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Abstract 

 The fundamental equations of generalized thermoviscoelasticity with one 
relaxation time parameter have been written in the form of a vector matrix 
differential equation in Laplace transform domain and solve by eigenvalue 
approach. The resulting formulation is applied to different cases: (i) 
thermal shock problem, (ii) problem of Layer medium, both without heat 
sources and (iii) plane distribution of heat sources on whole and 
semi−space. Finally numerical results are given and illustrated graphically 
for each problem. Comparisons are made with the results predicted by both 
the coupled theory and with the theory of generalized thermoviscoelasticity 
with  one relaxation time  parameter. 
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1.  Introduction 

Since the work of Maxwell, Boltzmen, Voigt, Kelvin and others, linear 
viscoelasticity remains an important area of research. Gross [1], Staverman and 
Schwarz [2]. Alfey and Gurnee [3] and Ferry [4] investigated the mechanical model 
representation of linear viscoelastic behaviour results. Solutons of boundary value 
problems for linear viscoelastic materials including temperature variations in both 
quasistatic and dynamic problems have experienced great strides in the last decades in 
the works of Biot [5, 6], Morland and Lee [7], Tanner [8], and Huilgal and 
Phan−Thien [9]. Bland [10] linked the solution of linear−viscoelasticity problems to 
corresponding linear elastic−solutions. An approximation method for the linear 
thermal viscoelastic problems given by Gurtin and Sternberg [11]. Sternberg [12], and 
Iiioushin [13]. One can refer to the book of Iioushin and Pobedria [14] for a 
formulation of the mathematical theory of thermal viscoelasticity and the solution of 
some boundary value problems as well as the work of probedria [15] for the coupled 
problems in continuum mechanics. Results of important experiments determining the 
mechanical properties of viscoelastic materials were involved in the book by 
Koltunov [16]. 

The classical uncoupled theory of thermoelasticity predicts two phenomena that 
are not compatible with physical observations. First, the equation of heat conduction 
of this theory does not contain any elastic terms contrary to the fact that the elastic 
changes produce heat effects. Second, the heat equation is of a parabolic type, 
predicting infinite speeds of propagation for heat waves. 

Biot[17] formulated the theory of coupled thermoelasticity to eliminate the 
paradox inherent in the classical uncoupled theory that elastic changes have no effect 
on temperature. The heat equations for both theories of the diffusion type predict 
infinite speeds of propagation for heat waves contrary to physical observations. 

Several problems of generalized thermoelasticity have been solved by following 
either Lord and Shulman [18] (L−S theory) involves one relaxation time parameter or 
Green and Lindsay [19] (G−L theory) with two relaxation time parameter. In both the 
theories of conventional Fourier law of heat conduction has been modified to a 
hyperbolic type of equation which along with the equations of motion of 
thermoelasticity (which are hyperbolic type) are considered for the solution of the 
problem. As such, both theories ensures finite speed of propagation of the waves and 
eliminates automatically the paradox of infinite speeds of propagation inherent in both 
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the uncoupled and coupled theories of thermoelasticity vide Chandrasekharaiah and 
Keshavan [20]. 

In dealing with coupled or generalized thermoelastic problems, the solution 
procedure is usually to choose a suitable thermoelastic potential function, but this 
approach has certain limitations as discussed by Bahar and Hetnarski [21]. 

In the present article we apply eigenvalue approach develop in [22] to problem of 
thermoviscoelasticity of one dimension with one relaxation time. The resulting 
formulation is applied to three different cases in the presence or absence of heat 
sources as Ezzat et al [23]. The solution for the cases are given in closed form in the 
Laplace transform domain. The inversion of the transform is carried out using a 
numerical inversion technique [24]. Some results are presented graphically. 

 

2.  Nomenclature 

    A, β, a* emperical constants 

 2
0c  = 

ρ
k  

 CE Specific heat at constant strain 

 k thermal conductivity 

 K = λ + 
3
2
µ Bulk modulus 

 χ Poisson’s ratio 

 Q Intensity of applied heat source per unit mass 

 t time 

 T Absolute temperature 

 T0 Reference temperature chosen that |T − T0| << 1 

 ui components of displacement vector 

 R(t) relaxation function 

 αT Coefficient of linear thermal expansion 
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 γ = 3KαT 

