Subclasses of Analytic Functions Defined by Carlson - Shaffer Linear Operator^{*}

B. A. $Frasin^{\dagger}$

Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan, Middle East.

Received September 20, 2005, Accepted December 26, 2005.

Abstract

We introduce the subclass $\mathcal{L}_{\mathcal{T}}(a, c; \alpha, \beta)$ of analytic functions with negative coefficients defined by the linear operator $\mathcal{L}(a, c)f(z)$ which introduced and studied by Carlson and Shaffer [4]. Coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, and convexity for functions belonging to the class $\mathcal{L}_{\mathcal{T}}(a, c; \alpha, \beta)$ are obtained. Finally, we determine fractional calculus for functions belonging to this class.

Keywords and Phrases: Analytic functions, Linear operator, Coefficient inequalities, Distortion theorems, Hadamard product, Fractional calculus.

1. Introduction and Definitions.

Let \mathcal{A} denote the class of functions of the form :

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

^{*2002} Mathematics Subject Classification. 30C45. *E-mail: bafrasin@yahoo.com.

which are analytic in the open unit disc $\mathcal{U}=\{z:|z|<1\}$. For two functions f(z) and g(z) given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 and $g(z) = z + \sum_{n=2}^{\infty} d_n z^n$ (1.2)

their Hadamard product (or convolution) is defined by

$$(f * g)(z) := z + \sum_{n=2}^{\infty} a_n d_n z^n.$$
 (1.3)

For a complex parameters $b_{1,\ldots}, b_q$ and $c_{1,\ldots}, c_s$ $(c_j \neq 0, -1, -2, \ldots; j = 1, \ldots, s)$, we define the generalized hypergeometric function ${}_qF_s(b_{1,\ldots}, b_q; c_{1,\ldots}, c_s; z)$ by

$${}_{q}F_{s}(b_{1,\dots},b_{q};c_{1,\dots},c_{s};z) = \sum_{n=0}^{\infty} \frac{(b_{1})_{n}\dots(b_{q})_{n}}{(c_{1})_{n}\dots(c_{s})_{n}} \frac{z^{n}}{n!}$$
(1.4)

$$(q \le s+1; q, s \in N_0 = N \cup \{0\}; z \in \mathcal{U})$$

where $(\lambda)_n$ is the Pochhammer symbol given, in terms of the Gamma function Γ , by

$$(\lambda)_n := \frac{\Gamma(\lambda+n)}{\Gamma(\lambda)} = \begin{cases} 1, & (n=0), \\ \lambda(\lambda+1)(\lambda+2)\dots(\lambda+n-1), & (n\in N). \end{cases}$$
(1.5)

Corresponding to a function $h(b_{1,\ldots}, b_q; c_{1,\ldots}, c_s; z)$ defined by

$$h(b_{1,\dots}, b_q; c_{1,\dots}, c_s; z) = z_q F_s(b_{1,\dots}, b_q; c_{1,\dots}, c_s; z)$$

Dziok and Srivastava [1] (see also [2,3,9]) consider a linear operator $\mathcal{H}(b_{1,\ldots}, b_q; c_{1,\ldots}, c_s) : \mathcal{A} \to \mathcal{A}$ defined by the convolution

$$\mathcal{H}(b_{1,\dots}, b_q ; c_{1,\dots}, c_s) f(z) = h(b_{1,\dots}, b_q ; c_{1,\dots}, c_s; z) * f(z).$$
(1.6)

We observe that, for a function of the form (1.1), we have

$$\mathcal{H}(b_{1,\dots}, b_q; c_{1,\dots}, c_s)f(z) = z + \sum_{n=2}^{\infty} \Gamma_n a_n z^n$$
(1.7)

where

$$\Gamma_n = \frac{(b_1)_{n-1} \dots (b_q)_{n-1}}{(c_1)_{n-1} \dots (c_s)_{n-1} (n-1)!}.$$
(1.8)

