Subclasses of Analytic Functions Defined by Carlson - Shaffer Linear Operator*

B. A. $\operatorname{Frasin}^{\dagger}$
Department of Mathematics, Al al-Bayt University, P.O. Box: 130095
Mafraq, Jordan, Middle East.

Received September 20, 2005, Accepted December 26, 2005.

Abstract

We introduce the subclass $\mathcal{L}_{\mathcal{T}}(a, c ; \alpha, \beta)$ of analytic functions with negative coefficients defined by the linear operator $\mathcal{L}(a, c) f(z)$ which introduced and studied by Carlson and Shaffer [4]. Coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, and convexity for functions belonging to the class $\mathcal{L}_{\mathcal{T}}(a, c ; \alpha, \beta)$ are obtained. Finally, we determine fractional calculus for functions belonging to this class.

Keywords and Phrases: Analytic functions, Linear operator, Coefficient inequalities, Distortion theorems, Hadamard product, Fractional calculus.

1. Introduction and Definitions.

Let \mathcal{A} denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

[^0]which are analytic in the open unit disc $\mathcal{U}=\{z:|z|<1\}$. For two functions $f(z)$ and $g(z)$ given by
\[

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { and } g(z)=z+\sum_{n=2}^{\infty} d_{n} z^{n} \tag{1.2}
\end{equation*}
$$

\]

their Hadamard product (or convolution) is defined by

$$
\begin{equation*}
(f * g)(z):=z+\sum_{n=2}^{\infty} a_{n} d_{n} z^{n} \tag{1.3}
\end{equation*}
$$

For a complex parameters $b_{1, \ldots}, b_{q}$ and $c_{1, \ldots}, c_{s}\left(c_{j} \neq 0,-1,-2, \ldots ; j=\right.$ $1, \ldots, s)$, we define the generalized hypergeometric function ${ }_{q} F_{s}\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s} ; z\right)$ by

$$
\begin{gather*}
{ }_{q} F_{s}\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n}}{\left(c_{1}\right)_{n} \ldots\left(c_{s}\right)_{n}} \frac{z^{n}}{n!} \tag{1.4}\\
\left(q \leq s+1 ; q, s \in N_{0}=N \cup\{0\} ; z \in \mathcal{U}\right)
\end{gather*}
$$

where $(\lambda)_{n}$ is the Pochhammer symbol given, in terms of the Gamma function Γ, by

$$
(\lambda)_{n}:=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}= \begin{cases}1, & (n=0) \tag{1.5}\\ \lambda(\lambda+1)(\lambda+2) \ldots(\lambda+n-1), & (n \in N)\end{cases}
$$

Corresponding to a function $h\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s} ; z\right)$ defined by

$$
h\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s} ; z\right)=z_{q} F_{s}\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s} ; z\right)
$$

Dziok and Srivastava [1] (see also [2,3,9]) consider a linear operator $\mathcal{H}\left(b_{1, \ldots}, b_{q} ; c_{1}, \ldots, c_{s}\right): \mathcal{A} \rightarrow \mathcal{A}$ defined by the convolution

$$
\begin{equation*}
\mathcal{H}\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s}\right) f(z)=h\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s} ; z\right) * f(z) \tag{1.6}
\end{equation*}
$$

We observe that, for a function of the form (1.1), we have

$$
\begin{equation*}
\mathcal{H}\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s}\right) f(z)=z+\sum_{n=2}^{\infty} \Gamma_{n} a_{n} z^{n} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{n}=\frac{\left(b_{1}\right)_{n-1} \ldots\left(b_{q}\right)_{n-1}}{\left(c_{1}\right)_{n-1} \ldots\left(c_{s}\right)_{n-1}(n-1)!} . \tag{1.8}
\end{equation*}
$$