 ∈ = 
ECρ

γ  

 η0 = 
k
CEρ  

 λ, µ Lame’s constants 

 ρ Density 

 σ i j  components of stress tensor 

 ∈ i j  components of strain tensor 

 eij components of strain deviator tensor 

 Sij components of stress deviator tensor 

 τ0 Relaxation time parameter 

 

 

3.  Formulation of the Problem 

We consider a thermoviscoelastic solid occuping in the region −∞<x <∞. The 
governing equations for generalized thermoviscoelasticity with one relaxation time 
parameter consists of the equation of motion 

    σ i j , j  = ρüi              (1) 

The generalised heat conduction equation 

  Q
t

1)uTTc( 
tt

kT 0i,i0E2

2

0ii, 







∂
∂

τ+−γ+ρ








∂
∂

τ+
∂
∂

=              (2) 

The constitutive equation given by Pobedria [15] and Fung [25] 
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  )(ˆ),(
)(

0 ij
ijt

ij eRd
xe

tRS =
∂

∂
−= ∫ τ

τ

τ
τ               (3) 

where, 

  kkkkijijijij
kk

ijij   ,e  ,
3
ee  ,

3
S σ=σ=∈δ−=∈δ

σ
−σ=  

and R(t) is the relaxation function given by Koltunov [16] and Karamany [26] 

  







−= −−∫ dtteAtR tt 1*

0
12)( αβµ                (4) 

where 0 < α* < 1, A > 0 and β > 0. Ignoring the relaxation effects of the volume 
properties we can write for the generalized theory of thermoviscoelasticity with one 
relaxation time parameter. 
   σ = K[e − 3αT(T − T0]               (5) 

where 

  .
3
2 K         ,K3        ,

3 T
ij µ+λ=α=γ

σ
=σ  

Using (5) in (3) we get, 

  ijij0ijijij Ke)TT(
3
eR̂ +δ−γ−






 δ−∈=σ             (6) 

Equation (1) together with (6) reduces to  

  ρüi = i,0i,i,i
2 )TT(Kee

6
1u

2
1R̂ −γ−+






 +∇             (7) 

The equation for one dimension becomes 
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x
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0xx −γ−
∂
∂







 +=σ              (10) 

We now introduce the following non−dimensional variables 

  



















η
=

ρ
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=

σ
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ρ
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K3
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,
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,c*

,tc*t,uc*u,xc*x

           (11) 

Using the non−dimensional variables to (8) − (10) and (4) becomes of the form 
(dropping the asterisks) 

  
xx

u)1R̂(
t
u
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∂
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




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
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∂
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∂
∂

∈+θ



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

∂
∂
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∂
∂

=
∂
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  θ−
∂
∂

+=σ
x
u)1R̂(xx              (14) 

  R(t) = )1(
3
4 1*

0
dtteA

k
att −−∫− βµ            (15) 

Taking the Laplace  transform defined by  
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   ( ) (t)dte
  

o

pt fpf ∫
∞

−=             (16) 

to the  equations (12) − (15) we get,  

  
dx
dup

dx
ud 2
2

2 θ
α+α=              (17) 

  ( ) ( ) ( )Qp1
dx
udp1pp1p

dx
d

ooo2

2

τ+−τ+∈+θτ+=
θ          (18) 

  θ−
α

=σ
dx
ud  1

xx              (19) 

and  

    ( )
( ) 












β+

Γ
−

µ
= *a

*

p

aA1
kp3

4R           (20) 

where 
pR1

1    , 
dx

udRp
x

uR̂L 2

2

2

2

+
=α=









∂
∂  and Γ(a*) is a gamma function.  

We also assume that at time t = 0 the body is at rest; in an undeformed and 
unstressed state and is maintained at the reference temperature, so the following initial 
conditions hold. 

  

0
t

)0,x()0 ,x(

0
t

0) u(x,  0) ,x(u

=
∂

θ∂
=θ

=
∂

∂
=

 

As in Das et al [22] the equations (17) and (18) can be written in vector matrix 
different equation as  follows :  
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
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

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
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θ
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0        c        c          0

 c          0          0        c

 1          0          0           0
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p ,xu

p,x

p,xu

p,x
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d

o

/

/

4342

3431

/

/

   (21) 

  c31 = p(1+ τop),       c34 = ∈p (1+ τop) 

  c42 = αp2,     c43 = α             (22) 

The prime indicate differentiation with respect to x.  The equation (22) can be written 
as  

  ( ) ( ) ( ) ( )p,xB~p,xV~pA~p,xV~
dx
d

+=              (23) 

where  ( ) ( ) ( ) ( ) ( )[ ]T// p,xu,p,x,p,xu,p,xp,xV~ θθ=  

   ( ) ( )[ ]To 0 1, 0, 0, p1Q p,xB~ τ+−=  

and 
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


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4. Solution of the Vector−Matrixequation 

The rudiments of the solution methodology through eigenvalue approach as in Das 
et al [22]. We now proceed to solve equation (23) by eigenvalue approach.  

