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Abstract

The main purpose of this paper is to use a variant of Grüss inequality
to obtain some perturbed trapezoid inequality with bounded derivatives
of n-th order.
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1. Introduction

Let f(x) be a convex function on the closed interval [a, b]. The inequality

f

(
a + b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
(1.1)
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is well known in the literature as the Hermite-Hadamard inequality [16].

A function f(x) is said to be r-convex on [a, b] with r ≥ 2 if and only if
f (r)(x) exists and f (r)(x) ≥ 0.

In terms of a trapezoid formula for a real function f(x) defined and inte-
gerable on [a, b], using the first and second Euler-Maclaurin summation for-
mulas, inequality (1.1) was generalized for (2r)-convex function functions on
[a, b] with r ≥ 1 in [2, 6].

In [5], Lj. Dedić et al. established the following trapezoidal Grüss type
inequality for n-time differentiable function:

Let f : [a, b] → R be such that f (n) is a continuous function for some n ≥ 1
and

mn ≤ f (n)(t) ≤ Mn, t ∈ [a, b], mn, Mn ∈ R.

Then, we have

∣∣∣∣∣
∫ b

a
f(t)dt− b−a

2
[f(a)+f(b)]− ST

n (a, b)

∣∣∣∣∣ ≤ 1

2
(b−a)n+1(Mn−mn)

√√√√ |B2n|
(2n)!

. (1.2)

where B2n is the Bernoulli numbers, ST
1 (a, b) = 0 and

ST
n (a, b) = −

[n/2]∑
j=1

(b− a)2j

(2j)!
B2j[f

(2j−1)(b)− f (2j−1)(a)],

for n ≥ 2. The other trapezoidal Grüss type inequality for n-time differ-
entiable function, see [9, 11, 12, 14, 17]. In this paper, using concept of the
harmonic sequence of polynomials, we shall establish some new generalizations
of trapezoidal Grüss type for n-time differentiable function.

2. Definitions and Lemmas

Definition 1. A sequence of polynomials {Pi(t)}∞i=0 is called harmonic if it
satisfies the following condition

P ′
i (t) = Pi−1(t) (2.1)

and P0(t) = 1 for all defined t and i ∈ N .
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It is well-known that Bernoulli’s polynomials Bi(t) can be defined by the
following expansion

xetx

ex − 1
=

∞∑
i=0

Bi(t)

i!
xi, |x| < 2π, t ∈ R,

and are uniquely determined by the following formulae

B′
i(t) = iBi−1(t), B0(t) = 1; (2.2)

Bi(t + 1)−Bi(t) = iti−1. (2.3)

Similarly, Euler’s polynomials can be defined by

2etx

ex + 1
=

∞∑
i=0

Ei(t)

i!
xi, |x| < π, t ∈ R,

and are uniquely determined by the following properties

E ′
i(t) = iEi−1(t), E0(t) = 1; (2.4)

Ei(t + 1) + Ei(t) = 2ti. (2.5)

For further details about Bernoulli’s polynomials and Euler’s polynomials,
please refer to [1, 23.1.5 and 23.1.6] or [18]. Moreover, some new generaliza-
tions of Bernoulli’s numbers and polynomials can be found in [10, 13].

If i is a nonegative integer, t, s, θ ∈ R and s 6= θ, then

Pi,E(t) =
(s− θ)i

i!
Ei

( t− θ

s− θ

)
is a harmonic sequences of polynomials.

As usual, let Bi = Bi(0), i ∈ N , denote Bernoulli’s numbers. From prop-
erties (2.2) and (2.3), (2.4) and (2.5) of Bernoulli’s and Euler’s polynomials
respectively, we can obtain easily that, for i ≥ 1,

Bi+1(0) = Bi+1(1) = Bi+1, B1(0) = −B1(1) = −1

2
, B2(0) = B2 =

1

6
(2.6)

and, for j ∈ N ,

Ej(0) = −Ej(1) = − 2

j + 1
(2j+1 − 1)Bj+1. (2.7)
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It is also a well known fact that B2i+1 = 0 for all i ∈ N .
In 1935, G. Gruss proved the following integral inequality which gives an

approximation for the integral of the product of two functions in terms of the
product of the integrals of the two functions [15, P.296].

Let f , g : [a, b] → R be two integrable functions such that φ ≤ f(x) ≤ Φ
and γ ≤ g(x) ≤ Γ for all x ∈ [a, b], where φ, Φ, γ and Γ are real numbers.
Then we have∣∣∣∣∣ 1

b− a

∫ b

a
f(x)g(x)dx− 1

b− a

∫ b

a
f(x)dx · 1

b− a

∫ b

a
g(x)dx

∣∣∣∣∣ ≤ 1

4
(Φ−φ)(Γ−γ),

and the inequality is sharp, in the sense that the constant 1
4

can not be replaced
by a smaller one.

The above inequality is well known in the literature as Grüss inequality. In
[4], X. L. Cheng and J. Sun proved the following variant of the Grüss inequality.