The linear operator $\mathcal{H}\left(b_{1, \ldots}, b_{q} ; c_{1, \ldots}, c_{s}\right)$ includes various other linear operators which were considered in earlier works. In particular for $s=1$, and $q=2$, we obtain the linear operator:

$$
\begin{equation*}
\mathcal{F}\left(b_{1}, b_{2}, c_{1}\right) f(z)=\mathcal{H}\left(b_{1}, b_{2}, c_{1}\right) f(z), \tag{1.9}
\end{equation*}
$$

which was defined by Hoholv [5]. Putting, moreover, $b_{1}=b, b_{2}=1$ and $c_{1}=c$, we obtain the Carlson-Shaffer operator:

$$
\begin{equation*}
\mathcal{L}(b, c) f(z):=\mathcal{H}(b, 1, c) f(z):=z+\sum_{n=1}^{\infty} \frac{(b)_{n}}{(c)_{n}} z^{n+1} a_{n+1} z^{n+1} \quad(z \in \mathcal{U}) \tag{1.10}
\end{equation*}
$$

which was introduced by Carlson and Shaffer [4]. Note that $\mathcal{L}(1,1) f(z)=f(z)$, $\mathcal{L}(2,1) f(z)=z f^{\prime}(z)$ and $\mathcal{L}(3,1) f(z)=z f^{\prime}(z)+\frac{1}{2} z^{2} f^{\prime \prime}(z)$.

Using the above Carlson-Shaffer operator, we introduce the following subclasses of analytic and univalent functions defined as follows:

Definition 1. For $-1 \leq \alpha<1, \beta \geq 0$ and $b \geq c$, we let $\mathcal{L}(b, c ; \alpha, \beta)$ consist of functions f in \mathcal{A} satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{b \mathcal{L}(b+1, c) f(z)}{\mathcal{L}(a, c) f(z)}-(b-1)\right\}>\beta\left|\frac{b \mathcal{L}(b+1, c) f(z)}{\mathcal{L}(b, c) f(z)}-b\right|+\alpha, \quad(z \in \mathcal{U}) \tag{1.11}
\end{equation*}
$$

The family $\mathcal{L}(b, c ; \alpha, \beta)$ is of special interest for it contains many well-known as well as many new classes of analytic univalent functions. For $\mathcal{L}(1,1 ; \alpha, 0)$, we obtain the family $\mathcal{S}^{*}(\alpha)$ of starlike functions of order $\alpha(0 \leq \alpha<1)$ and $\mathcal{L}(2,1 ; \alpha, 0)$ is the family $\mathcal{C}(\alpha)$ of convex functions of order $\alpha(0 \leq \alpha<1)$. For $\mathcal{L}(1,1 ; 0, \beta)$ and $\mathcal{L}(2,1 ; 0, \beta)$, we obtain the classes $\beta-\mathcal{S T}$ and $\beta-\mathcal{U C \mathcal { V }}$ of uniformly β-starlike functions and uniformly β-convex functions, respectively, introduced by Kanas and Winsiowska [6, 7] (see also the work of Kanas and Srivastava [8], Goodman [11, 12], Rønning [16, 17], Ma and Minda [13] and Gangadharan et al.[10]).

Let \mathcal{T} denotes the subclass of \mathcal{A} consisting of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0\right) \tag{1.12}
\end{equation*}
$$

Further, we define the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ by

$$
\begin{equation*}
\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)=\mathcal{L}(b, c ; \alpha, \beta) \cap \mathcal{T} . \tag{1.13}
\end{equation*}
$$

In the present paper, we prove various coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, and convexity for functions belonging to the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. We also determine fractional calculus for functions belonging to this class.

2. Coefficient Inequalities

A necessary and sufficient condition for a function $f(z)$ to be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ is given by

Theorem 1. Let the function $f(z)$ be defined by (1.12). Then $f(z) \in$ $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(1+\beta)(b)_{n}+[1-\alpha-b(1+\beta)](b)_{n-1}}{(c)_{n-1}}\left|a_{n}\right| \leq 1-\alpha . \tag{2.1}
\end{equation*}
$$

where $-1 \leq \alpha<1, \beta \geq 0$. The result (2.1) is sharp.
Proof. Assume that the inequality (2.1) holds true. It suffices to show that

$$
\beta\left|\frac{b \mathcal{L}(b+1, c) f(z)}{\mathcal{L}(b, c) f(z)}-b\right|-\operatorname{Re}\left\{\frac{b \mathcal{L}(b+1, c) f(z)}{\mathcal{L}(b, c) f(z)}-b\right\} \leq 1-\alpha
$$

