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Abstract  

The idea of difference sequence spaces was introduced by Kizmaz [1] 
and then this subject has been studied and generalized by various 
mathematicians. In this paper we define some difference sequence spaces by 
Orlicz space of entire sequences and establish some inclusion relations. Some 
properties of these spaces are studied. 
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1. Introduction 

A complex sequence, whose 
thk  term is kx  is denoted by { }kx  or simply. 

Let Φ be the set of all finite sequences. A sequence { }kxx = is said to be analytic if 

. sup /1 ∞<k
k

k
x  The vector space of all analytic sequences  will be denoted by ∧.  

A sequence x  is called entire sequence 
if .0  lim /1 =

∞→

k
kk

x  The vector space of all entire sequences will be denoted by Γ  .  

Throughout the article MM ∧Γ  ,  denote the Orlicz space entire and analytic 
sequences respectively.  
Throughout m  denotes an arbitrary positive integer . Kizmaz [1] introduced the 
notation of difference  
sequence spaces as follows: ( ) ( ) ( ){ }XxxxX kk ∈∆==∆ : ; for 0,, ccX ∞=  , where 

( ) ( )1+−=∆=∆ kkk xxxx . Later on the notion was generalized by Et and Colak [2] as 
follows: ( ) ( ) ( ){ }XxxxX k

m
k

m ∈∆==∆ :  for 0,, ccX ∞=  ,where  
( ) ( ) ( )1

110  and , +
−− ∆−∆=∆=∆=∆∈ k

m
k

m
k

mm
k xxxxxxNm  

( ) Nkx
v
m

vk

vm

v
∈








−= +

=
∑  allfor  1

0
 .  

 Later on difference sequence spaces have been studied by Et [3], Et and Nuray 
[4], Çolak et al [5], Işık [ 6], Altin and Et [7] and many others. 
 Orlicz [8] used the idea of Orlicz function to construct the space ( ML ). 

Lindenstrauss and Tzafriri [9] investigated Orlicz sequence spaces in more detail, and 
they proved that every Orlicz sequence space M  contains a subspace isomorphic 
to ).1( ∞<≤ pp  Subsequently different classes of sequence spaces defined by 
Parashar and Choudhary [10], Mursaleen et al [11], Bektas and Altin [12], Tripathy  
et al. [13], Rao and Subramanian [14] and many others. The Orlicz sequence spaces 
are the special cases of Orlicz spaces studied in Ref [15]. 

Recall ([8],[15] ) an Orlicz function is a function [ ) [ )∞→∞ ,0,0:M  which is 
continuous, non-decreasing and convex with ( ) ( ) ,0,00 >= xMM  for x > 0 and 

( ) ∞→xM as ∞→x .  If convexity of Orlicz function M  is replaced by 
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( ) ( ) ( ) , M x y M x M y+ ≤ + then this function is called modulus function , defined 
and discussed by Ruckle [16] and Maddox [17] .           

Let ),,( µΣΩ  be a finite measure space. We denote by )(µE  the space of all 
(equivalence classes of) −Σ measurable functions x from Ω into [ )∞,0 . Given an 
Orlicz function M, we define on )(µE  a convex functional MI  by 

∫Ω= ,))(()( µdtxMxI M  

and an Orlicz space )(µML  by { },0 somefor )(:)()( >+∞<∈= λλµµ xIExL M
M  

(For detail see [ 8], [15]). 
Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to construct Orlicz 

sequence space 













>∞<







∈= ∑

∞

=    k

k
M    somefor ,

x
Mwx

1
0: ρ

ρ  

where { }  .  sequencescomplex  all=w  

The space M  with the norm  













≤









>= ∑

∞

=

 1:0 inf
1  k

kx
Mx

ρ
ρ , 

becomes a Banach space which is called an Orlicz sequence space. For 
,1,)( ∞<≤= pttM p  the spaces M  coincide with the classical sequence 

space p . 

Given a sequence { }kxx = its n th  section is the sequence 
( ) .),0,0,,,,( 21 n
n xxxx =  

( ) ( ),,0,0    .1,0,0,   ,.  n =δ  1 in the n th  place and zero’s else where ; An FK-
space (Frechet coordinate space) is a Frechet space which is made up of numerical 
sequences and has the property that the coordinate functionals 

( ) ( ).,2,1  k xxp kk == are continuous.     
An FK-space or a metric space  X  is said to have AK-property if ( )) ( nδ is a 

Schauder basis for  X  or equivalently xx n →)(  (AK stands for Abschnitts 
Konvergenz or Sectional Convergence). The space is said to have AD (or be an AD 
space ) if Φ  is dense in  X .  
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We note that AK implies AD by [18].   
If X is a sequence space, we define 
  (i)      X. of dual continuous  the© =X   

  (ii)     ∑
∞

=

∈∞<==
1

X}; each xfor  ,:)({
k

kkk xaaaX α
 

(iii)    ∑
∞

=

∈==
1

X};each xfor  ,convergent is :)({
k

kkk xaaaX β
 

(iv)    X γ =  sup:)({
1
∑
=

=
n

k
kk

n
k xaaa < X}.each xfor  , ∈∞  

(v)      Let X  be an FK-space and X }:)({XThen  . ©)( Xff nf ∈=Φ⊃ δ .   

