indicated by parentheses in the theorem is similarly
proved. This completes the proof of the theorem. �

Corcllary 4.2. Let E1 and E2 be Banach spaces over the complex field C.
Suppose that a mapping f : E1 → E2 and a mapping φ : E1×E1 → R+ satisfy
(4.1) for all u ∈ C (|u| = 1) and for all x, y ∈ E1. If either f is measurable
or f(tx) is continuous in t ∈ R for each fixed x ∈ E1, then there exists a
unique quadratic mapping Q : E1 → E2 which satisfies the equation (1.5) and
Q(ax) = |a|2Q(x) for all a ∈ C and for all x ∈ E1, and the inequality (3.4).
Proof. Since C is a Banach algebra, the Banach spaces E1 and E2 are con-
sidered as Banach modules over C. By Theorem 4.1, there exists a unique
Csa-quadratic mapping Q : E1 → E2 satisfying the inequality (3.4). This
completes the proof. �

Now let M be a Banach left A-module. Let us call a mapping Q : M → A
an A-quadratic mapping if both relations Q(ax) = aQ(x)a∗ and Q(x + y) +
Q(x−y) = 2Q(x)+2Q(y) are fulfilled [35]. A mapping Q : M → A is called a
generalized A-quadratic mapping if Q(ax) = aQ(x)a∗ for all x ∈ M , and the
following identity holds:

Q

(
n∑

i=1

aixi

)
+

∑
1≤i<j≤n

aiajQ(xi − xj) =

(
n∑

i=1

ai

)[
n∑

i=1

aiQ(xi)

]
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for all xi ∈ M, some fixed ai in R (i = 1, · · · , n) and at least two of them
are nonzero such that

∑n
i=1 ai 6= 0, and a fixed n ≥ 2 [21]. It was shown that

the notion of A-quadratic mapping is equivalent to the notion of generalized
A-quadratic mapping if all spaces are over the complex number field and a
mapping B : M ×M → A is defined in terms of the mapping Q as

B(x, y) =
1

4
[Q(x + y)−Q(x− y) + iQ(x + iy)− iQ(x− iy)] (4.4)

for all x, y in M [21]. It was indicated in [35] that if the relation (4.4) holds
and Q is an A-quadratic form, then B is an A-sesquilinear form and Q(x) =
B(x, x), and vice versa. Now it follows easily from Theorem 2.1that a mapping
Q is an A-quadratic mapping if and only if

Q(ax) = aQ(x)a∗,

Q(ax + by) + f(ax− by) = b2f(x + y) + b2f(x− y) + 2(a2 − b2)f(x)

for all x, y ∈ AB1. As an application of Theorem ??, we are going to inves-
tigate the generalized Hyers-Ulam-Rassias stability problem for A-quadratic
mappings of (1.5) in Banach modules over a Banach ∗-algebra. In the follow-
ing theorem, let AB1 and AB2 be Banach A-bimodules.

Theorem 4.3. Let f : AB1 → AB2 be a mapping for which there exists a
mapping φ : AB1 × AB1 → R+ such that

‖Da,b,uf(x, y)‖ := ‖f(aux + buy) + f(aux− buy) (4.5)

−b2uf(x + y)u∗ − b2uf(x− y)u∗ − 2(a2 − b2)uf(x)u∗‖
≤ φ(x, y)

for all u ∈ A (|u| = 1) and for all x, y ∈ AB1 and the upper bound φ for the
approximate remainder Da,b,uf satisfies the assumptions of Theorem 3.1. If
either f is measurable or f(tx) is continuous in t ∈ R for each fixed x ∈ AB1,
then there exists a unique A-quadratic mapping Q : AB1 → AB2, defined by

Q(x) = lim
k→∞

f(akx)
a2k for all x ∈ AB1, which satisfies the equation (1.5) and the

inequality (3.4) for all x ∈ AB1.
Proof.By Theorem 3.1, it follows from the inequality of the statement for
u = 1 that there exists a unique quadratic mapping Q : AB1 → AB2, defined by

Q(x) = lim
k→∞

f(akx)
a2k , which satisfies the equation (1.5) and the inequality (3.4).
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Under the assumption that either f is measurable or f(tx) is continuous in
t ∈ R for each fixed x ∈ AB1, the quadratic mapping Q satisfies Q(tx) = t2Q(x)
for all x ∈ AB1 and for all t ∈ R by the same reasoning as the proof of [6]. That
is, Q is R-quadratic. Replacing x and y by akx and aky in (4.5),respectively
and dividing the resulting inequality by |a|2k, and then taking k →∞