We have

$$
\begin{aligned}
& \beta\left|\frac{b \mathcal{L}(b+1, c) f(z)}{\mathcal{L}(b, c) f(z)}-b\right|-\operatorname{Re}\left\{\frac{b \mathcal{L}(b+1, c) f(z)}{\mathcal{L}(b, c) f(z)}-b\right\} \\
\leq & (1+\beta)\left|\frac{b \mathcal{L}(b+1, c) f(z)}{\mathcal{L}(b, c) f(z)}-b\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{(1+\beta) \sum_{n=2}^{\infty}\left(\frac{b(b+1)_{n}-b(b)_{n-1}}{(c)_{n-1}}\right)\left|a_{n}\right||z|^{n-1}}{1-\sum_{n=2}^{\infty} \frac{(b)_{n-1}}{(c)_{n-1}}\left|a_{n}\right||z|^{n-1}} \\
& \leq \frac{(1+\beta) \sum_{n=2}^{\infty}\left(\frac{(a)_{n}-b(b)_{n-1}}{(c)_{n-1}}\right)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty} \frac{(b)_{n-1}}{(c)_{n-1}}\left|a_{n}\right|} .
\end{aligned}
$$

The last expression is bounded above by $1-\alpha$ if

$$
\sum_{n=2}^{\infty} \frac{(1+\beta)(b)_{n}+[1-\alpha-b(1+\beta)](b)_{n-1}}{(c)_{n-1}}\left|a_{n}\right| \leq 1-\alpha .
$$

Thus we have the inequality (2.1).
Conversely, assume that the function $f(z)$ is in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ and z is real then we have

$$
\frac{b-\sum_{n=2}^{\infty}\left(\frac{b(b+1)_{n}}{(c)_{n-1}}\right) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} \frac{(b)_{n-1}}{(b)_{n-1}} a_{n} z^{n-1}}-(b-1)-\alpha \geq \frac{\sum_{n=2}^{\infty} \beta \frac{b(b+1)_{n}-b(b)_{n-1}}{(c)_{n-1}} a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} \frac{(b)_{n-1}}{(b)_{n-1}} a_{n} z^{n-1}} .
$$

Letting $z \rightarrow 1^{-}$along the real axis, we obtain the inequality (2.1).
Finally, the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)(c)_{n-1}}{(1+\beta)(b)_{n}+[1-\alpha-b(1+\beta)](b)_{n-1}} z^{n} \quad(n \geq 2) \tag{2.2}
\end{equation*}
$$

is an extremal function for the assertion of Theorem 1.

Remark 1. Taking different choices of b, c, α and β as stated in Section 1, Theorem 1 leads to necessary and sufficient
condition for a function f to be in the classes $\mathcal{S}^{*}(\alpha), \mathcal{C}(\alpha), \beta-\mathcal{S T}$ and $\beta-\mathcal{U C V}$.

Corollary 1. Let the function $f(z)$ be defined by (1.8) be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. Then

$$
\begin{equation*}
a_{n} \leq \frac{(1-\alpha)(c)_{n-1}}{(1+\beta)(b)_{n}+[1-\alpha-b(1+\beta)](b)_{n-1}} \quad(n \geq 2) \tag{2.3}
\end{equation*}
$$

The equality in (2.3) is attained for the function $f(z)$ given by (2.2).

For the notational convenience we shall henceforth denote

$$
\begin{equation*}
\sigma_{n}(b, c ; \alpha, \beta):=\frac{(1+\beta)(b)_{n}+[1-\alpha-b(1+\beta)](b)_{n-1}}{(c)_{n-1}} \tag{2.4}
\end{equation*}
$$

3. Growth and Distortion Theorems

Theorem 2. Let the function $f(z)$ be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. If $\left\{\sigma_{n}(b, c ; \alpha, \beta)\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then, for $|z|=r<1$

$$
\begin{equation*}
r-\frac{1-\alpha}{\sigma_{2}(b, c ; \alpha, \beta)} r^{2} \leq|f(z)| \leq r+\frac{1-\alpha}{\sigma_{2}(b, c ; \alpha, \beta)} r^{2} \tag{3.1}
\end{equation*}
$$

and if $\left\{\sigma_{n}(b, c ; \alpha, \beta) / n\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then, for $|z|=r<1$

$$
\begin{equation*}
1-\frac{2(1-\alpha)}{\sigma_{2}(b, c ; \alpha, \beta)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\alpha)}{\sigma_{2}(b, c ; \alpha, \beta)} r . \tag{3.2}
\end{equation*}
$$

The results (3.1) and (3.2) are sharp for the function $f(z)$ given

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{\sigma_{2}(b, c ; \alpha, \beta)} z^{2} \quad(z= \pm r) \tag{3.3}
\end{equation*}
$$

