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Abstract

We show that the use of operational methods and of multi-index
Bessel functions allow the derivation of generating functions, involving
the product of an arbitrary number of Laguerre polynomials.
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1. Introduction

In this paper we will discuss a method allowing the derivation of generating
functions involving the product of an arbitrary order of Laguerre polynomials.
The technique, we will exploit, is based on the use of negative derivative
operators [1], on their algebraic manipulation and on the properties of multi-
index Bessel functions [2]. We remind therefore that the symbol aD̂−1

x denotes
an operator whose action on a function f(x) is such that

aD̂−1
x f(x) =

∫ x

a
f(ξ)dξ. (1)

The subscript on the left hand side will be omitted, if the lower integration
limit is a = 0. The repeated action of the above operator can be denoted as

aD̂−n
x and its action on a given function can be written in terms of repeated

integrals, thus getting e. g.

D̂−n
x f(x) =

1

(n − 1)!

∫ x

0
(x − t)n−1f(t)dt. (2)

In the particular case of f(x) = 1 we get

D̂−n
x (1) =

xn

n!
. (3)

From now on, when the unit function is involved, 1 will be omitted from
the right side of the operator.

The exponential operator exp(αD̂−1
x ) will play a central role in the theory

we are going to develop. We remind therefore that [2]

exp(−αD̂−1
x ) =

∞∑
n=0

(−α)nD̂−n
x

n!
=

∞∑
n=0

(−α)nxn

(n!)2 = C0(αx). (4)

Where C0(x) is the 0th order Tricomi function defined as

Cn(x) =
∞∑

r=0

(−1)rxr

r!(n + r)!
, (5)
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and linked to the cylindrical Bessel functions by

Cn(x) = x−
n
2 Jn(2

√
x). (6)

The Tricomi functions satisfy the generating functions

∞∑
n=−∞

tnCn(x) = exp
(
t− x

t

)
∞∑

n=`

tn

n!
Cn(x) = C`(x − t).

(7)

Along with the function one index-one variable Tricomi functions we will
introduce its three variable two index extension, defined as

Cm,n(x, y, z) =
∞∑

s=0

Cm+s(x)Cn+s(y)zs

s!
. (8)

The relevant generating functions can easily be derived

∞∑
m,n=−∞

umvn Cm,n(x, y, z) = exp
(
u + v − x

u
− y

v
+

z

uv

)
. (9)

and it is also easily understood that

∞∑
s=0

us

s!
Cm+s,n(x, y, z) = Cm,n(x − u, y, z)

∞∑
s=0

vs

s!
Cm,n+s(x, y, z) = Cm,n(x, y − v, z) (10)

∞∑
s=0

ξs

s!
Cm+s,n+s(x, y, z) = Cm,n(x, y, z + ξ)

It is also evident that

Cm,n(0, 0, z) =
∞∑

s=0

zs

s!(m + s)!(n + s)!
. (11)

In the following sections we will see how the above results can be extended
to the theory of Laguerre polynomials.
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2. Generating Functions of Laguerre

Polynomials

The Laguerre polynomials can be written, in terms of negative derivative op-
erators, as [2]

Ln(x) = (1 − D̂−1
x )n = n!

n∑
r=0

(−1)rxr

(r!)2 (n − r)!
. (12)

According to the above relations we note that

∞∑
n=0

tn

n!
Ln(x) = exp(t(1 − D̂−1

x )) = exp(t)C0(xt). (13)

Let us now come to the specific problem of this paper, by considering the
infinite sum

∞∑
n=0

tn

n!
Ln(x)Ln(y) = exp

[
t(1 − D̂−1

x )(1 − D̂−1
y )

]
= (14)

= exp(t) exp(−tD̂−1
x ) exp(−tD̂−1

y ) exp(tD̂−1
x D̂−1

y ).

We can now explicitly evaluate the above expression by noting that

exp(tD̂−1
x D̂−1

y ) =
∞∑

r=0

(txy)r

r!3
= C0,0(0, 0, txy). (15)

Furthermore, we also find

exp(−tD̂−1
x )C0,0(0, 0, txy) =

∞∑
r=0

(−t)r

r!
xrCr,0(0, 0, txy) = (16)

= C0,0(xt, 0, txy)

and

exp(−tD̂−1
y )C0,0(xt, 0, txy) = C0,0(xt, yt, xyt). (17)

Thus getting in conclusion

∞∑
n=0

tn

n!
Ln(x)Ln(y) = exp(t) C0,0(xt, yt, xyt). (18)
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This last expression generalizes the result given in equation (13) and can
be recognized as a different way of formulating a particular case of the Hille-
Hardy formula [4]-[5]. The use of the two index Tricomi function is useful
because it allows the derivation of generating functions involving an arbitrary
product of Laguerre polynomials, as we will show in the forthcoming section.

