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Abstract

We introduce the subclass LT (a, c;α, β) of analytic functions with
negative coefficients defined by the linear operator L(a, c)f(z) which
introduced and studied by Carlson and Shaffer [4]. Coefficient inequal-
ities, distortion theorems, closure theorems, radii of close-to-convexity,
starlikeness, and convexity for functions belonging to the class LT (a, c;α, β)
are obtained. Finally, we determine fractional calculus for functions be-
longing to this class.

Keywords and Phrases: Analytic functions, Linear operator, Coefficient
inequalities, Distortion theorems, Hadamard product, Fractional calculus.

1. Introduction and Definitions.

Let A denote the class of functions of the form :

f(z) = z +
∞∑

n=2

anz
n (1.1)
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which are analytic in the open unit disc U = {z : |z| < 1} . For two functions
f(z) and g(z) given by

f(z) = z +
∞∑

n=2

anz
n and g(z) = z +

∞∑
n=2

dnz
n (1.2)

their Hadamard product (or convolution) is defined by

(f ∗ g)(z) := z +
∞∑

n=2

andnz
n. (1.3)

For a complex parameters b1,..., bq and c1,..., cs (cj 6= 0,−1,−2, . . . ; j =
1, . . . , s), we define the generalized hypergeometric function qFs(b1,..., bq ; c1,..., cs; z)
by

qFs(b1,..., bq ; c1,..., cs; z) =
∞∑

n=0

(b1)n . . . (bq)n

(c1)n . . . (cs)n

zn

n!
(1.4)

(q ≤ s + 1; q, s ∈ N0 = N ∪ {0}; z ∈ U)

where (λ)n is the Pochhammer symbol given, in terms of the Gamma function
Γ, by

(λ)n :=
Γ(λ + n)

Γ(λ)
=

{
1, (n = 0),
λ(λ + 1)(λ + 2) . . . (λ + n− 1), (n ∈ N).

. (1.5)

Corresponding to a function h(b1,..., bq ; c1,..., cs; z) defined by

h(b1,..., bq ; c1,..., cs; z) = zqFs(b1,..., bq ; c1,..., cs; z)

Dziok and Srivastava [1] ( see also [2,3,9]) consider a linear operator
H(b1,..., bq ; c1,..., cs) : A → A defined by the convolution

H(b1,..., bq ; c1,..., cs)f(z) = h(b1,..., bq ; c1,..., cs; z) ∗ f(z). (1.6)

We observe that, for a function of the form (1.1), we have

H(b1,..., bq ; c1,..., cs)f(z) = z +
∞∑

n=2

Γnanz
n (1.7)
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where

Γn =
(b1)n−1 . . . (bq)n−1

(c1)n−1 . . . (cs)n−1(n− 1)!
. (1.8)

The linear operator H(b1,..., bq ; c1,..., cs) includes various other linear opera-
tors which were considered in earlier works. In particular for s = 1, and q = 2,
we obtain the linear operator:

F(b1,b2 , c1)f(z) = H(b1,b2 , c1)f(z), (1.9)

which was defined by Hoholv [5]. Putting, moreover, b1 = b, b2 = 1 and
c1 = c, we obtain the Carlson-Shaffer operator:

L(b, c)f(z) := H(b, 1, c)f(z) := z +
∞∑

n=1

(b)n

(c)n

zn+1an+1z
n+1 (z ∈ U), (1.10)

which was introduced by Carlson and Shaffer [4]. Note that L(1, 1)f(z) = f(z),
L(2, 1)f(z) = zf ′(z) and L(3, 1)f(z) = zf ′(z) + 1

2
z2f ′′(z).

Using the above Carlson-Shaffer operator, we introduce the following sub-
classes of analytic and univalent functions defined as follows:

Definition 1. For −1 ≤ α < 1, β ≥ 0 and b ≥ c,we let L(b, c; α, β) consist of
functions f in A satisfying the condition

Re

{
bL(b + 1, c)f(z)

L(a, c)f(z)
− (b− 1)

}
> β

∣∣∣∣∣bL(b + 1, c)f(z)

L(b, c)f(z)
− b

∣∣∣∣∣+ α, (z ∈ U).