Proof. In view of Theorem 1, we note that

$$
\begin{equation*}
\sigma_{2}(b, c ; \alpha, \beta) \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty} \sigma_{n}(b, c ; \alpha, \beta) a_{n} \leq 1-\alpha, \tag{3.4}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
|f(z)| \geq|z|-\sum_{n=2}^{\infty} a_{n}|z|^{n} \geq r-r^{2} \sum_{n=2}^{\infty} a_{n} \geq r-\frac{1-\alpha}{\sigma_{2}(b, c ; \alpha, \beta)} r^{2} \tag{3.5}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
|f(z)| \leq|z|+\sum_{n=2}^{\infty} a_{n}|z|^{n} \leq r+r^{2} \sum_{n=2}^{\infty} a_{n} \leq r+\frac{1-\alpha}{\sigma_{2}(b, c ; \alpha, \beta)} r^{2} . \tag{3.6}
\end{equation*}
$$

Also from Theorem 1, we have

$$
\begin{equation*}
\frac{\sigma_{2}(b, c ; \alpha, \beta)}{2} \sum_{n=2}^{\infty} n a_{n} \leq \sum_{n=2}^{\infty} \sigma_{n}(b, c ; \alpha, \beta) a_{n} \leq 1-\alpha . \tag{3.7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \geq 1-r \sum_{n=2}^{\infty} n a_{n} \geq 1-\frac{2(1-\alpha)}{\sigma_{2}(b, c ; \alpha, \beta)} r . \tag{3.8}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \leq 1+r \sum_{n=2}^{\infty} n a_{n} \leq 1+\frac{2(1-\alpha)}{\sigma_{2}(b, c ; \alpha, \beta)} r . \tag{3.9}
\end{equation*}
$$

This completes the proof.
Corollary 2. The disk $|z|<1$ is mapped onto a domain that contains the disk $|w|<\frac{\sigma_{2}(b, c ; \alpha, \beta)-(1-\alpha)}{\sigma_{2}(b, c ; \alpha, \beta)}$ by any $f(z) \in \mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. The theorem is sharp with extermal function $f(z)$ given by (3.3).

Proof. The proof follow upon letting $r \rightarrow 1$ in (3.1).

4. Closure Theorems

In this section, we shall prove that the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ is closed under convex linear combinations.

Theorem 3. Let the function $f_{i}(z), i=1,2, \ldots, m$, defined by

$$
\begin{equation*}
f_{i}(z)=z-\sum_{n=2}^{\infty} a_{n, i} z^{n} \quad\left(a_{n, i} \geq 0\right) \tag{4.1}
\end{equation*}
$$

for $z \in \mathcal{U}$, be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left(\frac{1}{m} \sum_{i=1}^{m} a_{n, i}\right) z^{n} \tag{4.2}
\end{equation*}
$$

also belongs to the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$.
Proof. Let $f_{i}(z) \in \mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$,it follows from Theorem 1, that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \sigma_{n}(b, c ; \alpha, \beta) a_{n, i} \leq 1-\alpha \quad(i=1,2, \ldots, m) \tag{4.3}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \sum_{n=2}^{\infty} \sigma_{n}(b, c ; \alpha, \beta)\left(\frac{1}{m} \sum_{i=1}^{m} a_{n, i}\right) \tag{4.4}\\
= & \frac{1}{m} \sum_{i=1}^{m}\left(\sum_{n=2}^{\infty} \sigma_{n}(b, c ; \alpha, \beta) a_{n, j}\right) \leq 1-\alpha . \tag{4.5}
\end{align*}
$$

Hence by Theorem 1, $h(z) \in \mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$.
With the aid of Theorem 1, we can prove the following
Theorem 4. Let the functions $f_{i}(z)$ be defined by (4.1) be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ for every $i=1,2, \ldots, m$. Then the functions

$$
\begin{equation*}
h(z)=\sum_{i=1}^{m} c_{i} f_{i}(z) \quad\left(c_{i} \geq 0\right) \tag{4.6}
\end{equation*}
$$

is also in the same class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ where $\sum_{i=1}^{m} c_{i}=1$.
As a consequence of Theorem 4 , the extreme points of the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ are giving by

Theorem 5. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{k}(z)=z-\frac{1-\alpha}{\sigma_{n}(b, c ; \alpha, \beta)} z^{k} \quad(n \geq 2) \tag{4.7}
\end{equation*}
$$

for $0 \leq \alpha<1$. Then $f(z)$ is in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$ if and only if it can be expressed in the form $f(z)=\sum_{n=1}^{\infty} t_{n} z^{n}$ where $t_{n} \geq 0(n \geq 1)$ and $\sum_{n=1}^{\infty} t_{n}=1$.

