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Abstract

In this paper, the concepts of SP1-connectedness and SP2-connectedness
of L-sets in L-topological spaces are introduced by means of strongly
preclosed L-sets. SP1-connectedness and SP2-connectedness preserve
some fundamental properties of connectedness in general topology. Es-
pecially, the famous K. Fan’s Theorem can be generalized to L-set the-
ory.
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1. Introduction

Connectivity is one of the most important notions in general topology.
It has been generalized to L-fuzzy set theory in terms of many forms (see
[1, 2, 4, 5, 6, 10, 12, 13, 16, 17, 18], and other related works). In [15], M. K.
Singal and N. Prakash introduced the concepts of fuzzy preopen sets and fuzzy
preclosed sets and researched their some properties. In [6], Bai introduced
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the concept of P-connectivity by means of preclosed L-set. In [7], Krateska
introduced the concepts of fuzzy strongly preopen set and strongly preclosed
set in [0,1]-topological spaces.

In this paper, we shall introduce the concepts of SP1-connectivity and
SP2-connectivity in terms of strongly preclosed L-sets. They preserve many
good properties of connectedness in general topology. Especially, the famous
K. Fan’s Theorem can be extended to L-set theory for SP1-connectivity and
SP2-connectivity.

2. Preliminaries

In this paper, L denotes a completely distributive de Morgan algebra. 0
and 1 denote the smallest element and the largest element in L respectively.
An element a in L is called a

∨-irreducible element if a = b ∨ c implies a = b or a = c. The set of all
nonzero ∨-irreducible elements in L is denoted by M(L).

For a nonempty set X, LX denotes the set of all L-fuzzy subsets (or L-
subsets for short) on X. 0 and 1 respectively denote the smallest element and
the largest element in LX . It is easy to see that M(LX) = {xα | x ∈ X, a ∈
M(L)} is exactly the set of all nonzero ∨-irreducible elements in LX .

An L-topological space is a pair (X, τ), where τ is a subfamily LX which
contains 0, 1 and is closed for any suprema and finite infima. τ is called an
L-topology on X. Each member of τ is called an open L-set and its quasi-
complementation is called a closed L-set.

Definition 2.1 ([16]). In an L-space (X, τ), two L-fuzzy sets A, B are called
separated if cl(A) ∧B = A ∧ cl(B) = 0.

Definition 2.2 ([16]). In an L-topological space (X, τ), an L-fuzzy set D is
called connected if D cannot be represented as a union of two separated non-
null sets.

Definition 2.3 ([15]). Let (X, τ) be an L-topological space, A ∈ LX . Then
(1) A is called a preopen L-set if and only if A ≤ int(cl(A));
(2) A is called a preclosed L-set if and only if cl(int(A)) ≤ A.

Definition 2.4 ([15]). Let (X, τ) be an L-topological space, A ∈ LX . Define:



Connectedness Based on Strongly Preclosed L-Sets 291

(1) intp(A) =
∨{B | B ≤ A, B is a preopen L-set of X};

(2) clp(A) =
∧{B | B ≥ A, B is a preclosed L-set of X}.

intp(A) and clp(A) are respectively called preinterior and preclosure of A.

Definition 2.5 ([6]). In an L-topological space (X, τ), two L-fuzzy sets A, B
are called P-separated if clp(A) ∧B = A ∧ clp(B) = 0.

Definition 2.6 ([6]). In an L-topological space (X, τ), an L-fuzzy set D is
called P-connected if D cannot be represented as a union of two P-separated
non-null sets.

In [7], the concepts of strongly preopen and strongly preclosed sets were
introduced in [0,1]-fuzzy set theory by Biljana Krateska. They can easily be
extended to L-sets as follows:

Definition 2.7. Let (X, τ) be an L-topological space, A ∈ LX . Then

(1) A is called a strongly preopen L-set if and only if A ≤ int(clp(A));

(2) A is called a strongly preclosed L-set if and only if cl(intp(A)) ≤ A.

The set of all strong preopen L-sets and the set of all strong preclosed L-
sets in LX are respectively denoted as SPO(X) and SPC(X).