The linear operator $\mathcal{H}(b_{1,\dots}, b_q; c_{1,\dots}, c_s)$ includes various other linear operators which were considered in earlier works. In particular for s = 1, and q = 2, we obtain the linear operator:

$$\mathcal{F}(b_1, b_2, c_1)f(z) = \mathcal{H}(b_1, b_2, c_1)f(z), \tag{1.9}$$

which was defined by Hoholv [5]. Putting, moreover, $b_1 = b$, $b_2 = 1$ and $c_1 = c$, we obtain the Carlson-Shaffer operator:

$$\mathcal{L}(b,c)f(z) := \mathcal{H}(b,1,c)f(z) := z + \sum_{n=1}^{\infty} \frac{(b)_n}{(c)_n} z^{n+1} a_{n+1} z^{n+1} \quad (z \in \mathcal{U}), \quad (1.10)$$

which was introduced by Carlson and Shaffer [4]. Note that $\mathcal{L}(1,1)f(z) = f(z)$, $\mathcal{L}(2,1)f(z) = zf'(z)$ and $\mathcal{L}(3,1)f(z) = zf'(z) + \frac{1}{2}z^2f''(z)$.

Using the above Carlson-Shaffer operator, we introduce the following subclasses of analytic and univalent functions defined as follows:

Definition 1. For $-1 \leq \alpha < 1$, $\beta \geq 0$ and $b \geq c$, we let $\mathcal{L}(b, c; \alpha, \beta)$ consist of functions f in \mathcal{A} satisfying the condition

$$\operatorname{Re}\left\{\frac{b\mathcal{L}(b+1,c)f(z)}{\mathcal{L}(a,c)f(z)} - (b-1)\right\} > \beta \left|\frac{b\mathcal{L}(b+1,c)f(z)}{\mathcal{L}(b,c)f(z)} - b\right| + \alpha, \quad (z \in \mathcal{U}).$$
(1.11)

The family $\mathcal{L}(b, c; \alpha, \beta)$ is of special interest for it contains many well-known as well as many new classes of analytic univalent functions. For $\mathcal{L}(1, 1; \alpha, 0)$, we obtain the family $\mathcal{S}^*(\alpha)$ of starlike functions of order $\alpha(0 \leq \alpha < 1)$ and $\mathcal{L}(2, 1; \alpha, 0)$ is the family $\mathcal{C}(\alpha)$ of convex functions of order $\alpha(0 \leq \alpha < 1)$. For $\mathcal{L}(1, 1; 0, \beta)$ and $\mathcal{L}(2, 1; 0, \beta)$, we obtain the classes $\beta - \mathcal{ST}$ and $\beta - \mathcal{UCV}$ of uniformly β - starlike functions and uniformly β - convex functions, respectively, introduced by Kanas and Winsiowska [6, 7](see also the work of Kanas and Srivastava [8], Goodman [11, 12], Rønning [16, 17], Ma and Minda [13] and Gangadharan et al.[10]). Let \mathcal{T} denotes the subclass of \mathcal{A} consisting of functions of the form:

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n$$
 $(a_n \ge 0)$ (1.12)

Further, we define the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$ by

$$\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta) = \mathcal{L}(b,c;\alpha,\beta) \cap \mathcal{T}.$$
(1.13)

In the present paper, we prove various coefficient inequalities, distortion theorems, closure theorems, radii of close-to-convexity, starlikeness, and convexity for functions belonging to the class $\mathcal{L}_{\mathcal{T}}(b, c; \alpha, \beta)$. We also determine fractional calculus for functions belonging to this class.

2. Coefficient Inequalities

A necessary and sufficient condition for a function f(z) to be in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$ is given by

Theorem 1. Let the function f(z) be defined by (1.12). Then $f(z) \in \mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$ if and only if

$$\sum_{n=2}^{\infty} \frac{(1+\beta)(b)_n + [1-\alpha - b(1+\beta)](b)_{n-1}}{(c)_{n-1}} |a_n| \le 1 - \alpha.$$
(2.1)

where $-1 \leq \alpha < 1, \beta \geq 0$. The result (2.1) is sharp.

Proof. Assume that the inequality (2.1) holds true. It suffices to show that

$$\beta \left| \frac{b\mathcal{L}(b+1,c)f(z)}{\mathcal{L}(b,c)f(z)} - b \right| - \operatorname{Re}\left\{ \frac{b\mathcal{L}(b+1,c)f(z)}{\mathcal{L}(b,c)f(z)} - b \right\} \le 1 - \alpha$$

