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Abstract

We introduce the subclass L7 (a,c; «, 3) of analytic functions with
negative coefficients defined by the linear operator L(a,c)f(z) which
introduced and studied by Carlson and Shaffer [4]. Coefficient inequal-
ities, distortion theorems, closure theorems, radii of close-to-convexity,
starlikeness, and convexity for functions belonging to the class L7 (a, ¢; «, 3)
are obtained. Finally, we determine fractional calculus for functions be-
longing to this class.

Keywords and Phrases: Analytic functions, Linear operator, Coefficient
inequalities, Distortion theorems, Hadamard product, Fractional calculus.

1. Introduction and Definitions.

Let A denote the class of functions of the form :

f(z) =2+ ianz" (1.1)

#2002 Mathematics Subject Classification. 30C45.
"E-mail: bafrasin@yahoo.com.



220 B. A. Frasin

which are analytic in the open unit disc U ={z : |z| < 1}. For two functions
f(2) and g(z) given by

f(z) =2+ i a,z" and g(z) = z + i d,z" (1.2)
n=2

n=2

their Hadamard product (or convolution) is defined by

(fx9)(2) =2+ and,2", (1.3)
n=2
For a complex parameters by b, and ¢1_,cs (¢;j # 0,—1,-2,...;j =
1,...,s), we define the generalized hypergeometric function Fis (b1, ., b, ;¢1...., ¢s; 2)
by
e (bl)n Ce (bq)n 2"
Fo(b1, ,bg ;c1,. 5¢52) =) 1.4
oFobrsby ser i) nzz‘; (c1)n ... (cs)nn! (1.4)

(g<s+1; qg,s € Ng=NU{0}; z€U)

where (), is the Pochhammer symbol given, in terms of the Gamma function
L', by

" () AA+1DA+2)...(A+n—-1), (neN). ~ '
Corresponding to a function h(by, ., b, ;c1,., cs; 2) defined by
h<bl,‘..7 bq ; Cl,...a Cs; Z) = Zqu(bl,..,a bq ; Cl,...: Cs; Z)
Dziok and Srivastava [1] ( see also [2,3,9]) consider a linear operator
H(bi,.,by ;c1..,¢5) : A— Adefined by the convolution
H(bl,...7 bq ;Cl,...v Cs)f(z> = h(bl,...7 bq ; Cl,...a Cs; Z) * f(Z) (16)
We observe that, for a function of the form (1.1), we have
H(bi,. by 1. ,c5)f(2) =2+ Z I,a,z" (1.7)

n=2
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where

r o= (01)n—1-- - (bg)n—1 ‘
(¢1)n-1---(Cs)p—1(n —1)!
The linear operator H(by,.,b, ;ci,., ¢s) includes various other linear opera-
tors which were considered in earlier works. In particular for s = 1, and ¢ = 2,
we obtain the linear operator:

(1.8)

F(brba ,e1)f(2) = H(biba ,e1)f(2), (1.9)

which was defined by Hoholv [5]. Putting, moreover, by = b, by = 1 and
¢1 = ¢, we obtain the Carlson-Shaffer operator:

o0

L, e)f(z) :=H(b,1,¢)f(z):= Z bn Z"Ma, 12" (zel), (1.10)

C

which was introduced by Carlson and Shaffer [4]. Note that £(1,1) f(z) = f(2),
L(2,1)f(z) = 2f'(2) and L(3,1)f(2) = 2f'(z) + 32° ().

Using the above Carlson-Shaffer operator, we introduce the following sub-

classes of analytic and univalent functions defined as follows:

Definition 1. For —1 < a <1, 8> 0 and b > c,we let L(b,c;a, ) consist of
functions f in A satisfying the condition

—bl+a, (z€lU).
(1.11)

LB+ Of() bLO+1,0)f(2)
R s 00} 8 s

The family L(b, ¢; «v, 3) is of special interest for it contains many well-known
as well as many new classes of analytic univalent functions. For £(1,1;«,0),
we obtain the family S*(«) of starlike functions of order a(0 < v < 1) and
L£(2,1;a,0) is the family C(a) of convex functions of order (0 < a < 1).
For £(1,1;0,3) and £(2,1;0, 3), we obtain the classes f—S7 and 3—UCV of
uniformly (- starlike functions and uniformly (- convex functions, respectively,
introduced by Kanas and Winsiowska [6, 7]( see also the work of Kanas and
Srivastava [8], Goodman [11, 12], Rgnning [16, 17], Ma and Minda [13] and
Gangadharan et al.[10]).
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Let 7 denotes the subclass of A consisting of functions of the form:

f(z)=2-=> a,2" (a, >0) (1.12)
n=2
Further, we define the class L7(b, ¢; o, 3) by

Lr(b,c;a,B) = L(b,c;a, B)NT. (1.13)

In the present paper, we prove various coefficient inequalities, distortion
theorems, closure theorems, radii of close-to-convexity, starlikeness, and con-
vexity for functions belonging to the class L7(b, ¢;a, 3). We also determine
fractional calculus for functions belonging to this class.