The characteristic equation of the matrix )p(A~  takes of the form  

   ( ) 0cccccc 423143344231
24 =+++λ−λ            (24) 

The roots of the characteristic equation (24) which are also the eigenvalues of the 
matrix A~   are of the form  

   λ = + λ1,   λ = + λ2              (25) 

where    

  43344231
2
2

2
1 cccc ++=λ+λ     

  4231
2
2

2
1 cc=λλ               (26) 

The right eigen vector [ ]T4321 x,x,x,xX~ =  corresponding to the eigenvalue λ can 
be written as  

   ( ) ( )[ ]T43
22

4243
2

42 c,c  ,c ,cX~ λ−λ−λλ−λ−=           (27) 

From (27) we can easily calculate the eigenvector iX~  corresponding to the 
eigenvalue λ = λ i , i = 1, 2, 3, 4. For our reference we shall use the following 
notations :  

 [ ] [ ] [ ] [ ]
2211

X~X~       ,X~X~       ,X~X~      ,X~X~ 4321 λ−=λλ=λλ−=λλ=λ ====           (28) 

The left eigenvector  [ ]4321 y,y,y,yY~ =  corresponding to the eigenvalue λ can be 
calculated as:  
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   ( ) ( )







 λ−λλ
λ−λ=

31

2

31

42
2

423442
2

c
  ,

c
c,c c  ,cY~            (29) 

For simplicity, henceforth, we shall denote them as  

 
2211

Y~Y~      ,Y~Y~     , Y~Y~       ,Y~Y~ 4321 λ−=λλ=λλ−=λλ=λ
====           (30) 

 

4.1 THERMAL SHOCK SEMI−SPACE PROBLEM 

We consider a semi−space homogeneous viscoelastic medium without heat source 
occupying in the region x > 0.  

For this case the solution of the equation (23) is of the form  

   ( ) x
42

x
21

21 eX~CeX~Cp,xV~ λ−λ− +=             (31) 

where the terms containing exponentials of  growing  nature  in the space variables 
have been discarded. The constants C1 and C2 are to be determined from the boundary 
conditions.  

   θ(0, t) = θoH(t) σ(0, t) = 0             (32) 

where H(t) is a Heaviside unit step function.  

Taking Laplace Transform of (32) we get  

  ( ) ( ) 0p 0,  and  
p

p,0 o =σ
θ

=θ               (33) 

From (31) we can find  

   ( ) [ ]x
22

x
1143

21 eCeCcp,xu~ λ−λ− λ−λ=            (34) 
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  ( ) ( ) ( ) x
2

2
242

x
1

2
142

21 eC ceC cp,x λ−λ− λ−+λ−=θ            (35) 

Using (33) in (34) and (35) we get,  

  ( ) ( )[ ]x
2

x
12

2
2
1

o 21 ee
p

p,xu λ−λ− λ−λ
λ−λ

αθ
−=             (36) 

  ( ) ( ) ( ) ( )[ ]x22
2

x22
12

2
2
1

o 21 epep
p

p,x λ−λ− α−λ−α−λ
λ−λ

θ
=θ           (37) 

From (36), (37) and (19) we get  

  ( ) [ ]xx
2
2

2
1

o 21 ee
p

p,x λ−λ− −
λ−λ
θα

=σ              (38) 

 

4.2 PROBLEM FOR A LAYER MEDIA 

Now we consider a viscoelastic medium occupying in the region  0 < x < X with 
adiabatic thermal boundary x = X.  

For this case the solution of the equation (23) without heat source is of the form  

  ( ) x
44

x
33

x
22

x
11

2211 eX~CeX~CeX~CeX~Cp,xV~ λ−λλ−λ +++=           (39) 

where the constants Ci, i = 1, 2, 3, 4 are to be determined  from the following  
conditions.  

