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Abstract

In this paper, we introduce the concept of generalized pseudo-contractive
and generalized hemi-contractive mappings, and study the strong con-
vergence theorems for approximation of common fixed points of gener-
alized hemi-contractive mappings in p-uniformly convex Banach spaces
by using an implicit iteration process recently introduced by Xu and
Ori [17].
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1. Introduction and Preliminaries

Let F (T ) and I denote the set of all fixed points of the mapping T and the

identity mapping, respectively.

Definition 1.1. Let C be a nonempty subset of a normed linear space E

and let T : C → C be a mapping. Suppose that p > 0, θ ∈ [0,∞) are two

constants.

(i) T is called generalized pseudo-contractive with constants p and θ if

‖Tx− Ty‖p ≤ ‖x− y‖p + θ‖(I − T )x− (I − T )y‖p, (1.1)

for all x, y ∈ C.

(ii) T is called generalized hemi-contractive with constants p and θ if F (T ) 6=
∅ and

‖Tx− u‖p ≤ ‖x− u‖p + θ‖x− Tx‖p, (1.2)

for all x ∈ C and u ∈ F (T ).

(iii) T is called Lipschitzian if there exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖,

for all x, y ∈ C. If L = 1, then T is called nonexpansive.

(iv) T is called semi-compact if C is closed and for any bounded sequence

{xn}∞n=1 in C with limn→∞ ‖xn − Txn‖ = 0, there exists a subsequence

{xnj
}∞j=1 of {xn}∞n=1 such that limj→∞ xnj

= u ∈ C.

Remark 1.1. (1) If p = 1 and θ = 0, the mappings in (1.1) and (1.2) are

said to be nonexpansive and quasi-nonexpansive, respectively.

(2) If E is a Hilbert space and if p = 2 and θ ∈ [0, 1), the mappings in (1.1) and

(1.2) are said to be strictly pseudo-contractive in the terminology of Browder

and Petryshyn [11] and demi-contractive [8], respectively.
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(3) If E is a Hilbert space and if p = 2 and θ = 1, the mappings in (1.1) and

(1.2) are said to be pseudo-contractive [1, 2] and hemi-contractive [12, 13],

respectively.

It is obvious that the above classes of mappings with fixed points in the

setting of Hilbert spaces, we have the following implications:

nonexpansive =⇒ quasi-nonexpansive

⇓ ⇓
strictly pseudo-contractive =⇒ demi-contractive

⇓ ⇓
pseudo-contractive =⇒ hemi-contractive

⇓ ⇓
generalized pseudo-contractive =⇒ generalized hemi-contractive

Definition 1.2. Let C be a nonempty closed convex subset of a real Banach

space E and let {αn}∞n=1 be a sequence in [0, 1]. Then the sequence {xn} ⊂ C

defined by

x1 = α1x0 + (1− α1)T1x1,

x2 = α2x1 + (1− α2)T2x2,
...

xN = αNxN−1 + (1− αN)TNxN ,

xN+1 = αN+1xN + (1− αN+1)T1xN+1,
...

The scheme is expressed in a compact form as

xn = αnxn−1 + (1− αn)Tnxn, n ≥ 1, (1.3)

where Tn = Tn(mod N), is called the implicit iteration process for a finite family

of nonexpansive mappings {Ti}N
i=1.
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In 2001, Xu and Ori [17] introduced the above implicit iteration process for

a finite family of nonexpansive mappings and proved the weak convergence of

this process to a common fixed point of the finite family defined in a Hilbert

space. They further remarked that it is yet unclear what assumptions on the

mappings and/or the parameters {αn} are sufficient to guarantee the strong

convergence of the sequence {xn}. Since then, the convergence problems of

an implicit iteration process to a common fixed point for a finite family of

nonexpansive, strictly pseudo-contractive, and pseudo-contractive mappings

on Banach spaces have been studied by several authors (see, for example,

Osilike [9, 10], Chidume and Shahzad [5], Su and Li [15], Chen, Song and

Zhou [6], Chen, Lin and Song [7] and Zeng and Yao [19] and the references

therein). More recently, Rhoades and Soltuz [14] noted that the existence of

(I − tTi)
−1 for all t ∈ (0, 1) and i = 1, 2, . . . , N should be assumed in order to

have the iteration (1.3) well-defined.