2. Coefficient Inequalities

A necessary and sufficient condition for a function f(z) to be in the class
L7(b,c;a, 3) is given by

Theorem 1. Let the function f(z) be defined by (1.12). Then f(z) €
L7(b,c;a, () if and only if

i (14 8)(b)n +[1 — o = b(1 + B)](b)

n=2 (c>n— 1

where —1 < a <1, 8>0. The result (2.1) is sharp.

"Lan) <1 - o (2.1)

Proof. Assume that the inequality (2.1) holds true. It suffices to show that

bLOb+1,0)f(2) | . bL(b+1,0)f(2) o
it et v <!
We have
bLb+1,0)f(2) | . bL(b+1,0)f(2)
ﬁ' coofz { L(b,c)f(2) b}
< (1+ﬁ)’b£(b+1,c)f(z) —b‘

L, ) f(2)
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(1+5) 3 (P s=tlht) |q, [ |2

n=2 1

IN

(1+8) % (5= ja,|

= (©)n-1

-  (B)n—
L= nZ::Q Ecin,i |6Ln|

The last expression is bounded above by 1 — « if

i (L4 B)(b)n + [1 — o = b(1 + B)](b)

n=2 (C)n—l

"L, <1 — o

Thus we have the inequality (2.1).
Conversely, assume that the function f(z) is in the class L7(b, ¢; , 3) and
z is real then we have

o0

b(b+1)n n—1 X b+ 1) —b(b)n— n—1
b— % (6.0 anz PR v e
_oo b —<b—1)—042 = S
- £ B - E B

Letting z — 1~ along the real axis, we obtain the inequality (2.1).
Finally, the function f(z) given by

=z — (1 — a)(c)n—l n i
&= (1+83)(b)y +[1 —a —b(1+ B)](b)n1 (n>2) (22)

is an extremal function for the assertion of Theorem 1.

Remark 1. Taking different choices of b, ¢, a and (8 as stated in Section 1,
Theorem 1 leads to necessary and sufficient

condition for a function f to be in the classes S*(«a) , C(a), —ST and
B-UCY .

Corollary 1. Let the function f(z) be defined by (1.8) be in the class L1(b, c; o, [3).
Then

e (1 = a)()n s
ST D@+ —a— b1+ DB

(m>2)  (23)
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The equality in (2.3) is attained for the function f(z) given by (2.2).

For the notational convenience we shall henceforth denote

(1+8)(b)n +[1 — o = b(1 + B)](b)n1

on(b,c;a, B) ==
(b, c; v, B) o

3. Growth and Distortion Theorems

Theorem 2. Let the function f(z) be defined by (1.12) be in the class
Lr(b,c;a, B). If {o,(b,c;a, B)}2, is a non-decreasing sequence, then, for
|z| =r <1

1—-a 9 I -« 9
-7 < < _— 3.1
e e A e (81)
and if {on(b,c;a, B)/n},",is a non-decreasing sequence, then, for |z| =r <1
2(1 — «) , 2(1 — «)
1————— < <l+——rr 3.2
nbeag =T G 32
The results (3.1) and (3.2) are sharp for the function f(z) given
-« 9
— 5 - =4 .
f(z) ==z -y c;oz,ﬁ)z (2 T) (3.3)
Proof. In view of Theorem 1, we note that
oa(b,c;, B) Y an <D ou(bc;a,Ba, <1—a, (3.4)
n=2 n=2
Thus, we have
ORI zau " >r—r2zan2r—i1‘“ 2 (@35)
2(b7 G Q, 6)

Similarly,
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2| < |z| + anlz|" <r+r>Na, <r+ —7—7— 2 3.6
FI <1+ 3 onl 5 et (30)
Also from Theorem 1, we have
bca,ﬁ Znan<20nbca,ﬁ <l-a. (3.7)
Thus,
> _ > 2(1 — )
") >1— na, 2" P >1-r>N na, >1— —— L 3.8
P2 1= Y 7 2 1= Y, > 1= S @)
On the other hand,
> _ > 2(1 —a)
<1+ na, 2" <147 na, <14+ —— . 3.9
1f'(2)] nz:; ] 7;2 o(b e B) (3.9)

This completes the proof.