We have

$$\beta \left| \frac{b\mathcal{L}(b+1,c)f(z)}{\mathcal{L}(b,c)f(z)} - b \right| - \operatorname{Re} \left\{ \frac{b\mathcal{L}(b+1,c)f(z)}{\mathcal{L}(b,c)f(z)} - b \right\}$$
$$\leq (1+\beta) \left| \frac{b\mathcal{L}(b+1,c)f(z)}{\mathcal{L}(b,c)f(z)} - b \right|$$

$$\leq \frac{(1+\beta)\sum_{n=2}^{\infty} \left(\frac{b(b+1)_n - b(b)_{n-1}}{(c)_{n-1}}\right) |a_n| |z|^{n-1}}{1 - \sum_{n=2}^{\infty} \frac{(b)_{n-1}}{(c)_{n-1}} |a_n| |z|^{n-1}} \\ \leq \frac{(1+\beta)\sum_{n=2}^{\infty} \left(\frac{(a)_n - b(b)_{n-1}}{(c)_{n-1}}\right) |a_n|}{1 - \sum_{n=2}^{\infty} \frac{(b)_{n-1}}{(c)_{n-1}} |a_n|}.$$

The last expression is bounded above by $1 - \alpha$ if

$$\sum_{n=2}^{\infty} \frac{(1+\beta)(b)_n + [1-\alpha - b(1+\beta)](b)_{n-1}}{(c)_{n-1}} |a_n| \le 1 - \alpha.$$

Thus we have the inequality (2.1).

Conversely, assume that the function f(z) is in the class $\mathcal{L}_{\mathcal{T}}(b, c; \alpha, \beta)$ and z is real then we have

$$\frac{b - \sum_{n=2}^{\infty} \left(\frac{b(b+1)_n}{(c)_{n-1}}\right) a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} \frac{(b)_{n-1}}{(b)_{n-1}} a_n z^{n-1}} - (b-1) - \alpha \ge \frac{\sum_{n=2}^{\infty} \beta \frac{b(b+1)_n - b(b)_{n-1}}{(c)_{n-1}} a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} \frac{(b)_{n-1}}{(b)_{n-1}} a_n z^{n-1}}.$$

Letting $z \to 1^-$ along the real axis, we obtain the inequality (2.1).

Finally, the function f(z) given by

$$f(z) = z - \frac{(1-\alpha)(c)_{n-1}}{(1+\beta)(b)_n + [1-\alpha - b(1+\beta)](b)_{n-1}} z^n \qquad (n \ge 2)$$
(2.2)

is an extremal function for the assertion of Theorem 1.

Remark 1. Taking different choices of b, c, α and β as stated in Section 1, Theorem 1 leads to necessary and sufficient

condition for a function f to be in the classes $S^*(\alpha)$, $C(\alpha)$, $\beta - ST$ and $\beta - UCV$.

Corollary 1. Let the function f(z) be defined by (1.8) be in the class $\mathcal{L}_{\mathcal{T}}(b, c; \alpha, \beta)$. Then

$$a_n \le \frac{(1-\alpha)(c)_{n-1}}{(1+\beta)(b)_n + [1-\alpha - b(1+\beta)](b)_{n-1}} \qquad (n \ge 2)$$
(2.3)

The equality in (2.3) is attained for the function f(z) given by (2.2).

For the notational convenience we shall henceforth denote

$$\sigma_n(b,c;\alpha,\beta) := \frac{(1+\beta)(b)_n + [1-\alpha - b(1+\beta)](b)_{n-1}}{(c)_{n-1}}$$
(2.4)

3. Growth and Distortion Theorems

Theorem 2. Let the function f(z) be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$. If $\{\sigma_n(b,c;\alpha,\beta)\}_{n=2}^{\infty}$ is a non-decreasing sequence, then, for |z| = r < 1

$$r - \frac{1 - \alpha}{\sigma_2(b, c; \alpha, \beta)} r^2 \le |f(z)| \le r + \frac{1 - \alpha}{\sigma_2(b, c; \alpha, \beta)} r^2$$
(3.1)

and if $\{\sigma_n(b,c;\alpha,\beta)/n\}_{n=2}^{\infty}$ is a non-decreasing sequence, then, for |z| = r < 1

$$1 - \frac{2(1-\alpha)}{\sigma_2(b,c;\alpha,\beta)} r \le |f'(z)| \le 1 + \frac{2(1-\alpha)}{\sigma_2(b,c;\alpha,\beta)} r.$$
 (3.2)

The results (3.1) and (3.2) are sharp for the function f(z) given

$$f(z) = z - \frac{1 - \alpha}{\sigma_2(b, c; \alpha, \beta)} z^2 \qquad (z = \pm r)$$
(3.3)