5. Radii of Close-to-Convexity, Starlikeness, and Convexity

Theorem 6. Let the function $f(z)$ be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. Then $f(z)$ is close-to-convex of order $\sigma(0 \leq \sigma<1)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{n}\left[\frac{\sigma_{n}(b, c ; \alpha, \beta)(1-\sigma)}{1-\alpha}\right]^{1 /(n-1)} \quad(n \geq 2) \tag{5.1}
\end{equation*}
$$

The result is sharp, the extermal function $f(z)$ being given by (2.2).
Proof. We must show that $\left|f^{\prime}(z)-1\right| \leq 1-\sigma$ for $|z|<r_{1}$, where r_{1} is given by (5.1). From (1.8) we find that

$$
\begin{gather*}
\left|f^{\prime}(z)-1\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \text {. Thus }\left|f^{\prime}(z)-1\right| \leq 1-\sigma \text { if } \\
\sum_{n=2}^{\infty}\left(\frac{n}{1-\sigma}\right) a_{n}|z|^{n-1} \leq 1 \tag{5.2}
\end{gather*}
$$

But, by Theorem 1, (5.2) will be true if

$$
\left(\frac{n}{1-\sigma}\right)|z|^{n-1} \leq \frac{\sigma_{n}(b, c ; \alpha, \beta)}{1-\alpha}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{\sigma_{n}(b, c ; \alpha, \beta)(1-\sigma)}{1-\alpha}\right]^{1 /(n-1)} \quad(n \geq 2) \tag{5.3}
\end{equation*}
$$

Theorem 6 follows easily from (5.3).
Theorem 7. Let the function $f(z)$ be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. Then $f(z)$ is starlike of order $\sigma(0 \leq \sigma<1)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=\inf _{n}\left[\frac{\sigma_{n}(b, c ; \alpha, \beta)(1-\sigma)}{(n-\sigma)(1-\alpha)}\right]^{1 /(n-1)} \quad(n \geq 2) \tag{5.4}
\end{equation*}
$$

The result is sharp, the extermal function $f(z)$ being given by (2.2).
Proof. It is sufficient to show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\sigma$ for $|z|<r_{2}$, where r_{2} is given by (5.4). From (1.10) we have

$$
\begin{align*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}} \text {. Thus }\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\sigma \text { if } \\
\sum_{n=2}^{\infty}\left(\frac{n-\sigma}{1-\sigma}\right) a_{n}|z|^{n-1} \leq 1 . \tag{5.5}
\end{align*}
$$

But, by Theorem 1, (5.5) will be true if

$$
\left(\frac{n-\sigma}{1-\sigma}\right)|z|^{n-1} \leq \frac{\sigma_{n}(b, c ; \alpha, \beta)}{1-\alpha}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{\sigma_{n}(b, c ; \alpha, \beta)(1-\sigma)}{(n-\sigma)(1-\alpha)}\right]^{1 /(n-1)} \quad(n \geq 2) \tag{5.6}
\end{equation*}
$$

Theorem 7 follows easily from (5.6).
Corollary 3. Let the function $f(z)$ be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. Then $f(z)$ is convex of order $\sigma(0 \leq \sigma<1)$ in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=\inf _{n}\left[\frac{\sigma_{n}(b, c ; \alpha, \beta)(1-\sigma)}{n(n-\sigma)(1-\alpha)}\right]^{1 /(n-1)} \quad(n \geq 2) \tag{5.7}
\end{equation*}
$$

The result is sharp, the extermal function $f(z)$ being given by (2.5).

6. Fractional Calculus

In this section, we find it to be convenient to recall here the following of fractional calculus which were introduced by Owa ([14], [15]).