Definition 2.8. Let (X, τ) be an L-topological space, A, B ∈ LX . Define:

(1) intsp(A) =
∨{B | B ≤ A, B is a strongly preopen L-set of X};

(2) clsp(A) =
∧{B | B ≥ A, B is a strongly preclosed L-set of X}.

intsp(A) and clsp(A) are called strong preinterior and strong preclosure of A,
respectively.

Theorem 2.9. Let (X, τ) be an L-topological space, A ∈ LX . Then

(1) A is a strongly preopen L-set if and only if A = intsp(A);

(2) A is a strongly preclosed L-set if and only if A = clsp(A).

Lemma 2.10([17]). Let A, B ∈ LX and A 6≤ B. If 1 ∈ M(L), then A
′∨B 6= 1.
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3. SP1-connectedness

In this section, we shall research SP1-connectedness in L-topological spaces
by means of SP-separated L-sets.

Definition 3.1. Let (X, τ) be an L-topological space and A, B ∈ LX . Then
A, B are said to be SP-separated if clsp(A) ∧B = A ∧ clsp(B) = 0.

The following theorem is obvious.

Theorem 3.2. Let (X, τ) be an L-topological space and A, B ∈ LX . If A and
B are SP-separated and C ≤ A, D ≤ B. Then C and D are also SP-separated.

Definition 3.3. Let (X, τ) be an L-topological space and G ∈ LX . G is
called SP1-connected if G can’t be represented as a union of two non-null SP-
separated L-sets. When G = 1 is SP1-connected, we call (X, τ) an SP1-
connected L-topological space.

Theorem 3.4. Let (X, τ) be an L-topological space, G ∈ LX . Then the
following conditions are equivalent:

(1) G is SP1-connected;
(2) There don’t exist two strongly preclosed L-sets A, B such that

A ∧G 6= 0, B ∧G 6= 0, G ≤ A ∨B and A ∧B ∧G = 0;

(3) There don’t exist two strongly preclosed L-sets A, B such that

G 6≤ A, G 6≤ B, G ≤ A ∨B and A ∧B ∧G = 0.

Proof. (1)⇒(2) Suppose that G is SP1-connected and there exist two strongly
preclosed L-sets A, B such that

A ∧G 6= 0, B ∧G 6= 0, G ≤ A ∨B, A ∧B ∧G = 0.

Then obviously (A ∧ G) ∨ (B ∧ G) = (A ∨ B) ∧ G = G. We can prove
clsp(A ∧G) ∧ (B ∧G) = 0 from the following fact:

clsp(A ∧G) ∧ (B ∧G) ≤ clsp(A) ∧ (B ∧G) = A ∧B ∧G = 0.
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Similarly we have (A ∧ G) ∧ clsp(B ∧ G) = 0. This shows that G is not
SP1-connected, which is a contradiction.

(2)⇒(3) Suppose that there exist two strongly preclosed L-sets A, B such
that

G 6≤ A, G 6≤ B, G ≤ A ∨B, A ∧B ∧G = 0.

We easily prove that A ∧G 6= 0 and B ∧G 6= 0. This is a contradiction.
(3)⇒(1) Suppose that (3) is true and G is not SP1-connected. Then there

are C, D 6= 0 such that G = C ∨ D and clsp(C) ∧ D = C ∧ clsp(D) = 0. Let
A = clsp(C), B = clsp(D). Then G = C ∨D ≤ clsp(C) ∨ clsp(D) = A ∨B and
by

clsp(C) ∧ clsp(D) ∧G = clsp(C) ∧ clsp(D) ∧ (C ∨D)

= (clsp(C) ∧ clsp(D) ∧ C) ∨ (clsp(C) ∧ clsp(D) ∧D)

= (clsp(D) ∧ C) ∨ (clsp(C) ∧D)

= 0 ∨ 0 = 0

we know A ∧ B ∧G = 0. Moreover we have that G 6≤ A and G 6≤ B. In fact,
if G ≤ A, then B ∧ G = B ∧ (G ∧ A) = 0, i.e., clsp(D) ∧ G = 0. Therefore
D = D ∧G ≤ clsp(D) ∧G = 0. This is a contradiction. Analogously we have
that G 6≤ B. This contradicts (3).