Proof. In view of Theorem 1, we note that

$$\sigma_2(b,c;\alpha,\beta)\sum_{n=2}^{\infty}a_n \le \sum_{n=2}^{\infty}\sigma_n(b,c;\alpha,\beta)a_n \le 1-\alpha,$$
(3.4)

Thus, we have

$$|f(z)| \ge |z| - \sum_{n=2}^{\infty} a_n |z|^n \ge r - r^2 \sum_{n=2}^{\infty} a_n \ge r - \frac{1 - \alpha}{\sigma_2(b, c; \alpha, \beta)} r^2$$
(3.5)

Similarly,

$$|f(z)| \le |z| + \sum_{n=2}^{\infty} a_n |z|^n \le r + r^2 \sum_{n=2}^{\infty} a_n \le r + \frac{1-\alpha}{\sigma_2(b,c;\alpha,\beta)} r^2.$$
(3.6)

Also from Theorem 1, we have

$$\frac{\sigma_2(b,c;\alpha,\beta)}{2}\sum_{n=2}^{\infty}na_n \le \sum_{n=2}^{\infty}\sigma_n(b,c;\alpha,\beta)a_n \le 1-\alpha.$$
(3.7)

Thus,

$$|f'(z)| \ge 1 - \sum_{n=2}^{\infty} na_n |z|^{n-1} \ge 1 - r \sum_{n=2}^{\infty} na_n \ge 1 - \frac{2(1-\alpha)}{\sigma_2(b,c;\alpha,\beta)}r.$$
(3.8)

On the other hand,

$$|f'(z)| \le 1 + \sum_{n=2}^{\infty} na_n |z|^{n-1} \le 1 + r \sum_{n=2}^{\infty} na_n \le 1 + \frac{2(1-\alpha)}{\sigma_2(b,c;\alpha,\beta)}r.$$
 (3.9)

This completes the proof.

Corollary 2. The disk |z| < 1 is mapped onto a domain that contains the disk $|w| < \frac{\sigma_2(b,c;\alpha,\beta)-(1-\alpha)}{\sigma_2(b,c;\alpha,\beta)}$ by any $f(z) \in \mathcal{L}_T(b,c;\alpha,\beta)$. The theorem is sharp with external function f(z) given by (3.3).

Proof. The proof follow upon letting $r \to 1$ in (3.1).

4. Closure Theorems

In this section, we shall prove that the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$ is closed under convex linear combinations.

Theorem 3. Let the function $f_i(z)$, i = 1, 2, ..., m, defined by

$$f_i(z) = z - \sum_{n=2}^{\infty} a_{n,i} z^n \qquad (a_{n,i} \ge 0)$$
 (4.1)

for $z \in \mathcal{U}$, be in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$. Then the function h(z) defined by

225

$$h(z) = z - \sum_{n=2}^{\infty} \left(\frac{1}{m} \sum_{i=1}^{m} a_{n,i} \right) z^n$$
(4.2)

also belongs to the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$.

Proof. Let $f_i(z) \in \mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$, it follows from Theorem 1, that

$$\sum_{n=2}^{\infty} \sigma_n(b,c;\alpha,\beta) a_{n,i} \le 1 - \alpha \qquad (i = 1, 2, \dots, m).$$

$$(4.3)$$

Therefore,

$$\sum_{n=2}^{\infty} \sigma_n(b,c;\alpha,\beta) \left(\frac{1}{m} \sum_{i=1}^m a_{n,i}\right)$$
(4.4)

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{n=2}^{\infty} \sigma_n(b,c;\alpha,\beta) a_{n,j} \right) \le 1 - \alpha.$$
(4.5)

Hence by Theorem 1, $h(z) \in \mathcal{L}_{\mathcal{T}}(b, c; \alpha, \beta)$.

With the aid of Theorem 1, we can prove the following

Theorem 4. Let the functions $f_i(z)$ be defined by (4.1) be in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$ for every i = 1, 2, ..., m. Then the functions

$$h(z) = \sum_{i=1}^{m} c_i f_i(z) \qquad (c_i \ge 0)$$
(4.6)

is also in the same class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$ where $\sum_{i=1}^{m} c_i = 1$.