Let C be a nonempty convex subset of a real Banach space E with dual E∗.

Observe that if T : C → C is a L-Lipschitzian map, then for every fixed u ∈ C

and t ∈ (L/(1+L), 1), the mapping St : C → C defined by Stx = tu+(1−t)Tx

satisfies

< Stx− Sty, j(x− y) >

= (1− t) < Tx− Ty, j(x− y) >

≤ (1− t)L‖x− y‖2

for all x, y ∈ C and some j(x− y) ∈ J(x− y) where J : E → 2E∗ denotes the

normalized duality map on E (see, e.g. [3]). Since (1− t)L ∈ (0, 1), it follows

that St is a strongly pseudo-contractive and hence has a unique fixed point xt

in C (see [4]) such that

xt = tu + (1− t)Txt.

Thus the implicit iteration process (1.3) is well defined in C for the family

{Ti}N
i=1 of N Li-Lipschitzian self-maps of a nonempty convex subset C of
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a Banach space E provided that (I − tTi)
−1 exists for all t ∈ (0, 1), i =

1, 2, . . . , N , and αn ∈ (α, 1) for all n ≥ 1, where α := L/(1 + L) and L :=

max
1≤i≤N

{Li}.

In this paper, we introduce the concept of generalized pseudo-contractive

and generalized hemi-contractive mappings and then study the strong con-

vergence theorems of implicit iteration process for a finite family of Lips-

chitzian and generalized hemi-contractive mappings in p-uniformly convex Ba-

nach spaces with p > 1. Thus we provide a positive answer to Xu and Ori’s

guestion for the general class of mappings which contains nonexpansive, quasi-

nonexpensive, strictly pseudo-contractive, demi-contractive, pseudo-contractive,

and hemi-con-

tractive mappings. In particular, our theorems hold in Lp, lp, W 1,p spaces, for

1 < p < ∞.

In what follows, we shall make use of the following lemma.

Lemma 1.1.(see [18, Theorem 1]) Let p > 1 be a given real number. Let E be

a p-uniformly convex Banach space. Then, there exists a constant d > 0 such

that

‖λx + (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − dWp(λ)‖x− y‖p, (1.4)

for all λ ∈ [0, 1] and x, y ∈ E, where Wp(λ) := λp(1− λ) + λ(1− λ)p.

The following proposition was obtained by Chidume and Shahzad (see [5,

p.1151] for the below contractive definitions).

Proposition 1.1. (see [5, Proposition 3.4]) Let E be a uniformly convex

Banach space and C be a nonempty closed bounded convex subset of E. Suppose

T : C → C. Then T is semi-compact if T satisfies any of the following

conditions:

(1) T is either set-condensing or ball-condensing (or compact);
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(2) T is a generalized contraction;

(3) T is uniformly strictly contractive;

(4) T is strictly semi-contractive;

(5) T is of strictly semi-contractive type;

(6) T is of strongly semi-contractive type.

2. Main Results

Now, we state and prove the following theorems.