Corollary 3.5. An L-topological space (X, τ) is SP1-connected if and only
if there don’t exist two non-null strongly preclosed L-sets A, B such that
A ∨B = 1 and A ∧B = 0.

Theorem 3.6. Let (X, τ) be an L-topological space, G ∈ LX . Then the
following conditions are equivalent:

(1) G is SP1-connected;
(2) If A, B ∈ LX are SP-separated and G ≤ A ∨ B, then G ∧ A = 0 or

G ∧B = 0;
(3) If A, B ∈ LX are SP-separated and G ≤ A∨B, then G ≤ A or G ≤ B.

Proof. (1)⇒(2) If A, B ∈ LX are SP-separated and G ≤ A ∨ B, then by
Theorem 3.2 we know that G ∧ A and G ∧ B are SP-separated. Since G is
SP1-connected and G = G ∧ (A ∨B) = (G ∧A) ∨ (G ∧B), one of G ∧A and
G ∧B equals to 0.
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(2)⇒(3) Suppose G∧A = 0, then G = G∧(A∨B) = (G∧A)∨(G∧B) = G∧B.
So G ≤ B. Similarly G ∧B = 0 implies G ≤ A.

(3)⇒(1) Suppose that A, B are SP-separated and G = A∨B. By (3) we have
that G ≤ A or G ≤ B. If G ≤ A, then B = B ∧G ≤ B ∧A ≤ B ∧ clsp(A) = 0
since A, B are SP-separated. Similarly if G ≤ B, then A = 0. So G can’t be
represented as a union of two SP-separated non-null L-subsets. Therefore G
is SP1-connected.

Corollary 3.7. Each element in M(LX) is SP1-connected.

Theorem 3.8. Let (X, τ) be an L-topological space and G be SP1-connected.
If G ≤ H ≤ clsp(G), then H is also SP1-connected.

Proof. Suppose that H is not SP1-connected. Then there exist two strongly
preclosed L-sets A and B such that

H 6≤ A, H 6≤ B, H ≤ A ∨B, H ∧ A ∧B = 0.

By G ≤ H, we obtain G∧A∧B = 0 and G ≤ A∨B. Now we prove that G 6≤ A
and G 6≤ B. In fact, if G ≤ A, then clsp(G) ≤ A, therefore H ≤ clsp(G) ≤ A,
which is a contradiction. Hence G 6≤ A. Similarly we have G 6≤ B. This
contradicts that G is SP1-connected.

Theorem 3.9. Let (X, τ) be an L-topological space, both G and H be SP1-
connected. If G and H are not SP-separated. Then G ∨H is SP1-connected.

Proof. Suppose that G ∨ H is not SP1-connected. Then there exist two
strongly preclosed L-sets A, B such that

G ∨H 6≤ A, G ∨H 6≤ B, G ∨H ≤ A ∨B, (G ∨H) ∧ A ∧B = 0.

By G ∨ H 6≤ A we have that G 6≤ A or H 6≤ A. If G 6≤ A, then by SP1-
connectedness of G, we have G ≤ B. Hence H 6≤ B and H ≤ A. This implies
that A ∧ G ≤ A ∧ B ∧ (G ∨ H) = 0. Therefore clsp(H) ∧ G ≤ clsp(A) ∧ G =
A ∧ G = 0. Similarly H ∧ clsp(G) = 0. This shows that G and H are SP-
separated, a contradiction.
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Theorem 3.10. Let (X, τ) be an L-topological space and {Gi}i∈I be a family
of SP1-connected L-sets. If there is j ∈ I such that Gi and Gj are not SP-
separated for each i 6= j, then

∨
i∈I

Gi is SP1-connected.

Proof. Suppose that
∨
i∈I

Gi is not SP1-connected. Then there exist two

strongly preclosed L-sets A, B such that∨
i∈I

Gi 6≤ A,
∨
i∈I

Gi 6≤ B,
∨
i∈I

Gi ≤ A ∨B, (
∨
i∈I

Gi) ∧ A ∧B = 0.