(1.11)

The family L(b, c; α, β) is of special interest for it contains many well-known
as well as many new classes of analytic univalent functions. For L(1, 1; α, 0),
we obtain the family S∗(α) of starlike functions of order α(0 ≤ α < 1) and
L(2, 1; α, 0) is the family C(α) of convex functions of order α(0 ≤ α < 1).
For L(1, 1; 0, β) and L(2, 1; 0, β), we obtain the classes β−ST and β−UCV of
uniformly β- starlike functions and uniformly β- convex functions, respectively,
introduced by Kanas and Winsiowska [6, 7]( see also the work of Kanas and
Srivastava [8], Goodman [11, 12], Rønning [16, 17], Ma and Minda [13] and
Gangadharan et al.[10]).
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Let T denotes the subclass of A consisting of functions of the form:

f(z) = z −
∞∑

n=2

anz
n (an ≥ 0) (1.12)

Further, we define the class LT (b, c; α, β) by

LT (b, c; α, β) = L(b, c; α, β) ∩ T . (1.13)

In the present paper, we prove various coefficient inequalities, distortion
theorems, closure theorems, radii of close-to-convexity, starlikeness, and con-
vexity for functions belonging to the class LT (b, c; α, β). We also determine
fractional calculus for functions belonging to this class.

2. Coefficient Inequalities

A necessary and sufficient condition for a function f(z) to be in the class
LT (b, c; α, β) is given by

Theorem 1. Let the function f(z) be defined by (1.12). Then f(z) ∈
LT (b, c; α, β) if and only if

∞∑
n=2

(1 + β)(b)n + [1− α− b(1 + β)](b)n−1

(c)n−1

|an| ≤ 1− α. (2.1)

where −1 ≤ α < 1, β ≥ 0. The result (2.1) is sharp.

Proof. Assume that the inequality (2.1) holds true. It suffices to show that

β

∣∣∣∣∣bL(b + 1, c)f(z)

L(b, c)f(z)
− b

∣∣∣∣∣− Re

{
bL(b + 1, c)f(z)

L(b, c)f(z)
− b

}
≤ 1− α

We have

β

∣∣∣∣∣bL(b + 1, c)f(z)

L(b, c)f(z)
− b

∣∣∣∣∣− Re

{
bL(b + 1, c)f(z)

L(b, c)f(z)
− b

}

≤ (1 + β)

∣∣∣∣∣bL(b + 1, c)f(z)

L(b, c)f(z)
− b

∣∣∣∣∣
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≤
(1 + β)

∞∑
n=2

(
b(b+1)n−b(b)n−1

(c)n−1

)
|an| |z|n−1

1−
∞∑

n=2

(b)n−1

(c)n−1
|an| |z|n−1

≤
(1 + β)

∞∑
n=2

(
(a)n−b(b)n−1

(c)n−1

)
|an|

1−
∞∑

n=2

(b)n−1

(c)n−1
|an|

.

The last expression is bounded above by 1− α if

∞∑
n=2

(1 + β)(b)n + [1− α− b(1 + β)](b)n−1

(c)n−1

|an| ≤ 1− α.

Thus we have the inequality (2.1).
Conversely, assume that the function f(z) is in the class LT (b, c; α, β) and

z is real then we have

b−
∞∑

n=2

(
b(b+1)n

(c)n−1

)
anz

n−1

1−
∞∑

n=2

(b)n−1

(b)n−1
anzn−1

− (b− 1)− α ≥

∞∑
n=2

β b(b+1)n−b(b)n−1

(c)n−1
anz

n−1

1−
∞∑

n=2

(b)n−1

(b)n−1
anzn−1

.

Letting z → 1− along the real axis, we obtain the inequality (2.1).
Finally, the function f(z) given by

f(z) = z − (1− α)(c)n−1

(1 + β)(b)n + [1− α− b(1 + β)](b)n−1

zn (n ≥ 2) (2.2)

is an extremal function for the assertion of Theorem 1.

Remark 1. Taking different choices of b, c, α and β as stated in Section 1,
Theorem 1 leads to necessary and sufficient

condition for a function f to be in the classes S∗(α) , C(α), β−ST and
β−UCV .

Corollary 1. Let the function f(z) be defined by (1.8) be in the class LT (b, c; α, β).
Then

an ≤
(1− α)(c)n−1

(1 + β)(b)n + [1− α− b(1 + β)](b)n−1

(n ≥ 2) (2.3)
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The equality in (2.3) is attained for the function f(z) given by (2.2).

