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Abstract

A new version of the Stirling formula is given as

n! = (
n

e
)n
√

2πnexp

∫ ∞

n

1
2 − {x}

x
dx,

and it is applied to provide a new and more natural proof of a recent
version due to L. C. Hsu.
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1. Introduction

Stirling formula and its different versions have a fascinating history. The
classical form containing Bernoulli numbers which has been studied deeply
and thoroughly in [1] and [2] where an infinite numbers of recurrence relations
for the Bernoulli numbers are obtained.

It is very interesting that in the last decade Hsu in [3] has given a new
version without using Bernoulli numbers as the following identity

n! = (
n

e
)n
√

2πnexp(
∑∞

k=n

∑∞

j=2

j − 1

2j(j + 1)
(
−1

k
)j), (1)
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whose proof is elementary and simple in nature, and it is applied in [4] to get
a more accurate asymptotic relation.

Instead of the double summation in the right hand side of (1), in this short
note, we will derive a new version of the Stirling formula via an infinite integral
as

n! = (
n

e
)n
√

2πnexp

∫ ∞

n

1
2
− {x}
x

dx, (2)

and it is applied to give a new and more natural proof of (1).
We will need the following well known Dirichlet test for convergence of

infinite integral (see e.g. [5]).

Lemma. If F (A) =
∫ A

a
f(x) dx is bounded on [a,∞), g(x) is monotonic

on [a,∞) and limx→∞g(x) = 0, then the infinite integral
∫∞

a
f(x)g(x) dx is

convergence.

2. Proof of (2)

From [6] and [7] we may find that

log n! = (n +
1

2
)log n− n + 1−

∫ n

1

1
2
− {x}
x

dx. (3)

where {x} = x− [x] and [x] denotes the integral part of x.

Put δn := 1 −
∫ n

1

1
2
−{x}
x

dx. By Lemma, it is not difficult to find that the
infinite integral ∫ ∞

1

1
2
− {x}
x

dx

is convergence, since

F (A) =

∫ A

1

(
1

2
−{x}) dx =

∫ A

[A]

(
1

2
−{x}) dx =

∫ A

[A]

([A]+
1

2
−x) dx =

1

2
{A}(1−{A})

is bounded on [1,∞) and g(x) = 1
x

is strictly decreasing on [1,∞) with
limx→∞g(x) = 0. So, we have
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lim
n→∞

δn = 1−
∫ ∞

1

1
2
− {x}
x

dx := δ. (4)

Then from (3) we get

n! = (
n

e
)n
√

neδn . (5)

Similarly we have

(2n)! = (
2n

e
)2n
√

2neδ2n . (6)

By (4) we get

limn→∞δ2n = limn→∞δn = δ. (7)

Substituting (5), (6) and (7) into the Wallis’ product formula

limn→∞
(n!)222n

(2n)!
√

n
=
√

π,

we get

eδ =
√

2π.

Thus (5) may be rewritten in the form

n! = (
n

e
)n
√

2πnexp(δn − δ). (8)

Finally, notice that

δn − δ =

∫ ∞

n

1
2
− {x}
x

dx,

and substitute it into (8), the formula (2) is obtained.

3. A New Proof of (1)

It is immediate to prove (1) by applying (2), since
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∫∞
n

1
2
−{x}
x

dx

= Σ∞k=n

∫ k+1

k

1
2
−{x}
x

dx

= Σ∞k=n

∫ k+1

k

k+ 1
2
−x

x
dx

= Σ∞k=n[(k + 1
2
)log k+1

k
− 1]

= Σ∞k=n[(1− 1
2k

+ 1
3k2 − 1

4k3 + · · ·+ (−1)j−1 1
jkj−1 + . . . )

+1
2
( 1

k
− 1

2k2 + 1
3k3 − · · ·+ (−1)j−1 1

jkj + . . . )− 1]

= Σ∞k=nΣ∞j=2(
1

j+1
− 1

2j
)(−1

k
)j

= Σ∞k=nΣ∞j=2
j−1

2j(j+1)
(−1

k
)j.

References

[1] V. Namias, A simple derivation of Stirling’s asymptotic series, Amer.
Math. Monthly 93 (1986), 25-29.

[2] E. Y. Deeba and D. M. Rodriguez, Stirling’s series and Bernoulli numbers,
Amer. Math. Monthly 98 (1991), 423-426.

[3] L. C. Hsu, A new constructive proof of the Stirling formula, J. Math. Res.
and Expo., 17(1) (1997), 5-7.

[4] L. C. Hsu and X. N. Luo, On a two-sided inequality involving Stirling’s
formula, J. Math. Res. and Expo., 19(3) (1999), 491-494.

[5] J. X. Chen, C. H. Yu and R. Jin, Mathematical Analysis (in Chinese),
Higher Education Press, Beijing, 1999.

[6] K. Knopp, Theory And Application Of Infinite Series, Blackie & Son
Limited, London And Glasgow, 1957.

[7] D. Romik, Stirling’s approximation for n!: the ultimate short proof?,
Amer. Math. Monthly 107 (2000), 556-557.