As a consequence of Theorem 4, the extreme points of the class $\mathcal{L}_{\mathcal{T}}(b, c; \alpha, \beta)$ are giving by

Theorem 5. Let $f_1(z) = z$ and

$$f_k(z) = z - \frac{1 - \alpha}{\sigma_n(b, c; \alpha, \beta)} z^k \qquad (n \ge 2)$$

$$(4.7)$$

for $0 \le \alpha < 1$. Then f(z) is in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$ if and only if it can be expressed in the form $f(z) = \sum_{n=1}^{\infty} t_n z^n$ where $t_n \ge 0$ $(n \ge 1)$ and $\sum_{n=1}^{\infty} t_n = 1$.

5. Radii of Close-to-Convexity, Starlikeness, and Convexity

Theorem 6. Let the function f(z) be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$. Then f(z) is close-to-convex of order $\sigma(0 \leq \sigma < 1)$ in $|z| < r_1$, where

$$r_{1} = \inf_{n} \left[\frac{\sigma_{n}(b,c;\alpha,\beta)(1-\sigma)}{1-\alpha} \right]^{1/(n-1)} \qquad (n \ge 2).$$
 (5.1)

The result is sharp, the external function f(z) being given by (2.2).

Proof. We must show that $|f'(z) - 1| \le 1 - \sigma$ for $|z| < r_1$, where r_1 is given by (5.1). From (1.8) we find that

$$|f'(z) - 1| \le \sum_{n=2}^{\infty} na_n |z|^{n-1}. \text{ Thus } |f'(z) - 1| \le 1 - \sigma \text{ if}$$
$$\sum_{n=2}^{\infty} \left(\frac{n}{1 - \sigma}\right) a_n |z|^{n-1} \le 1.$$
(5.2)

But, by Theorem 1, (5.2) will be true if

$$\left(\frac{n}{1-\sigma}\right)|z|^{n-1} \le \frac{\sigma_n(b,c;\alpha,\beta)}{1-\alpha},$$

that is, if

$$|z| \le \left[\frac{\sigma_n(b,c;\alpha,\beta)(1-\sigma)}{1-\alpha}\right]^{1/(n-1)} \qquad (n\ge 2).$$
(5.3)

Theorem 6 follows easily from (5.3).

Theorem 7. Let the function f(z) be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b, c; \alpha, \beta)$. Then f(z) is starlike of order $\sigma(0 \le \sigma < 1)$ in $|z| < r_2$, where

$$r_{2} = \inf_{n} \left[\frac{\sigma_{n}(b,c;\alpha,\beta)(1-\sigma)}{(n-\sigma)(1-\alpha)} \right]^{1/(n-1)} \qquad (n \ge 2).$$
 (5.4)

The result is sharp, the external function f(z) being given by (2.2).

Proof. It is sufficient to show that $\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \sigma$ for $|z| < r_2$, where r_2 is given by (5.4). From (1.10) we have

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{\sum_{n=2}^{\infty} (n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}}. \text{ Thus } \left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \sigma \text{ if}$$
$$\sum_{n=2}^{\infty} \left(\frac{n-\sigma}{1-\sigma}\right) a_n |z|^{n-1} \le 1.$$
(5.5)

But, by Theorem 1, (5.5) will be true if

$$\left(\frac{n-\sigma}{1-\sigma}\right)|z|^{n-1} \le \frac{\sigma_n(b,c;\alpha,\beta)}{1-\alpha},$$

that is, if

$$|z| \le \left[\frac{\sigma_n(b,c;\alpha,\beta)(1-\sigma)}{(n-\sigma)(1-\alpha)}\right]^{1/(n-1)} \qquad (n \ge 2).$$
 (5.6)

Theorem 7 follows easily from (5.6).

Corollary 3. Let the function f(z) be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$. Then f(z) is convex of order $\sigma(0 \leq \sigma < 1)$ in $|z| < r_3$, where

$$r_{3} = \inf_{n} \left[\frac{\sigma_{n}(b,c;\alpha,\beta)(1-\sigma)}{n(n-\sigma)(1-\alpha)} \right]^{1/(n-1)} \qquad (n \ge 2).$$
 (5.7)

The result is sharp, the external function f(z) being given by (2.5).

6. Fractional Calculus

In this section, we find it to be convenient to recall here the following of fractional calculus which were introduced by Owa ([14], [15]).