For the notational convenience we shall henceforth denote

σn(b, c; α, β) :=
(1 + β)(b)n + [1− α− b(1 + β)](b)n−1

(c)n−1

(2.4)

3. Growth and Distortion Theorems

Theorem 2. Let the function f(z) be defined by (1.12) be in the class
LT (b, c; α, β). If {σn(b, c; α, β)}∞n=2 is a non-decreasing sequence, then, for
|z| = r < 1

r − 1− α

σ2(b, c; α, β)
r2 ≤ |f(z)| ≤ r +

1− α

σ2(b, c; α, β)
r2 (3.1)

and if {σn(b, c; α, β)/n}∞n=2is a non-decreasing sequence, then, for |z| = r < 1

1− 2(1− α)

σ2(b, c; α, β)
r ≤ |f ′(z)| ≤ 1 +

2(1− α)

σ2(b, c; α, β)
r. (3.2)

The results (3.1) and (3.2) are sharp for the function f(z) given

f(z) = z − 1− α

σ2(b, c; α, β)
z2 (z = ±r) (3.3)

Proof. In view of Theorem 1, we note that

σ2(b, c; α, β)
∞∑

n=2

an ≤
∞∑

n=2

σn(b, c; α, β)an ≤ 1− α, (3.4)

Thus, we have

|f(z)| ≥ |z| −
∞∑

n=2

an |z|n ≥ r − r2
∞∑

n=2

an ≥ r − 1− α

σ2(b, c; α, β)
r2 (3.5)

Similarly,
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|f(z)| ≤ |z|+
∞∑

n=2

an |z|n ≤ r + r2
∞∑

n=2

an ≤ r +
1− α

σ2(b, c; α, β)
r2. (3.6)

Also from Theorem 1, we have

σ2(b, c; α, β)

2

∞∑
n=2

nan ≤
∞∑

n=2

σn(b, c; α, β)an ≤ 1− α. (3.7)

Thus,

|f ′(z)| ≥ 1−
∞∑

n=2

nan |z|n−1 ≥ 1− r
∞∑

n=2

nan ≥ 1− 2(1− α)

σ2(b, c; α, β)
r. (3.8)

On the other hand,

|f ′(z)| ≤ 1 +
∞∑

n=2

nan |z|n−1 ≤ 1 + r
∞∑

n=2

nan ≤ 1 +
2(1− α)

σ2(b, c; α, β)
r. (3.9)

This completes the proof.

Corollary 2. The disk |z| < 1 is mapped onto a domain that contains the

disk |w| < σ2(b,c;α,β)−(1−α)
σ2(b,c;α,β)

by any f(z) ∈ LT (b, c; α, β). The theorem is sharp

with extermal function f(z) given by (3.3).

Proof. The proof follow upon letting r → 1 in (3.1).

4. Closure Theorems

In this section, we shall prove that the class LT (b, c; α, β) is closed under
convex linear combinations.

Theorem 3. Let the function fi(z), i = 1, 2, . . . ,m, defined by

fi(z) = z −
∞∑

n=2

an,iz
n (an,i ≥ 0) (4.1)

for z ∈ U , be in the class LT (b, c; α, β). Then the function h(z) defined by
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h(z) = z −
∞∑

n=2

(
1

m

m∑
i=1

an,i

)
zn (4.2)

also belongs to the class LT (b, c; α, β).

Proof. Let fi(z) ∈ LT (b, c; α, β),it follows from Theorem 1, that

∞∑
n=2

σn(b, c; α, β)an,i ≤ 1− α ( i = 1, 2, . . . ,m). (4.3)

Therefore,

∞∑
n=2

σn(b, c; α, β)

(
1

m

m∑
i=1

an,i

)
(4.4)

=
1

m

m∑
i=1

( ∞∑
n=2

σn(b, c; α, β)an,j

)
≤ 1− α. (4.5)

Hence by Theorem 1, h(z) ∈ LT (b, c; α, β).

With the aid of Theorem 1, we can prove the following

Theorem 4. Let the functions fi(z) be defined by (4.1) be in the class
LT (b, c; α, β) for every i = 1, 2, . . . ,m. Then the functions

h(z) =
m∑

i=1

cifi(z) (ci ≥ 0) (4.6)

is also in the same class LT (b, c; α, β) where
m∑

i=1
ci = 1.