3. Concluding Remarks

Before discussing the problem of the generalization of the previous results, we
consider the following generating function yielding a three index and seven
variable Tricomi function

G(xα, yα, z ; uα) =
∞∑

m,n,p=−∞
um

1 un
2u

p
3 Cm,n,p(xα, yα, z) = (19)

= exp

[
3∑

α=1

(
uα −

xα

uα

+
yα

uαuα+1

)
− z

u1u2u3

]
,

(α = 1, 2, 3), u4 = u1.

Even though the properties of this function can be derived from the above
generating function, through its integral representation

Cm,n,p(xα, yα, z) =

=
1

(2π)3

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 2π

0
dφ3G(xα, yα, z ; exp(iφα)) exp

[
−i

(
3∑

α=1

φα

)]

we give here, for completeness, the relevant series expansion

Cm,n,p(xα, yα, z) =
∞∑

r=0

(−z)rBm+r,n+r,p+r (xα, yα)

r!
, (20)

where

Bm,n,p =
∞∑

r=0

yr
3 Am+r,n+r,p+r (xα, y1, y2)

r!
,

Am,n,p =
∞∑

r=0

yr
2 Cm+r,n+r (x1, x2, y1) Cp+r(x3)

r!
.

(21)
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The properties of this function too can be easily derived and we note that they
are just an extension of those given in equation (10) with the further relation

∞∑
s=0

us

s!
Cm+s,n+s,p+s(xα, yα, z) = Cm,n,p(xα, yα, z + u) .(22)Let us consider

the following extension of equation (14),

∞∑
n=0

tn

n!
Ln(x)Ln(y)Ln(z) = exp

[
t(1 − D̂−1

x )(1 − D̂−1
y )(1 − D̂−1

z )
]

, (23)

according to the previous considerations we end up with

∞∑
n=0

tn

n!
Ln(x)Ln(y)Ln(z) =

= exp(t) C0,0,0(xt, yt, zt, xyt, xzt, yzt, xyzt).

(24)

It is now evident that the extension of the above results to the case of the
generating function

∞∑
n=0

tn

n!

m∏
s=1

Ln(xs) (25)

requires the introduction of a Tricomi function with m-index and 2m − 1
variables, and in general we find

∞∑
n=0

tn

n!

m∏
s=1

Ln(xs) =

= exp(t) C{0}
(
{xs} t, {xsxj}s<j t, {xsxjxk}s<j<k t, ...,

∏m
s=1 xst

)
,

(26)

where

{0} = 0, ..., 0 m−times (27)

{xs} = x1, ..., xm,

{xsxj}s<j =

(
m

2

)
variables (x1x2, x2x3, ...),

{xsxjxk}s<j<k =

(
m

3

)
variables (x1x2x3, x2x3x4, ...).



Generating Functions Involving Arbitrary Products 275

Remark 1. We have already remarked that equation (18) can be viewed as an
alternative formulation of the Hille-Hardy formula ([4]-[5]) which is extended
to a product of two associated Laguerre polynomials L(α)

n with arbitrary α, it
has been shown in ref. [5] that the use of operational methods can usefully be
exploited to derive the Hille-Hardy result in a fairly direct way and it would be
interesting to obtain its generalization to the case of the arbitrary product. To
achieve this result we note that, according to ref. [2], the associated Laguerre
polynomials can be written by means of the operational formula

L(α)
n (x) =

(
1 − ∂

∂x

)α (
1 − D̂−1

x

)n
. (28)

It is therefore evident that we can write the generating function (18), extended
to the associated Laguerre as

∞∑
n=0

tn

n!
L(α)

n (x)L(β)
n (y) =

=

(
1 − ∂

∂x

)α (
1 − ∂

∂y

)β

exp(t) C0,0(xt, yt, xyt) .

(29)

The explicit action of the derivative can also be obtained quite straightfor-
wardly, by noting indeed that we can write the two-variable Tricomi function
as an expansion in terms of two variable Hermite polynomials as follows

C0,0(xt, yt, xyt) =
∑
.
∞
r,s=0.x

r ys(r!)2 (s!)2 hr,s(−t,−t | t) ,

hr,s(x, y | τ) = r! s!
∑
.

[r,s]
p=0.τ

p xr−p ys−pp! (r − p)! (s − p)! ,

(30)

In a forthcoming investigation we will discuss the extension to the arbitrary
product case and derive the relevant closed formulae in terms of multi-variable
Tricomi functions.
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