Definition 2. The fractional integral of order δ is defined, for a function $f(z)$, by

$$
\begin{equation*}
D_{z}^{-\delta} f(z)=\frac{1}{\Gamma(\delta)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d \zeta \quad(\delta>0) \tag{6.1}
\end{equation*}
$$

where the function $f(z)$ is analytic in a simply-connected region of the z-plane containing the origin and the multiplicity of the function $(z-\zeta)^{\delta-1}$ is removed by requiring the function $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Definition 3. The fractional derivative of order δ is defined, for a function $f(z)$, by

$$
\begin{equation*}
D_{z}^{\delta} f(z)=\frac{1}{\Gamma(1-\delta)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d \zeta \quad(0 \leq \delta<1) \tag{6.2}
\end{equation*}
$$

where the function $f(z)$ is constrained, and the multiplicity of the function $(z-\zeta)^{-\delta}$ is removed as in Definition 2.

Definition 4. Under the hypotheses of Definition 2, the fractional derivative of order $m+\delta$ is defined by

$$
\begin{equation*}
D_{z}^{m+\delta} f(z)=\frac{d^{m}}{d z^{m}} D_{z}^{\delta} f(z) \quad\left(0 \leq \delta<1 ; m \in N_{0}\right) \tag{6.3}
\end{equation*}
$$

Remark 2. From Definition 2, we have $D_{z}^{0} f(z)=f(z)$, which in view of Definition 4 yields

$$
D_{z}^{m+0} f(z)=\frac{d^{m}}{d z^{m}} D_{z}^{0} f(z)=f^{(m)}(z)
$$

Thus,

$$
\lim _{\delta \rightarrow 0} D_{z}^{-\delta} f(z)=f(z) \text { and } \lim _{\delta \rightarrow 0} D_{z}^{1-\delta} f(z)=f^{\prime}(z)
$$

Theorem 8. Let the function $f(z)$ be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. If $\left\{\sigma_{n}(b, c ; \alpha, \beta)\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

$$
\begin{equation*}
\left|D_{z}^{-\delta} f(z)\right| \geq \frac{|z|^{1+\delta}}{\Gamma(2+\delta)}\left\{1-\frac{1-\alpha}{(2+\delta) \sigma_{2}(b, c ; \alpha, \beta)}|z|\right\} \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{-\delta} f(z)\right| \leq \frac{|z|^{1+\delta}}{\Gamma(2+\delta)}\left\{1+\frac{1-\alpha}{(2+\delta) \sigma_{2}(b, c ; \alpha, \beta)}|z|\right\} \tag{6.5}
\end{equation*}
$$

for $\delta>0$, and $z \in \mathcal{U}$. The result is sharp.
Proof. Let

$$
\begin{align*}
F(z) & =\Gamma(2+\delta) z^{-\delta} D_{z}^{-\delta} f(z) \tag{6.6}\\
& =z-\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2+\delta)}{\Gamma(n+1+\delta)} a_{n} z^{n}=z-\sum_{n=2}^{\infty} \Delta(n) a_{n} z^{n}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta(n)=\frac{\Gamma(n+1) \Gamma(2+\delta)}{\Gamma(n+1+\delta)} \quad(n \geq 2) \tag{6.7}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
0<\Delta(n) \leq \Delta(2)=\frac{2}{2+\delta} \tag{6.8}
\end{equation*}
$$

Therefore, by using (3.4) and (6.8), we can see that

$$
\begin{align*}
& |F(z)| \geq|z|-\Delta(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \geq|z|-\frac{1-\alpha}{(2+\delta) \sigma_{2}(b, c ; \alpha, \beta)}|z|^{2} \tag{6.9}\\
& |F(z)| \leq|z|+\Delta(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \leq|z|+\frac{1-\alpha}{(2+\delta) \sigma_{2}(b, c ; \alpha, \beta)}|z|^{2} \tag{6.10}
\end{align*}
$$

which prove the inequality of Theorem 8. Further, equalities (6.4) and (6.5) are attained for the function $f(z)$ defined by

$$
\begin{equation*}
D_{z}^{-\delta} f(z)=\frac{z^{1+\delta}}{\Gamma(2+\delta)}\left\{1+\frac{1-\alpha}{(2+\delta) \sigma_{2}(b, c ; \alpha, \beta)} z\right\} \tag{6.11}
\end{equation*}
$$