Corollary 2. The disk |z| < 1 is mapped onto a domain that contains the

disk |w| < % by any f(z) € Lr(b,c;a, B). The theorem is sharp

with extermal function f(z) given by (3.3).

Proof. The proof follow upon letting » — 1 in (3.1).

4. Closure Theorems

In this section, we shall prove that the class L7 (b, c;«, ) is closed under
convex linear combinations.

Theorem 3. Let the function f;i(z),i=1,2,...,m, defined by

2)=z— i A i 2" (an; > 0) (4.1)

for z € U, be in the class Lz (b,c;a, 3). Then the function h(z) defined by
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o)== (;éan> o (4.2)

n=2
also belongs to the class L1 (b, c; o, B3).

Proof. Let fi(z) € L7(b,c; «, 8),it follows from Theorem 1, that

o0

Z on(b,c;a, B)an; <1—a (i=1,2,...,m). (4.3)

n=2

Therefore,

ign(bu C;O&,ﬁ) (;f:lan,z> (44)
= l 3 (i gn(ba C;O‘aﬁ)an,]) <l-oa. (45)

m;3 \n=2

Hence by Theorem 1, h(z) € L7 (b, c; o, ).
With the aid of Theorem 1, we can prove the following

Theorem 4. Let the functions fi(z) be defined by (4.1) be in the class
Lr(b,c;a,B) for every i =1,2,...,m. Then the functions

m

Wz) =3 cifi(z) (e 20) (4.6)

i=1

is also in the same class L1(b,c;a, 3) where 72”: c;i = 1.
i=1

As a consequence of Theorem 4, the extreme points of the class L7 (b, ¢; a, 3)
are giving by

Theorem 5. Let fi(z) =z and

1 —
T ok
on(b, c; . B)

for 0 < a < 1. Then f(z) is in the class L1 (b, c;a, ) if and only if it can be
expressed in the form f(z) = % t,2" where t, >0 (n > 1) and § t, = 1.
n=1 n=1

fr(z)=2z— (n>2) (4.7)
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5. Radii of Close-to-Convexity, Starlikeness,
and Convexity

Theorem 6. Let the function f(z) be defined by (1.12) be in the class
Lr(b,c;a, B). Then f(z) is close-to-convex of order (0 < o < 1) in |z| < ry,
where

| 1/
ou(b ¢, B)(1 - UW (n>2). (5.1)

ry = irnlf l &
The result is sharp, the extermal function f(z) being given by (2.2).
Proof. We must show that |f'(z) — 1] < 1 — o for |z| < ri,where r; is given
by (5.1). From (1.8) we find that
1f(2) = 1| < X nay |2["". Thus |f'(z) = 1| <1 -0 if
n=2

o0

2 (117) an 2" < 1. (5.2)

n=2

But, by Theorem 1, (5.2) will be true if

Y

( n )lz‘mgow(f%csowﬂ)

l1—0 11—«

that is, if

(n >2). (5.3)

_ [oulb.ci0,5)(1 = )]
2] < )

Theorem 6 follows easily from (5.3).

Theorem 7. Let the function f(z) be defined by (1.12) be in the class L (b, c; o, 3).
Then f(z) is starlike of order (0 < o < 1) in |z| < ry, where

(n>2). (5.4)

ry = inf lan(ba cao,B)(1— 0)] 1/(n—1)
S (n—0o)(1—a)

The result is sharp, the extermal function f(z) being given by (2.2).

Proof. It is sufficient to show that
given by (5.4). From (1.10) we have

S 1 <1 -0 for [2] < rawhere 7y is
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S (e Dan]z|" !

22 _ 1‘ <n=_ Ths |HR 1‘ <1-oif
f(z) — S n—1 : f(Z) -
1— an |z
P
> /n—o n—1
— " a, < 1. 5.5
n;(l_g)a 2t < (5.5)

But, by Theorem 1, (5.5) will be true if

Y

(n - o) prt < Il f)

l1—0 1l -«

that is, if

ou(b,c;a, B)(1 — o) ]V
2| < [ (n—o0)(1—a) ]

Theorem 7 follows easily from (5.6).