Theorem 2.1. Let C be a nonempty closed convex subset of a real p-uniformly

convex Banach space E with p > 1. Let {Ti : C → C}N
i=1 be N Li-Lipschitzian

and generalized hemi-contractive mapping with constants p and θi ∈ [0,∞)

such that F := ∩N
i=1F (Ti) 6= ∅ and (I − tTi)

−1 exists ∀t ∈ (0, 1) and i =

1, 2, . . . , N . Let L := max
1≤i≤N

{Li} and let {αn}∞n=1 be a sequence in (0, 1) such

that

0 < α ≤ αn ≤ β <

[(θ

d
− 1

) 1
p−1

+ 1

]−1

≤ 1, (2.1)

for all n ≥ 1, where α := L/(1 + L), θ := max
1≤i≤N

{θi, d} > 0, and d denotes the

constant appearing in inequality (1.4). Then, the implicit iteration sequence

{xn}∞n=1 generated by (1.3) exists in C and

(i) lim
n→∞

‖xn − u‖ exists for all u ∈ F ,

(ii) lim
n→∞

d(xn, F ) exists where d(xn, F ) = inf
u∈F

‖xn − u‖,

(iii) lim
n→∞

‖xn − Tnxn‖ = 0.
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Proof. Let u ∈ F . By the definition of {xn} and Lemma 1.1, we have

‖xn − u‖p = ‖αn(xn−1 − u) + (1− αn)(Tnxn − u)‖p

≤ αn‖xn−1 − u‖p + (1− αn)‖Tnxn − u‖p

−dWp(αn)‖xn−1 − Tnxn‖p. (2.2)

Since each Ti is generalized hemi-contractive mapping with constant θi, it

follows that for i = 1, 2, . . . , N , we have

‖Tixn − u‖p ≤ ‖xn − u‖p + θi‖xn − Tixn‖p

≤ ‖xn − u‖p + θ‖xn − Tixn‖p.

Thus we obtain from (2.2) and xn − Tnxn = αn(xn−1 − Tnxn) that

‖xn − u‖p ≤ αn‖xn−1 − u‖p + (1− αn)
[
‖xn − u‖p + θ‖xn − Tnxn‖p

]

−dWp(αn)‖xn−1 − Tnxn‖p

≤ ‖xn−1 − u‖p − 1

αn

[
dWp(αn)− (1− αn)αp

nθ
]
‖xn−1 − Tnxn‖p

= ‖xn−1−u‖P−(1− αn)αp−1
n

[
d
( 1

αn

−1
)p−1

+d−θ

]
‖xn−1−Tnxn‖p,

(2.3)

for all n ≥ 1. Using inequality (2.1), we obtain that

d
( 1

αn

− 1
)p−1

+ d− θ

≥ d
( 1

β
− 1

)p−1

+ d− θ

> d
(θ

d
− 1

)
+ d− θ

= 0.

Put t := d( 1
β
− 1)p−1 + d− θ > 0. Hence, (2.3) can be written as

‖xn − u‖p ≤ ‖xn−1 − u‖p − t(1− β)αp−1‖xn−1 − Tnxn‖p, (2.4)
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for all n ≥ 1. It now follows from (2.4) that

‖xn − u‖ ≤ ‖xn−1 − u‖ (∀ n ≥ 1). (2.5)

Taking infimum over all u ∈ F , we have

d(xn, F ) ≤ d(xn−1, F ),

hence lim
n→∞

‖xn−u‖ exists and lim
n→∞

d(xn, F ) exists. Furthermore, (2.4) implies

that

t(1− β)αp−1‖xn−1 − Tnxn‖p ≤ ‖xn−1 − u‖p − ‖xn − u‖p (∀ n ≥ 1).

Thus lim
n→∞

‖xn−1 − Tnxn‖ = 0, so that

‖xn − Tnxn‖ = αn‖xn−1 − Tnxn‖ → 0 as n →∞.

The proof is complete.

Theorem 2.2. Let C,E, {Ti}N
i=1, F, {αn}∞n=1 and {xn}∞n=1 be as in Theorem

2.1. Then {xn}∞n=1 converges strongly to a common fixed point of the family of

{Ti}N
i=1 if and only if lim inf

n→∞
d(xn, F ) = 0.