Theorem 9. Let the function $f(z)$ be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b, c ; \alpha, \beta)$. If $\left\{\sigma_{n}(b, c ; \alpha, \beta) / n\right\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

$$
\begin{equation*}
\left|D_{z}^{\delta} f(z)\right| \geq \frac{|z|^{1-\delta}}{\Gamma(2-\delta)}\left\{1-\frac{2(1-\alpha)}{(2-\delta) \sigma_{2}(b, c ; \alpha, \beta)}|z|\right\} \tag{6.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{\delta} f(z)\right| \leq \frac{|z|^{1-\delta}}{\Gamma(2-\delta)}\left\{1+\frac{2(1-\alpha)}{(2-\delta) \sigma_{2}(b, c ; \alpha, \beta)}|z|\right\} \tag{6.13}
\end{equation*}
$$

for $0 \leq \delta<1$, and $z \in \mathcal{U}$. The result is sharp.
Proof. Let

$$
\begin{align*}
H(z) & =\Gamma(2-\delta) z^{\delta} D_{z}^{\delta} f(z) \tag{6.14}\\
& =z-\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n+1-\delta)} a_{n} z^{n}=z-\sum_{n=2}^{\infty} n \Omega(n) a_{n} z^{n}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega(n)=\frac{\Gamma(n) \Gamma(2-\delta)}{\Gamma(n+1-\delta)} \quad(n \geq 2) \tag{6.15}
\end{equation*}
$$

Since

$$
\begin{equation*}
0<\Omega(n) \leq \Omega(2)=\frac{1}{2-\delta} \tag{6.16}
\end{equation*}
$$

Therefore, by using (3.7) and (6.16), we can see that

$$
\begin{align*}
& |H(z)| \geq|z|-\Omega(2)|z|^{2} \sum_{k=2}^{\infty} n a_{n} \geq|z|-\frac{2(1-\alpha)}{(2-\delta) \sigma_{2}(b, c ; \alpha, \beta)}|z|^{2} \tag{6.17}\\
& |H(z)| \leq|z|+\Omega(2)|z|^{2} \sum_{n=2}^{\infty} n a_{n} \leq|z|+\frac{2(1-\alpha)}{(2-\delta) \sigma_{2}(b, c ; \alpha, \beta)}|z|^{2} \tag{6.18}
\end{align*}
$$

which give the inequalities of Theorem 10. Further, since the equalities (6.12) and (6.13) are attained for the function $f(z)$ defined by

$$
\begin{equation*}
D_{z}^{\delta} f(z)=\frac{z^{1-\delta}}{\Gamma(2-\delta)}\left\{1+\frac{2(1-\alpha)}{(2-\delta) \sigma_{2}(b, c ; \alpha, \beta)} z\right\} \tag{6.19}
\end{equation*}
$$

we see that the result is sharp.
Remark 3. Letting $\delta=0$ in Theorem 8, we have (3.1) of Theorem 3, and letting $\delta \longrightarrow 1$ in Theorem 9, we have (3.2) in Theorem 3.

Acknowledgments

The author would like to express many thanks to the referee for his valuable suggestions.

References

[1] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[2] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed arguments of coefficients associated with the generalizedhypergeometric function, Adv. Stud. Contemp. Math. 5 (2002), 115-125.
[3] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7-18.
[4] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) no.4, 737-745.
[5] Y. E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyš̌. Učebn. Zaved. Matematika, 10 (1978), 83-89.
[6] S. Kanas and A. Wisniowska, Conic regions and k - uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.
[7] S. Kanas and A. Wisniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl. 45(4)(2000), 647-657.
[8] S. Kanas and H. M. Srivastava, Linear operators associated with kuniformly convex functions, Integral Transform. Spec. Funct. 9, 121-132, (2000).
[9] J. L. Liu and H. M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput. 159 (2004), 485-493.
[10] A. Gangadharan, T. N. Shanmugan, and H. M. Srivastava, Generalized Hypergeometric functions associated with k-uniformly convex functions, Comput. Math. App. 44 (2002), 1515-1526.
[11] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, 87-92, (1991).
[12] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155, 364-370, (1991).
[13] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no.2, 165-175.
[14] S. Owa, On the distortion theorem I, Kyunpgook Math. J., 18 (1978), 53-59.
[15] S. Owa, Some applications of the fractional calculus, Research Notes in Math. 187, Pitman, Boston, London and Melbourne, 1985,164-175.
[16] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no.1, 189-196.
[17] F. Rønning, On starlike functions associated with parabolic regions, Ann Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-12

[^0]: *2002 Mathematics Subject Classification. 30C45.
 ${ }^{\dagger}$ E-mail: bafrasin@yahoo.com.