Definition 2. The fractional integral of order δ is defined, for a function f(z), by

$$D_z^{-\delta}f(z) = \frac{1}{\Gamma(\delta)} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d\zeta \qquad (\delta > 0), \tag{6.1}$$

where the function f(z) is analytic in a simply-connected region of the z-plane containing the origin and the multiplicity of the function $(z-\zeta)^{\delta-1}$ is removed by requiring the function $\log(z-\zeta)$ to be real when $z-\zeta > 0$. **Definition 3.** The fractional derivative of order δ is defined, for a function f(z), by

$$D_z^{\delta} f(z) = \frac{1}{\Gamma(1-\delta)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d\zeta \qquad (0 \le \delta < 1), \tag{6.2}$$

where the function f(z) is constrained, and the multiplicity of the function $(z - \zeta)^{-\delta}$ is removed as in Definition 2.

Definition 4. Under the hypotheses of Definition 2, the fractional derivative of order $m + \delta$ is defined by

$$D_{z}^{m+\delta}f(z) = \frac{d^{m}}{dz^{m}} D_{z}^{\delta}f(z) \qquad (0 \le \delta < 1; \ m \in N_{0}).$$
(6.3)

Remark 2. From Definition 2, we have $D_z^0 f(z) = f(z)$, which in view of Definition 4 yields

$$D_z^{m+0}f(z) = \frac{d^m}{dz^m} D_z^0 f(z) = f^{(m)}(z).$$

Thus,

$$\lim_{\delta \to 0} D_z^{-\delta} f(z) = f(z) \text{ and } \lim_{\delta \to 0} D_z^{1-\delta} f(z) = f'(z) \ .$$

Theorem 8. Let the function f(z) be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$. If $\{\sigma_n(b,c;\alpha,\beta)\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

$$\left| D_z^{-\delta} f(z) \right| \ge \frac{\left| z \right|^{1+\delta}}{\Gamma(2+\delta)} \left\{ 1 - \frac{1-\alpha}{(2+\delta)\sigma_2(b,c;\alpha,\beta)} \left| z \right| \right\}$$
(6.4)

and

$$\left|D_{z}^{-\delta}f(z)\right| \leq \frac{\left|z\right|^{1+\delta}}{\Gamma(2+\delta)} \left\{1 + \frac{1-\alpha}{(2+\delta)\sigma_{2}(b,c;\alpha,\beta)}\left|z\right|\right\}$$
(6.5)

for $\delta > 0$, and $z \in \mathcal{U}$. The result is sharp.

Proof. Let

$$F(z) = \Gamma(2+\delta)z^{-\delta}D_{z}^{-\delta}f(z)$$

$$= z - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2+\delta)}{\Gamma(n+1+\delta)}a_{n}z^{n} = z - \sum_{n=2}^{\infty}\Delta(n)a_{n}z^{n},$$
(6.6)

where

$$\Delta(n) = \frac{\Gamma(n+1)\Gamma(2+\delta)}{\Gamma(n+1+\delta)} \qquad (n \ge 2).$$
(6.7)

It is easy to see that

$$0 < \Delta(n) \le \Delta(2) = \frac{2}{2+\delta}.$$
(6.8)

Therefore, by using (3.4) and (6.8), we can see that

$$|F(z)| \ge |z| - \Delta(2) |z|^2 \sum_{n=2}^{\infty} a_n \ge |z| - \frac{1 - \alpha}{(2 + \delta)\sigma_2(b, c; \alpha, \beta)} |z|^2$$
(6.9)

$$|F(z)| \le |z| + \Delta(2) |z|^2 \sum_{n=2}^{\infty} a_n \le |z| + \frac{1 - \alpha}{(2 + \delta)\sigma_2(b, c; \alpha, \beta)} |z|^2$$
(6.10)

which prove the inequality of Theorem 8. Further, equalities (6.4) and (6.5) are attained for the function f(z) defined by

$$D_z^{-\delta} f(z) = \frac{z^{1+\delta}}{\Gamma(2+\delta)} \left\{ 1 + \frac{1-\alpha}{(2+\delta)\sigma_2(b,c;\alpha,\beta)} z \right\}$$
(6.11)