(n > 2). (5.6)

Corollary 3. Let the function f(z) be defined by (1.12) be in the class
Lr(b,c;a, ). Then f(2) is convex of order o(0 < o < 1) in |z| < rs, where

ry = inf [Un(bu ca,B)(1— 0)1 1/(n—1)
L n(n—o)(l—a)

The result is sharp, the extermal function f(z) being given by (2.5).

(n > 2). (5.7)

6. Fractional Calculus

In this section, we find it to be convenient to recall here the following of
fractional calculus which were introduced by Owa ( [14], [15]).

Definition 2. The fractional integral of order 0 is defined, for a function

f(z), by
. 1= f(Q)
Df() = s | ic (0>0 6.1
where the function f(z) is analytic in a simply-connected region of the z-plane

containing the origin and the multiplicity of the function (z — ()’ lis removed

by requiring the function log(z — () to be real when z — ¢ > 0.
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Definition 3. The fractional derivative of order ¢ is defined, for a function

f(2), by

1 d = f(Q)
Dlf(z) = - i (0<s<1 6.2

Zf<z> F(l _ 5) dZ 0 (Z _ C—)l_d C ( — < )7 ( )
where the function f(z) is constrained, and the multiplicity of the function
(z — €)% is removed as in Definition 2.

Definition 4. Under the hypotheses of Definition 2, the fractional derivative
of order m + 0 is defined by
™ s

DT f(z) = dz—mDZf(z) (0< 6§ <1;me Ny). (6.3)

Remark 2. From Definition 2, we have D°f(z) = f(z), which in view of
Definition 4 yields

Dr*0f(z) = ZmD2f(2) = f(2).

Thus,
ling D-2f(2) = f(2) and limy DI/ (2) = (2)

Theorem 8. Let the function f(z) be defined by (1.12) be in the class
Lr(b,c;a, B). If {on(b,c;a, )}, is a non-decreasing sequence, then

D f(2)| > i — 2| (6.4)
= P =TT 21 0)oa(b, . B) '
and
1446
-5 < 2] l -«
D276 < 737 {1 e hnbcan (6:5)

for 0 >0, and z € U. The result is sharp.
Proof. Let

F(z) = T(2+6)27°D°f(2) (6.6)

B * T(n+1)T(2+9)
= 2-) T(n+1+90)

n=2

oo
a2 =z—> A(n)a,z",
n=2
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where

T(n+ 1)T(2+ )
I(n+149)

A(n) = (n>2). (6.7)

It is easy to see that

O<MM§A@:2i& (6.8)

Therefore, by using (3.4) and (6.8), we can see that

2 l -« 2
FOIZ = AR S 2 - oy 69
FEI <o+ AQ LS an < e+ % 2 (6.10)

(24 6)a2(b, ¢, B)

n=2

which prove the inequality of Theorem 8. Further, equalities (6.4) and ( 6.5)
are attained for the function f(z) defined by

Do) = {1 TR } (6.11)
= T TPy (2+6)oa(b, ¢ @, ) '

Theorem 9. Let the function f(z) be defined by (1.12) be in the class
Lr(b,c;a, B). If {o,(b,c;a, 3)/n}. ", is a non-decreasing sequence, then

Dlf(2)| > T 20-a) E (6.12)
=Ty (2= 6)o2(b,c;a, B) '
and
DLf()] < 7 fy, 20—a) 2] (6.13)
JVEN=T10 7)) (2= 6)oa(b, i, B) '
for 0 <6 <1, and z € U. The result is sharp.
Proof. Let
H(z) = T(2-0)2 D.f(2) (6.14)
— L i F(TL + 1)F(2 - 5)anzn — i nQ(n)anz",

n=2 F(n +1- 5) n=2
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where
Q(n) = ?((’:l)i(f :g)) (n>2). (6.15)

Since
0 < Qn) < Q2) = 2:5 (6.16)

Therefore, by using (3.7) and (6.16), we can see that

2 2(1 —a) 2

|H(2)] = |2] — Q(2) |2| ;nan > |z] — 2= 0)oa(b.c;0. 5) || (6.17)
2 > 2(1—06) 2

HE) < 4]+ @) 1 o < Bl + g Ol (619

which give the inequalities of Theorem 10. Further, since the equalities (6.12)
and (6.13) are attained for the function f(z) defined by

1-6

8 . z 2(1 — a)
D7) = 5 —5 {1 RN a,ﬁ)z} (6.19)

we see that the result is sharp.

Remark 3. Letting 06 = 0 in Theorem 8, we have (3.1) of Theorem 3, and
letting 6 — 1 in Theorem 9, we have (3.2) in Theorem 3.
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