Thus there exist r, s ∈ I such that

Gr∨Gs∨Gj 6≤ A, Gr∨Gs∨Gj 6≤ B, Gr∨Gs∨Gj ≤ A∨B, (Gr∨Gs∨Gj)∧(A∧B) = 0.

This shows that Gr∨Gs∨Gj is not SP1-connected. By Theorem 3.9 we obtain
a contradiction.

Corollary 3.11. Let (X, τ) be an L-topological space and {Gi}i∈I be a family
of SP1-connected L-sets. If

∧
i∈I

Gi 6= 0, then
∨
i∈I

Gi is SP1-connected.

Theorem 3.12. Let (X, τ) be an L-topological space and G ∈ LX . Then G
is SP1-connected if and only if for any two nonzero ∨-irreducible elements a, b
in G, there exists an SP1-connected L-set H such that a, b ≤ H ≤ G.

Proof. The necessity is obvious. Now we prove the sufficiency. Suppose that
G is not SP1-connected in (X, τ). Then there exist two strongly preclosed
L-sets A, B ∈ LX such that

G 6≤ A, G 6≤ B, G ≤ A ∨B and G ∧ A ∧B = 0.

Take two nonzero ∨-irreducible elements a, b ≤ G such that a 6≤ A and b 6≤ B.
Let H be a SP1-connected L-set satisfying

a, b ≤ H ≤ G. We have that

H 6≤ A, H 6≤ B, H ≤ A ∨B and H ∧ A ∧B = 0.

This shows that H is not SP1-connected, a contradiction.
In [8], Biljana Krateska introduce the concept of fuzzy SP-irresolute map-

ping. Now we extend it to L-sets.
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Definition 3.13. Let (X, τ) and (Y, µ) be two L-topological spaces and f :
X → Y be a mapping. An L-value Zadeh’s type mapping f→L : LX → LY

is called an SP-irresolute mapping if f←L (B) is strongly preopen in (X, τ) for
each strongly preopen L-set B in (Y, µ).

Theorem 3.14. If f→L : LX → LY is SP-irresolute, then clsp(f
←
L (B)) ≤

f←L (clsp(B)) for each B ∈ LY .

Proof. Analogous to the proof of Theorem 3.1(4) in [8].

Theorem 3.15. Let (X, τ) and (Y, µ) be two L-topological spaces and f→L :
LX → LY be SP-irresolute. If G is SP1-connected in (X, τ), then so is f→L (G)
in (Y, µ).

Proof. Suppose that f→L (G) is not SP1-connected in (Y, µ). Then there exist
two strongly preclosed L-sets A, B such that

f→L (G) 6≤ A, f→L (G) 6≤ B, f→L (G) ≤ A ∨B, f→L (G) ∧ A ∧B = 0.

Hence we have that

G 6≤ f←L (A), G 6≤ f←L (B), G ≤ f←L (A) ∨ f←L (B)

and

G∧f←L (A)∧f←L (B) ≤ f←L (f→L (G))∧f←L (A)∧f←L (B) = f←L (f→L (G)∧A∧B) = 0.

This implies that G is not SP1-connected, a contradiction. Therefore f→L (G)
is SP1-connected in (Y, µ).

Corollary 3.16. Let (X, τ) and (Y, µ) be two L-topological spaces and f→L be
an SP-irresolute mapping from LX onto LY . If (X, τ) is SP1-connected , then
so is (Y, µ).

Now, K. Fan’s Theorem will be extended to L-topology.
In [14], the concept of remote neighborhood mapping is introduced. Anal-

ogously we introduce the following definition:

Definition 3.17. Let (X, τ) be an L-topological space and G ∈ LX . A map-
ping P : M(G) → SPC(X) is called an SP-remote neighborhood mapping in
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G if e 6≤ P (e) for every e ∈ M(G), where M(G) denotes the set of all nonzero
∨-irreducible elements contained in G.

Theorem 3.18. Let (X, τ) be an L-topological space. Then G is SP1-
connected if and only if for each pair a, b in M(G) and each SP-remote neigh-
borhood mapping P : M(G) → SPC(LX), there exists a finite number of point
x1 = a, x2, · · · , xn = b in M(G) such that

G 6≤ P (xi) ∨ P (xi+1), i = 1, 2, · · · , n− 1.