          ,X , βαX X γ  are called the −− βα , and −γ dual of X, 
respectively. 
  Note that .γβα XXX ⊂⊂  If  .or  , , for  ,  then γβαµµµ =⊂⊂ XYYX  
 
Lemma 1.1. (See( 9,Theorem 7.2.7)) Let X be an FK space and X Φ⊃ . Then 

(i) .fXX ⊂γ  
(ii) . AK, has X If  fXX =β  
(iii) . AD, has  If  γβ XXX =  
We note that Γ Γ Γ   .α β γ= = = ∧  

 
Definition 1.2.  The space consisting of all those sequences x  in w  such that 

∞→→















k

x
M

k
k  as 0

1

ρ  for some arbitrary fixed ρ  > 0  is denoted 

byΓM , M being an Orlicz function. In other words  






























ρ

k
kx

M
1

 is a null sequence. 

MΓ  is called the Orlicz space of entire sequences. The space MΓ  is a metric space 
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with the metric ( )












 −
=

ρ

k
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Myxd

1

sup,   for all { }kxx =  and { }kyy =  in  

MΓ  . 
Definition 1.3. If M is a convex function 
and ( ) ( ) ( ) .10 with  allfor    then ,00 <<≤= λλλλ xMxMM  
 
Definition 1.4. The space consisting of all those sequences x  in w  such that 

∞<












































ρ

k
k

k

x
M

1

sup  for some arbitrarily fixed 0  >ρ  is denoted by M∧  , M  

being an Orlicz function. In other words  
































ρ

k
kx

M
1

 is a bounded sequences . 

M∧  is called the Orlicz space of bounded  sequence.  
 
Definition 1.5. A sequence space E is said to be solid or normal if ( ) Exkk ∈α  
whenever ( ) Exk ∈  and for all sequences of scalars ( ) 1 with ≤kk αα , [20].  

Let ( )kpp =  be a sequence of positive real numbers with Gpp kk =<< sup0  
and let ( )12,1 −= GMaxD . Then for ,, Cba kk ∈  the set of complex numbers for all 

Nk ∈ , we have 
{ }kkk p

k
p

k
p

kk baDba +≤+                                     (1) 
In this paper , we define the following sequence spaces.  
Let M  be an Orlicz function , X  be locally convex Hausdorff topological linear 

space whose topology  is determined by a set Q  of continuous semi norms q  . 
The symbol ( ) ( )XX Γ∧ ,   denotes the space of all analytic and entire sequences 
defined over  X  . We define the following sequence spaces: 

( ) ( ) ( )
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( ) ( ) ( )
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2. Main Results 

In this section we examine some topological properties of spaces ( )qpm
M ,,∆Γ  

and ( )qpm
M ,, ∆∧  and investigate some inclusion relations between these spaces. 

 
Proposition 2.1.  If M  is an Orlicz function, then ( )qpm

M ,,∆Γ  is a linear set over 
the set of complex numbers C.  
 
Proof. Let ( )qpyx m

M ,,, ∆Γ∈  and ., C∈βα  In order to prove the result, we need 

to find some 3ρ  such that  

( )( ) .  01

1 3

1

∞→→
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              (2.1) 

Since ( )qpyx m
M ,,, ∆Γ∈  , there exist some positive 1ρ  and 2ρ  such that  
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1
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Since M  is a non-decreasing modulus function, q is a seminorm and m∆  is linear 
then 

( )( ) ( ) ( ) ( ) ( )
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( )( ) ( )( ) ( )( )∑ ∑
= = 














































 ∆
+

∆
≤















































 +∆n

k

n

k

p
k

k
mk

k
m

p
k

kk
m

kk

yx
qM

n
yx

qM
1 1 3

1

3

1

3

1
1

ρ
β

ρ
α

ρ
βα

 

Take 3ρ  such that 











=
213

11,11min1
ρβραρ  

( )( ) ( ) ( )
kk

p

n

k

n

k

k
k

mk
k

m
p

k
kk

m yx
qM

n
yx

qM
n∑ ∑

= = 













































 ∆
+

∆
≤















































 +∆

1 1 2

1

1

1

3

1
11

ρρρ
βα

 

                                                      

( ) ( )∑
=

















































 ∆
+































 ∆
≤

n

k

p
k

k
m

p
k

k
m

kk

y
qM

x
qM

n 1 2

1

1

1
1

ρρ  

( ) ( )
1 1

1 21 1

1 1                               

0 ( ) 

kp
m mk kn nk k

k k

x y
D M q D M q

n n

n

ρ ρ= =

         
   ∆ ∆      
      ≤ +   
                           

→ → ∞

∑ ∑  

By (2.2) and (2.3). Hence
( )∑

=

∞→→














































 ∆+∆n

k

p
k

k
m

k
m

n
yx

qM
n

k

1 3

1

. as 01
ρ
βα

 So 

( ) ( ).,, qpyx m
M ∆Γ∈+ βα Therefore ( )qpM

M ,,∆Γ  is a linear space.  
This completes the proof.  
 
Proposition 2.2. ( )qpm

M ,,∆Γ  are para normed spaces (not totally paranormed) with  
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Proof. Clearly ( ) ( ) ( ) 0  ,0
_

=







−=≥ ∆∆∆∆ θgandxgxgxg  , where θ  is the zero 
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Thus we have ( ) ( ) ( ).ygxgyxg ∆∆∆ +≤+ Hence ∆g satisfies the triangle inequality. 
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ρ
=r  .  

Hence ( )qpm
M ,,∆Γ  is a paranormed space. 

This completes the proof. 
 

Propostiton 2.3. 1 2Let  and  be two Orlicz  function . M M  

( ) ( ) ( )1 2 1 2
Then , , , , , ,m m m

M M M Mp q p q p q+Γ ∆ Γ ∆ ⊆ Γ ∆∩ . 
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This completes the proof.  
 
Proposition 2.4. Let 1≥m . Then  we have the following inclusions . 
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