‖Da,b,uQ(x, y)‖
= ‖Q(aux + buy) + Q(aux− buy)

−b2uQ(x + y)u∗ − b2uQ(x− y)u∗ − 2(a2 − b2)uQ(x)u∗‖
= 0

for all x ∈ AB1 and for each u ∈ A(|u| = 1). Setting y := 0 in the last equation,
we obtain that Q(ux) = uQ(x)u∗ for all x ∈ AB1 and for each u ∈ A(|u| = 1).
The last relation is also true for u = 0. Since Q is R-quadratic, for each element
a(a 6= 0) ∈ A

Q(ax) = Q(|a| a

|a|
x) = |a|2Q(

a

|a|
x) = |a|2 a

|a|
Q(x)

a∗

|a|
= aQ(x)a∗, ∀a ∈ A(a 6= 0),∀x ∈ AB1.

So the unique R-quadratic mapping Q is also A-quadratic, as desired. This
completes the proof. �
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[13] D. H. Hyers, G. Isac and Th.M. Rassias, On the asymptoticity aspect of
Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126(1998),
425-430.

[14] D. H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequa-
tiones Math. 44(1992), 125-153.

[15] K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized
quadratic inequality, Math. Ineq. Appl. 4(1)(2001), 93-118.

[16] K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of a
cubic functional equation, J. Math. Anal. Appl. 274(2)(2002), 867-878.

[17] K. Jun and H. Kim, On the Hyers-Ulam-Rassias stability of a general
cubic functional equation, Math. Ineq. Appl. 6(2)(2003), 289-302.



On the Hyers-Ulam-Rassias Stability 533

[18] K. Jun, H. Kim and I. Chang, On the Hyers-Ulam stability of an Euler-
Lagrange type cubic functional equation, it J. Comput. Anal. Appl. to
appear.

[19] K. Jun and H. Kim, On the Hyers-Ulam stability of a generalized
quadratic and additive functional equations, Bull. Korean Math. Soc.
42(2005),133-148.

[20] S. Jung, On the Hyers-Ulam stability of the functional equations that
have the quadratic property, J. Math. Anal. Appl. 222(1998), 126-137.

[21] C. S. Lin, Sesquilinear and quadratic forms on modules over ∗-algebra,
Publ. Inst. Math. 51(1992), 81-86.

[22] C. Park, On the stability of the quadratic mapping in Banach modules,
J. Math. Anal. Appl. 276(2002), 135-144.

[23] A. Prastaro and Th. M. Rassias, Ulam stability in geometry of PDE’s,
Nonlinear Funct. Anal. Appl. 8(2)(2003), 259-278.

[24] J. M. Rassias, On the stability of the Euler-Lagrange functional equation,
Chinese J. Math. 20(1992), 185-190.

[25] J. M. Rassias, Solution of the Ulam stability problem for Euler-Lagrange
quadratic mappings, J. Math. Anal. Appl. 220(1998), 613-639.

[26] Th. M. Rassias, On the stability of the linear mapping in Banach spaces,
Proc. Amer. Math. Soc. 72(1978), 297-300.

[27] Th. M. Rassias, Inner Product Spaces and Applications, Longman, 1997.

[28] Th. M. Rassias, On the stability of the quadratic functional equation and
its applications, Studia, Univ. Babes-Bolyai, bf XLlll(3)(1998), 89-124.

[29] Th. M. Rassias, On the stability of functional equations and a problem
of Ulam, Acta Applicandae Mathematicae 62(2000), 23-130.

[30] Th. M. Rassias, The problem of S.M. Ulam for approximately multiplica-
tive mappings, J. Math. Anal. Appl. 246(2000), 352-378.

[31] Th. M. Rassias, On the stability of functional equations in Banach spaces,
J. Math. Anal. Appl. 251(2000), 264-284.



534 Hark-Mahn Kim

[32] Th. M. Rassias, Functional Equations and Inequalities, Kluwer Academic
Publishers, Dorderecht, 2000.

[33] F. Skof, Local properties and approximations of operators(Italian), Rend.
Sem. Mat. Fis. Milano 53(1983), 113-129.

[34] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ.
New York, 1960.

[35] J. Vukman, Some functional equations in Banach algebras and an appli-
cation, Proc. Amer. Math. Soc. 100(1987), 133-136.