Theorem 9. Let the function f(z) be defined by (1.12) be in the class $\mathcal{L}_{\mathcal{T}}(b,c;\alpha,\beta)$. If $\{\sigma_n(b,c;\alpha,\beta)/n\}_{n=2}^{\infty}$ is a non-decreasing sequence, then

$$\left|D_{z}^{\delta}f(z)\right| \geq \frac{\left|z\right|^{1-\delta}}{\Gamma(2-\delta)} \left\{1 - \frac{2(1-\alpha)}{(2-\delta)\sigma_{2}(b,c;\alpha,\beta)}\left|z\right|\right\}$$
(6.12)

and

$$\left|D_{z}^{\delta}f(z)\right| \leq \frac{\left|z\right|^{1-\delta}}{\Gamma(2-\delta)} \left\{1 + \frac{2(1-\alpha)}{(2-\delta)\sigma_{2}(b,c;\alpha,\beta)}\left|z\right|\right\}$$
(6.13)

for $0 \leq \delta < 1$, and $z \in \mathcal{U}$. The result is sharp.

Proof. Let

$$H(z) = \Gamma(2-\delta)z^{\delta}D_{z}^{\delta}f(z)$$

$$= z - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\delta)}{\Gamma(n+1-\delta)}a_{n}z^{n} = z - \sum_{n=2}^{\infty}n\Omega(n)a_{n}z^{n},$$
(6.14)

230

where

$$\Omega(n) = \frac{\Gamma(n)\Gamma(2-\delta)}{\Gamma(n+1-\delta)} \qquad (n \ge 2).$$
(6.15)

Since

$$0 < \Omega(n) \le \Omega(2) = \frac{1}{2-\delta}.$$
 (6.16)

Therefore, by using (3.7) and (6.16), we can see that

$$|H(z)| \ge |z| - \Omega(2) |z|^2 \sum_{k=2}^{\infty} na_n \ge |z| - \frac{2(1-\alpha)}{(2-\delta)\sigma_2(b,c;\alpha,\beta)} |z|^2$$
(6.17)

$$|H(z)| \le |z| + \Omega(2) |z|^2 \sum_{n=2}^{\infty} na_n \le |z| + \frac{2(1-\alpha)}{(2-\delta)\sigma_2(b,c;\alpha,\beta)} |z|^2$$
(6.18)

which give the inequalities of Theorem 10. Further, since the equalities (6.12) and (6.13) are attained for the function f(z) defined by

$$D_z^{\delta} f(z) = \frac{z^{1-\delta}}{\Gamma(2-\delta)} \left\{ 1 + \frac{2(1-\alpha)}{(2-\delta)\sigma_2(b,c;\alpha,\beta)} z \right\}$$
(6.19)

we see that the result is sharp.

Remark 3. Letting $\delta = 0$ in Theorem 8, we have (3.1) of Theorem 3, and letting $\delta \longrightarrow 1$ in Theorem 9, we have (3.2) in Theorem 3.

Acknowledgments

The author would like to express many thanks to the referee for his valuable suggestions.

References

- J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, *Appl. Math. Comput.* 103 (1999), 1-13.
- [2] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed arguments of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. 5 (2002), 115-125.
- [3] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, *Integral Trans*form. Spec. Funct. 14 (2003), 7-18.
- [4] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) no.4, 737-745.
- [5] Y. E. Hohlov, Operators and operations in the class of univalent functions, *Izv. Vysš. Učebn. Zaved. Matematika*, **10** (1978), 83-89.
- [6] S. Kanas and A. Wisniowska, Conic regions and k- uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.
- [7] S. Kanas and A. Wisniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl. 45(4)(2000), 647-657.
- [8] S. Kanas and H. M. Srivastava, Linear operators associated with kuniformly convex functions, *Integral Transform. Spec. Funct.* 9, 121-132, (2000).
- [9] J. L. Liu and H. M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput. 159 (2004), 485-493.
- [10] A. Gangadharan, T. N. Shanmugan, and H. M. Srivastava, Generalized Hypergeometric functions associated with k-uniformly convex functions, *Comput. Math. App.* 44 (2002), 1515-1526.
- [11] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, 87-92, (1991).

- [12] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155, 364-370, (1991).
- [13] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no.2, 165-175.
- [14] S. Owa, On the distortion theorem I, Kyunpgook Math. J., 18 (1978), 53-59.
- [15] S. Owa, Some applications of the fractional calculus, Research Notes in Math. 187, Pitman, Boston, London and Melbourne, 1985,164-175.
- [16] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no.1, 189-196.
- [17] F. Rønning, On starlike functions associated with parabolic regions, Ann Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-12