Proof. Sufficiency. Suppose that G is not SP1-connected. Then there are
two strongly preclosed L-sets A, B ∈ LX such that

G 6≤ A, G 6≤ B, G ≤ A ∨B and G ∧ A ∧B = 0.

Define an SP-remote neighborhood mapping P : M(G) → SPC(X) as
follows:

∀x ∈ M(G) P (x) =

{
B, if x ≤ A,
A, if x 6≤ A.

Take a, b ∈ M(G) such that a ≤ A and b ≤ B. Since for arbitrary finite many
elements x1 = a, x2, · · · , xn = b in M(G), one and only one of xi ≤ A and
xi ≤ B(i = 1, 2, · · · , n) is true, we have that P (xi) = B or P (xi) = A. But
P (x1) = B and P (xn) = A, hence there exists j(1 ≤ j ≤ n − 1) such that
P (xj) = B and P (xj+1) = A. This shows that

G ≤ A ∨B = P (xj) ∨ P (xj+1),

which is a contradiction. Thus the sufficiency is proved.
Necessity. Suppose that condition of theorem is not true, i.e, there are two

elements a, b ∈ M(G) and an SP-remote neighborhood mapping P : M(G) →
SPC(X), such that

G 6≤ P (xi) ∨ P (xi+1), i = 1, 2, · · · , n− 1.

is not true for arbitrary finite many elements a = x1, x2, · · · , xn = b ∈ M(G).
For the sake of convenience, we follow the agreement that a and b can be linked
if there are finite many elements a = x1, x2, · · · , xn = b ∈ M(G) such that

G 6≤ P (xi) ∨ P (xi+1), i = 1, 2, · · · , n− 1.
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Otherwise, a and b can not be linked. Let

Φ = {x ∈ M(G) | a and x can be linked};
Ψ = {x ∈ M(G) | a and x can not be linked}.

Then for any c ∈ Φ and for any d ∈ Ψ, we have G ≤ P (c) ∨ P (d). Let

A =
∧
{P (c) | c ∈ Φ}, B =

∧
{P (d) | d ∈ Ψ}.

Then

A ∨B = (
∧
{P (c) | c ∈ Φ}) ∨ (

∧
{P (d) | d ∈ Ψ})

=
∧
{(P (c) ∨ P (d)) | c ∈ Φ, d ∈ Ψ} ≥ G

Obviously, a and a can be linked. So a ∈ Φ. Since a and b can’t linked, we
have b ∈ Ψ, hence G 6≤ A, G 6≤ B. Moreover it is obvious that G ∧A ∧B = 0
and by definition of A, B we know that A, B are strongly preclosed L-sets.
This shows that G is not SP1-connected, a contradiction.

4. SP2-connectedness

In this section, we shall introduce the concept of SP2-connectedness by
means of strongly preclosed L-sets. Since the proof of many results is analo-
gous to the proof of some results in last section, we omitted them.

Definition 4.1. Let (X, τ) be an L-topological space and G ∈ LX . G is called
SP2-connected if there don’t exist strongly preclosed L-sets A, B such that

G 6≤ A, G 6≤ B, G
′ ∨ A ∨B = 1 and G ∧ A ∧B = 0.

Theorem 4.2. Let (X, τ) be an L-topological space and G ∈ LX . Then the
following conditions are equivalent:

(1) G is SP2-connected;
(2) There don’t exist two strongly preclosed L-sets A, B such that

A ∧G 6= 0, B ∧G 6= 0, G
′ ∨ A ∨B = 1 and A ∧B ∧G = 0;
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(3) There don’t exist strongly preopen L-sets A, B such that

G 6≤ A, G 6≤ B, G
′ ∨ A ∨B = 1 and G ∧ A ∧B = 0;

(4) There don’t exist two strongly preopen L-sets A, B such that

G ∧ A 6= 0, G ∧B 6= 0, G
′ ∨ A ∨B = 1 and A ∧B ∧G = 0.