Proof. Since 0 ≤ d(xn, F ) ≤ ‖xn − u‖ (∀ u ∈ F ). Thus, the necessity is

obvious and so we show the sufficiency. Suppose lim inf
n→∞

d(xn, F ) = 0. From

Theorem 2.1, we know that lim
n→∞

d(xn, F ) = 0. Moreover, from (2.5), we have

‖xn+m − xn‖ ≤ ‖xn+m − u‖+ ‖xn − u‖ ≤ 2‖xn − u‖, (2.6)

for all u ∈ F and m,n ≥ 1. Taking infimum over all u ∈ F , from (2.6) we

obtain

‖xn+m − xn‖ ≤ 2d(xn, F ) → 0 as n →∞,

so that {xn} is Cauchy sequence and hence lim
n→∞

xn = x∗ for some x∗ ∈ C.

Since each Ti is continuous mapping, it is easy to see that F (Ti) is closed, so
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that F is closed. Therefore, d(x∗, F ) = lim
n→∞

d(xn, F ) = 0 implies that x∗ ∈ F .

The proof is complete.

Theorem 2.3. Let C,E, {Ti}N
i=1, F, {αn}∞n=1 and {xn}∞n=1 be as in Theorem

2.1. Suppose that there exists one map T ∈ {Ti}N
i=1 to be semi-compact. Then

{xn}∞n=1 converges strongly to a common fixed point of the family of {Ti}N
i=1.

Proof. It follows from Theorem 2.1 that lim
n→∞

‖xn − Tnxn‖ = 0 and hence

lim
n→∞

‖xn−1 − Tnxn‖ = 0. Then, we have

‖xn − xn−1‖ = (1− αn)‖xn−1 − Tnxn‖ → 0 as n →∞.

Thus lim
n→∞

‖xn − xn+i‖ = 0 for each i = 1, 2, . . . , N . Since every Ti is Li-

Lipschitzian and L := max
1≤i≤N

{Li}, then

‖Tix− Tiy‖ ≤ L‖x− y‖

for all x, y ∈ C and each i = 1, 2, . . . , N .

Therefore,

‖xn − Tn+ixn‖ ≤ ‖xn − xn+i‖+ ‖xn+i − Tn+ixn+i‖+ ‖Tn+ixn+i − Tn+ixn‖
≤ (1 + L)‖xn − xn+i‖+ ‖xn+i − Tn+ixn+i‖ → 0 as n →∞,

i.e.,

lim
n→∞

‖xn − Tn+ixn‖ = 0 (2.7)

for each i = 1, 2, . . . , N . It follows from (2.7) (see also [16], [15]) that

lim
n→∞

‖xn − Tixn‖ = 0 (2.8)

for each i = 1, 2, . . . , N .

It follows from Theorem 2.1 that lim
n→∞

‖xn − u‖ exists for all u ∈ F . Thus

{xn} is bounded. By hypothesis that there exists one map T ∈ {Ti}N
i=1 to

be semi-compact, we may assume that T1 is semi-compact without loss of
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generality. Thus, from (2.8), we have lim
n→∞

‖xn − T1xn‖ = 0. Hence, by the

definition of semi-compact, there exists a subsequence {xnj
}∞j=1 of {xn}∞n=1

such that {xnj
}∞j=1 converges strongly to some x∗ ∈ C. Therefore, for each

i = 1, 2, . . . , N , we have

‖x∗ − Tix
∗‖ = lim

j→∞
‖xnj

− Tixnj
‖ = 0,

i.e., x∗ ∈ F . It follows that lim inf
n→∞

d(xn, F ) = 0, so that by Theorem 2.2 we

conclude that lim
n→∞

xn = x∗ ∈ F . The proof is complete.

Remark 2.1. Theorem 2.3 provide a positive answer to the question raised

in Xu and Ori [17]. Moreover, it is possible to replace the semi-conpactness

assumption in Theorem 2.3 by any one of the contractive assumptions (1)-(6)

of Porposition 1.1.
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