Lemma 2. Let f , g : [a, b] → R be two integrable functions such that γ ≤
g(x) ≤ Γ for all x ∈ [a, b], where γ, Γ ∈ R are constants. Then∣∣∣∣∣

∫ b

a
f(x)g(x)dx− 1

b− a

∫ b

a
f(x)dx ·

∫ b

a
g(x)dx

∣∣∣∣∣
≤ (Γ− γ)

2

∫ b

a

∣∣∣∣∣f(x)− 1

b− a

∫ b

a
f(t)dt

∣∣∣∣∣ dx. (2.8)

Further, Cerone and Dragomir [3] proved that the constant 1
2

in (2.8) is
sharp.

3. Mail Results

Theorem 3. Let {Pi(t)}∞i=0 be a harmonic sequence of polynomials, let f(t) be
n-time differentiable on the closed interval [a, b] such that mn ≤ f (n)(t) ≤ Mn

for t ∈ [a, b], n ∈ N and mn, Mn ∈ R. Then∣∣∣∣∣(−1)n
∫ b

a
f(t)dt +

n∑
i=1

(−1)n+i[Pi(b)f
(i−1)(b)− Pi(a)f (i−1)(a)]

− 1

b− a
[Pn+1(b)− Pn+1(a)][f (n−1)(b)− f (n−1)(a)]

∣∣∣∣∣
≤ (Mn −mn)

2

∫ b

a

∣∣∣∣Pn(t)− 1

b− a
[Pn+1(b)− Pn+1(a)]

∣∣∣∣ dt. (3.1)
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Proof. By successive integrabtion by parts and mathematical induction, we
have

(−1)n
∫ b

a
Pn(t)f (n)(t)dt−

∫ b

a
f(t)dt =

n∑
i=1

(−1)i[Pi(b)f
(i−1)(b)− Pi(a)f (i−1)(a)].

(3.2)

Using the definition of the harmonic sequence of polynomials yields∫ b

a
Pn(t)dt = Pn+1(b)− Pn+1(a), (3.3)

By Lemma 2, we have∣∣∣∣∣
∫ b

a
Pn(t)f (n)(t)dt− 1

b− a

∫ b

a
Pn(t)dt

∫ b

a
f (n)(t)dt

∣∣∣∣∣
≤ (Mn −mn)

2

∫ b

a

∣∣∣∣∣Pn(t)− 1

b− a

∫ b

a
Pn(x)dx

∣∣∣∣∣ dt. (3.4)

From combining of (3.2), (3.3) and (3.4) we obtain (3.1). This completes the
proof.

Remark 4. If taking P1(t) = t and n = 1 in (3.1), then we obtain∣∣∣∣∣
∫ b

a
f(t)dt− b− a

2
[f(a) + f(b)]

∣∣∣∣∣ ≤ (M1 −m1)

8
(b− a)2. (3.5)

The constant 1
8

in inequality (3.5) is better than the constant 1
4
√

3
in in-

equality (1.2) for n = 1. In fact, the constant 1
8

is sharp (see [7], [8]).

4. Application

Using Theorem 3, we have the following Theorem.

Theorem 5. Let {Ei(t)}∞i=0 be the Euler’s polynomials and {Bi}∞i=0 the Bernoulli’s
numbers. Let f(t) be n-time differentiable on the closed interval [a, b] such that
mn ≤ f (n)(t) ≤ Mn for t ∈ [a, b], n ∈ N and mn, Mn ∈ R. Then
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∣∣∣∣∣(−1)n
∫ b

a
f(t)dt + 2

[n+1
2

]∑
i=1

(−1)n(1− 4i)
(b− a)2(i−1)

(2i)!
[f 2(i−1)(a) + f 2(i−1)(b)]B2i

−4(2n+2 − 1)(b− a)nBn+2

(n + 2)!
[f (n−1)(b)− f (n−1)(a)]

∣∣∣∣∣
≤ (Mn −mn)(b− a)n

2n!

∫ b

a

∣∣∣∣∣En

( t− a

b− a

)
− 4(2n+2 − 1)

(n + 2)(n + 1)
Bn+2

∣∣∣∣∣ dt (3.6)

where [x] denotes the Gauss function, whose value is the largest integer not
more than x.

Proof. Let

Pi(t) = Pi,E(t; b; a) =
(b− a)i

i!
Ei

( t− a

b− a

)
(3.7)

Then, we have

Pn+1(b)− Pn+1(a)

b− a
=

4(2n+2 − 1)(b− a)nBn+2

(n + 2)!
. (3.8)

Using formula (2.7) and straightforward calculating yields

n∑
i=1

(−1)n+i[Pi(b)f
(i−1)(b)− Pi(a)f (i−1)(a)]

=
n∑

i=1

(−1)n+i (b− a)i

i!
[Ei(1)f

(i−1)(b)− Ei(0)f
(i−1)(a)]

=
n∑

i=1

(−1)n+i (b− a)i

i!
Ei(1)[f

(i−1)(a) + f (i−1)(b)]

= 2
n∑

i=1

(−1)n+i (b− a)i

(i + 1)!
[f (i−1)(a) + f (i−1)(b)](2i+1 − 1)Bi+1

= 2

[n+1
2

]∑
i=1

(−1)n(1− 4i)
(b− a)2i−1

(2i)!
[f 2(i−1)(a) + f 2(i−1)(b)]B2i. (3.9)

Substituting (3.7), (3.8) and (3.9) into (3.1) lead to (3.6). The proof is com-
plete.
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Remark 6. If taking E1(t) = t − 1
2

and n = 1 in (3.6), then we recapture
(3.5) again.
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