As a consequence of Theorem 4, the extreme points of the class LT (b, c; α, β)
are giving by

Theorem 5. Let f1(z) = z and

fk(z) = z − 1− α

σn(b, c; α, β)
zk (n ≥ 2) (4.7)

for 0 ≤ α < 1. Then f(z) is in the class LT (b, c; α, β) if and only if it can be

expressed in the form f(z) =
∞∑

n=1
tnz

n where tn ≥ 0 (n ≥ 1) and
∞∑

n=1
tn = 1.
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5. Radii of Close-to-Convexity, Starlikeness,

and Convexity

Theorem 6. Let the function f(z) be defined by (1.12) be in the class
LT (b, c; α, β). Then f(z) is close-to-convex of order σ(0 ≤ σ < 1) in |z| < r1,
where

r1 = inf
n

[
σn(b, c; α, β)(1− σ)

1− α

]1/(n−1)

(n ≥ 2). (5.1)

The result is sharp, the extermal function f(z) being given by (2.2).

Proof. We must show that |f ′(z)− 1| ≤ 1 − σ for |z| < r1,where r1 is given
by (5.1). From (1.8) we find that

|f ′(z)− 1| ≤
∞∑

n=2
nan |z|n−1 . Thus |f ′(z)− 1| ≤ 1− σ if

∞∑
n=2

(
n

1− σ

)
an |z|n−1 ≤ 1. (5.2)

But, by Theorem 1, (5.2) will be true if(
n

1− σ

)
|z|n−1 ≤ σn(b, c; α, β)

1− α
,

that is, if

|z| ≤
[
σn(b, c; α, β)(1− σ)

1− α

]1/(n−1)

(n ≥ 2). (5.3)

Theorem 6 follows easily from (5.3).

Theorem 7. Let the function f(z) be defined by (1.12) be in the class LT (b, c; α, β).
Then f(z) is starlike of order σ(0 ≤ σ < 1) in |z| < r2, where

r2 = inf
n

[
σn(b, c; α, β)(1− σ)

(n− σ)(1− α)

]1/(n−1)

(n ≥ 2). (5.4)

The result is sharp, the extermal function f(z) being given by (2.2).

Proof. It is sufficient to show that
∣∣∣ zf ′(z)

f(z)
− 1

∣∣∣ ≤ 1− σ for |z| < r2,where r2 is

given by (5.4). From (1.10) we have
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∣∣∣ zf ′(z)
f(z)

− 1
∣∣∣ ≤

∞∑
n=2

(n−1)an|z|n−1

1−
∞∑

n=2

an|z|n−1
. Thus

∣∣∣ zf ′(z)
f(z)

− 1
∣∣∣ ≤ 1− σ if

∞∑
n=2

(
n− σ

1− σ

)
an |z|n−1 ≤ 1. (5.5)

But, by Theorem 1, (5.5) will be true if

(
n− σ

1− σ

)
|z|n−1 ≤ σn(b, c; α, β)

1− α
,

that is, if

|z| ≤
[
σn(b, c; α, β)(1− σ)

(n− σ)(1− α)

]1/(n−1)

(n ≥ 2). (5.6)

Theorem 7 follows easily from (5.6).

Corollary 3. Let the function f(z) be defined by (1.12) be in the class
LT (b, c; α, β). Then f(z) is convex of order σ(0 ≤ σ < 1) in |z| < r3, where

r3 = inf
n

[
σn(b, c; α, β)(1− σ)

n(n− σ)(1− α)

]1/(n−1)

(n ≥ 2). (5.7)

The result is sharp, the extermal function f(z) being given by (2.5).

6. Fractional Calculus

In this section, we find it to be convenient to recall here the following of
fractional calculus which were introduced by Owa ( [14], [15]).

Definition 2. The fractional integral of order δ is defined, for a function
f(z), by

D−δ
z f(z) =

1

Γ(δ)

∫ z

0

f(ζ)

(z − ζ)1−δ
dζ (δ > 0), (6.1)

where the function f(z) is analytic in a simply-connected region of the z-plane
containing the origin and the multiplicity of the function (z− ζ)δ−1is removed
by requiring the function log(z − ζ) to be real when z − ζ > 0.
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Definition 3. The fractional derivative of order δ is defined, for a function
f(z), by

D
δ

zf(z) =
1

Γ(1− δ)

d

dz

∫ z

0

f(ζ)

(z − ζ)1−δ
dζ (0 ≤ δ < 1), (6.2)

where the function f(z) is constrained, and the multiplicity of the function
(z − ζ)−δ is removed as in Definition 2.

Definition 4. Under the hypotheses of Definition 2, the fractional derivative
of order m + δ is defined by

Dm+δ
z f(z) =

dm

dzm
D

δ

zf(z) (0 ≤ δ < 1; m ∈ N0). (6.3)

Remark 2. From Definition 2, we have D0
zf(z) = f(z), which in view of

Definition 4 yields
Dm+0

z f(z) = dm

dzm D0
zf(z) = f (m)(z).