Theorem 4.3. Let (X, τ) be an L-topological space and G be SP2-connected.
If G ≤ H ≤ clsp(G), then H is also SP2-connected.

Theorem 4.4. Let (X, τ) be an L-topological space, G and H be SP2-connected.
If G and H are not SP-separated, then G ∨H is SP2-connected.

Theorem 4.5. Let (X, τ) be an L-topological space and {Gi}i∈I be a family
of SP2-connected L-sets. If there is j ∈ I such that Gi and Gj are not SP-
separated for each i 6= j, then

∨
i∈I

Gi is SP2-connected.

Corollary 4.6. Let (X, τ) be an L-topological space and {Gi}i∈I be a family
of SP2-connected L-sets. If

∧
i∈I

Gi 6= 0, then
∨
i∈I

Gi is SP2-connected.

Theorem 4.7. Let (X, τ) be an L-topological space and G ∈ LX . Then G is
SP2-connected if and only if for any two nonzero ∨-irreducible elements a, b
in G, there exists an SP2-connected L-set H such that a, b ≤ H ≤ G.

Theorem 4.8. Let (X, τ) and (Y, µ) be two L-topological spaces and f→L :
LX → LY be SP-irresolute. If G is SP2-connected in (X, τ), then so is f→L (G)
in (Y, µ).

Theorem 4.9. Let (X, τ) be an L-topological space and G ∈ LX . Then G is
SP2-connected if and only if for each pair a, b in M(G) and each SP1-remote
neighborhood mapping P : M(G) → SPC(X). There exists a finite number of
elements a = x1, x2, · · · , xn = b in M(G) such that

G
′ ∨ P (xi) ∨ P (xi+1) 6= 1, i = 1, 2, · · · , n− 1.
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5. The Relation Among SP1-connectedness,

SP2-connectedness, P-connectedness and Con-

nectedness

The following fact is obvious.

Theorem 5.1. In an L-topological space, a P-connected L-set is SP1-connected.
An SP1-connected L-set is connected.

Remark 5.2.The inverse of Theorem 5.1 is not true. This can be seen from
the following examples.

Example 5.3. Let X = {x1, x2}, L = {0, a, b, c, d, 1}, where a
′

= a, b
′

=
b, c

′
= d, d

′
= c, 1

′
= 0, 0

′
= 1; 0 < d < a < c < 1, 0 < d < b < c < 1, a and b

are incomparable. ∀λ, µ ∈ L we define fuzzy set C(λ, µ) : X → L such that

C(λ, µ)(x) =

{
λ, if x = x1,
µ, if x = x2.

Let (X, τ) be an L-topological space, where

τ = {C(0, 0), C(a, c), C(b, d), C(d, d), C(c, c), C(1, 1)}

and Ω be the set of all preclosed L-sets. Then

Ω = {C(0, 0), C(0, a), C(0, b), C(0, c), C(0, d), C(0, 1), C(a, 0), C(a, a), C(a, b),
C(a, d), C(b, 0), C(b, c), C(b, 1), C(c, 0), C(c, c), C(c, 1), C(d, 0), C(d, a),
C(d, b), C(d, c), C(d, d), C(d, 1), C(1, 0), C(1, c), C(1, 1)}.

Let Φ be the set of all strongly preclosed L-sets, then

Φ = {C(0, 0), C(a, d), C(b, c), C(c, c), C(d, a), C(d, b), C(d, c), C(d, d), C(1, 1)}.

For L-set C(b, b), we have that

C(b, b) = C(b, 0)∨C(0, b), and clp(C(0, b))∧C(b, 0) = C(0, b)∧clp(C(b, 0)) = 0,

hence C(b, b) is not P-connected, but there don’t exist strongly preclosed L-sets
A, B ∈ Φ such that

C(b, b) 6≤ A, C(b, b) 6≤ B, C(b, b) ≤ A ∨B and C(b, b) ∧ A ∧B = 0,
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hence C(b, b) is SP1-connected.

From Example 5.3 we also see that C(b, b) is SP2-connected, but C(b, b)
is not P-connected and hence P-connected and SP2-connected are different
concepts.