Thus,
lim
δ→0

D−δ
z f(z) = f(z) and lim

δ→0
D1−δ

z f(z) = f ′(z) .

Theorem 8. Let the function f(z) be defined by (1.12) be in the class
LT (b, c; α, β). If {σn(b, c; α, β)}∞n=2 is a non-decreasing sequence, then

∣∣∣D−δ
z f(z)

∣∣∣ ≥ |z|1+δ

Γ(2 + δ)

{
1− 1− α

(2 + δ)σ2(b, c; α, β)
|z|
}

(6.4)

and

∣∣∣D−δ
z f(z)

∣∣∣ ≤ |z|1+δ

Γ(2 + δ)

{
1 +

1− α

(2 + δ)σ2(b, c; α, β)
|z|
}

(6.5)

for δ > 0, and z ∈ U . The result is sharp.

Proof. Let

F (z) = Γ(2 + δ)z−δD−δ
z f(z) (6.6)

= z −
∞∑

n=2

Γ(n + 1)Γ(2 + δ)

Γ(n + 1 + δ)
anz

n = z −
∞∑

n=2

∆(n)anz
n,
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where

∆(n) =
Γ(n + 1)Γ(2 + δ)

Γ(n + 1 + δ)
(n ≥ 2). (6.7)

It is easy to see that

0 < ∆(n) ≤ ∆(2) =
2

2 + δ
. (6.8)

Therefore, by using (3.4) and (6.8), we can see that

|F (z)| ≥ |z| −∆(2) |z|2
∞∑

n=2

an ≥ |z| − 1− α

(2 + δ)σ2(b, c; α, β)
|z|2 (6.9)

|F (z)| ≤ |z|+ ∆(2) |z|2
∞∑

n=2

an ≤ |z|+ 1− α

(2 + δ)σ2(b, c; α, β)
|z|2 (6.10)

which prove the inequality of Theorem 8. Further, equalities (6.4) and ( 6.5)
are attained for the function f(z) defined by

D−δ
z f(z) =

z1+δ

Γ(2 + δ)

{
1 +

1− α

(2 + δ)σ2(b, c; α, β)
z

}
(6.11)

Theorem 9. Let the function f(z) be defined by (1.12) be in the class
LT (b, c; α, β). If {σn(b, c; α, β)/n}∞n=2 is a non-decreasing sequence, then

∣∣∣Dδ

zf(z)
∣∣∣ ≥ |z|1−δ

Γ(2− δ)

{
1− 2(1− α)

(2− δ)σ2(b, c; α, β)
|z|
}

(6.12)

and

∣∣∣Dδ

zf(z)
∣∣∣ ≤ |z|1−δ

Γ(2− δ)

{
1 +

2(1− α)

(2− δ)σ2(b, c; α, β)
|z|
}

(6.13)

for 0 ≤ δ < 1, and z ∈ U . The result is sharp.

Proof. Let

H(z) = Γ(2− δ)z
δ

D
δ

zf(z) (6.14)

= z −
∞∑

n=2

Γ(n + 1)Γ(2− δ)

Γ(n + 1− δ)
anz

n = z −
∞∑

n=2

nΩ(n)anz
n,
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where

Ω(n) =
Γ(n)Γ(2− δ)

Γ(n + 1− δ)
(n ≥ 2). (6.15)

Since

0 < Ω(n) ≤ Ω(2) =
1

2− δ
. (6.16)

Therefore, by using (3.7) and (6.16), we can see that

|H(z)| ≥ |z| − Ω(2) |z|2
∞∑

k=2

nan ≥ |z| − 2(1− α)

(2− δ)σ2(b, c; α, β)
|z|2 (6.17)

|H(z)| ≤ |z|+ Ω(2) |z|2
∞∑

n=2

nan ≤ |z|+ 2(1− α)

(2− δ)σ2(b, c; α, β)
|z|2 (6.18)

which give the inequalities of Theorem 10. Further, since the equalities (6.12)
and (6.13) are attained for the function f(z) defined by

D
δ

zf(z) =
z1−δ

Γ(2− δ)

{
1 +

2(1− α)

(2− δ)σ2(b, c; α, β)
z

}
(6.19)

we see that the result is sharp.

Remark 3. Letting δ = 0 in Theorem 8, we have (3.1) of Theorem 3, and
letting δ −→ 1 in Theorem 9, we have (3.2) in Theorem 3.
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