Example 5.4. Let X = {x1, x2}, L = {0, a, b, 1}, where a
′
= a, b

′
= b, 1

′
=

0, 0
′
= 1; 0 < a < 1, 0 < b < 1, a ∧ b = 0, a ∨ b = 1, a and b are incomparable.

∀λ, µ ∈ L we define fuzzy set C(λ, µ) : X → L such that

C(λ, µ)(x) =

{
λ, if x = x1,
µ, if x = x2.

Let (X, τ) be an L-topological space, where

τ = {C(0, 0), C(1, 0), C(1, 1)},

then we obtain that C(0, 1) is connected L-set. Now we show that C(0, 1) is
not SP1-connected. In fact, let Ω be the set of all preclosed L-sets. Then

Ω = {C(0, 0), C(0, a), C(0, b), C(0, 1), C(a, 0), C(a, a), C(a, b), C(a, 1), C(b, 0),
C(b, a), C(b, b), C(b, 1), C(1, 1)}.

By easy computations is follows that C(0, a) and C(0, b) are strong preclosed
and hence by C(0, 1) 6≤ C(0, a), C(0, 1) 6≤ C(0, b), C(0, 1) ≤ C(0, a) ∨ C(0, b)
and C(0, 1)∧C(0, a)∧C(0, b) = 0, we know that C(0, 1) is not SP1-connected.

Theorem 5.5. Let (X, τ) be an L-topological space and G ∈ LX . If 1 ∈ M(L)
and G is SP1-connected, then G is SP2-connected.

Proof. Suppose that G is not SP2-connected. Then there exist two strongly
preclosed L-sets A, B such that

G ∧ A 6= 0, G ∧B 6= 0, G
′ ∨ A ∨B = 1, G ∧ A ∧B = 0.

By G
′ ∨A∨B = 1 and Lemma 2.10, we can obtain that G ≤ A∨B. This

is a contradiction.
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Theorem 5.6. Let (X, τ) be an L-topological space and G is a crisp subset.
Then G is SP1-connected if and only if it is SP2-connected.

Proof. The proof is easy and omitted.
In general, SP2-connectedness doesn’t imply SP1-connectedness. This can

be seen from the following example.

Example 5.7. Let X = {x1, x2}, L = {0, a, b, c, d, 1}, where a
′

= b, b
′

=
a, c

′
= d, d

′
= c, 1

′
= 0, 0

′
= 1, 0 < d < a < c < 1, 0 < d < b < c < 1, a and b

are incomparable.
∀λ, µ ∈ L we define fuzzy set C(λ, µ) : X → L such that

C(λ, µ)(x) =

{
λ, if x = x1,
µ, if x = x2.

Let (X, τ) be an L-topological space,
where τ = {C(0, 0), C(b, a), C(b, 1), C(1, a), C(1, 1)} and Ω be the set of all
preopen L-sets. In this case, we have that

Ω = {C(0, 0), C(0, a), C(0, c), C(0, 1), C(a, a), C(a, c), C(a, 1), C(b, 0), C(b, a),
C(b, b), C(b, c), C(b, d), C(b, 1), C(c, 0), C(c, a), C(c, b), C(c, c), C(c, d), C(c, 1),
C(d, a), C(d, c), C(d, 1), C(1, 0), C(1, a), C(1, b), C(1, c), C(1, d), C(1, 1)}.

Let Φ be the set of all strongly preclosed L-sets, then

Φ = {C(0, 0), C(0, b), C(0, d), C(a, 0), C(a, b), C(a, d), C(d, 0), C(d, a), C(d, b), C(1, 1)}.

For L-set C(a, b), we have that

C(a, b) 6≤ C(a, 0), C(a, b) 6≤ C(0, b), C(a, b) ≤ C(a, 0) ∨ C(0, b)

and C(a, b) ∧ C(a, 0) ∧ C(0, b) = 0,

hence C(a, b) is not SP1-connected, but there don’t exist strongly preclosed
L-sets A, B ∈ Φ such that

C(a, b) 6≤ A, C(a, b) 6≤ B, (C(a, b))
′ ∨ A ∨B = 1 and C(a, b) ∧ A ∧B = 0.

Hence G is SP2-connected.
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