The surface x = 0 is taken as traction free. Hence  

   σ(0, t) = 0,   or,   ( ) 0p ,0 =σ             (40) 

and is subjected to a thermal shock  
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   θ(0, t) = θoH(t),   or,   ( )
p

p ,0 oθ=θ           (41) 

At the rigid base x = X   

   u(X, t) = 0,    or,    ( ) 0p,Xu =             (42) 

and  

   q(X, t) = 0,     or, ( ) 0p,Xq =             (43) 

where q denotes the component of heat  flux vector  perpendicular to the surface  of 
the layer. Using Fourier’s law of heat conduction which is valid for the theory of 
thermoelasticity of one relaxation time parameter, equation (42) reduces to  

   0)p,X(/ =θ                (44) 

From (39) using (40) − (44) we get,  

   

( ) ( )

( ) ( )

( ) ( )Xcoshp2
e

C

Xcoshp2
e

C

Xcoshp2
e

C

2
2
2

2
1

X
o

3

1
2
2

2
1

X
o

2

1
2
2

2
1

X
o

1

2

1

1

λλ−λ
θ

=

λλ−λ
θ

−=

λλ−λ
θ

−=

λ−

λ

λ−

 

   ( ) ( )Xcoshp2
e

C
2

2
2

2
1

X
o

4

2

λλ−λ
θ

=
λ

             (45) 

Thus the displacement and temperature field can be written form (30) as  

 ( )
( ){ }
( )

( ){ }
( ) 








λ

−λ
λ−

λ
−λ

λ
λ−λ

αθ−
=

Xcosh
xXsinh

Xcosh
xXsinh

p
)p,x(u

2

2
2

1

1
12

2
2
1

o           (46) 
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( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ) 







λ

−λ
α−λ−

λ
−λ

α−λ
λ−λ

θ
=θ

Xcosh
xXcosh

p
Xcosh

xXcosh
p

p
)p,x(

2

222
2

1

122
12

2
2
1

o    (47) 

From   (46), (47) and (19) we get,  

  ( ) ( )
( ){ }
( )

( ){ }
( ) 








λ

−λ
−

λ
−λ

λ−λ
θα

=σ
Xcosh

xXcosh 
Xcosh

xXcosh 
 

p
p,x

2

2

1

1
2
2

2
1

o         (48) 

 

4.3 PLANE DISTRIBUTION OF HEAT SOURCES IN A VISCOELASTIC 

MEDIUM 

In this case we assume that heat source acts on the plane x = 0 and is of the form  

    ( ) ( ) ( )xtHQt,xQ o δ=            (49)  

where Qo is the constant heat and δ(x) is Dirae’s delta function. The laplace 
transform of (49) is  

    ( ) ( )
p
xQp,xQ o

δ
=            (50) 

Assuming the regularity condition at infinity as in Das et al [22], the solution  of 
the equation (23) can be written as  

  ( ) ( ) ( ) x
44

x
22

21 eX~xaeX~xap,xV~ λ−λ− +=  ,    for x > 0        (51) 

where  

  ( ) ( ) dzep,zB~Y~
X~Y~
1xa z

x

 z
2

22
2

1λ−

∞−=
∫=  ,       x > 0 

Therefore 
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2
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Similarly 

    ( ) ( )
4

42
2
22

2
o

4 V~
c

p
Q

xa
−λλ

=             (53) 

where    222 X~Y~V~ =   and    444 X~Y~V~ =    

The displacement and temperature field can be written from (51) as  

  ( ) ( ) ( )

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using (54) and (55)  in (19)  we can write  stress component  ( )p,xσ   as 
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Equations (54), (55) and (56) determine completely the state  of the solid for x > 
0.  The solution for the whole space (when the space x < 0 is also included) 
is obtained from (54), (55) and (56) by taking the symmetries under consideration.  
Thus, considering the heat source to act at the location x = c instead of x = 0, we 
may write down the field variables as follows 
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where the upper(plus) sign denotes the solution in the region x < c, while  the lower  
(minus)  sign denotes the solution in the region x > c.  

 

5. Numerical Solution  

The inversion of Laplace transform for temperature and stresses in the space time 
domain are very complex and we prefer to develop an efficient computer software for 
the purpose of inversion of this integral transform.  For the inversion of Laplace 
transform we follow the method of Bellman [24] and choose seven values of the time 
ti, i = 1 to 7 at which  stresses and temperature  are to be determined where ti  are the  
roots of the Legendre  polynomial of degree seven. 

 
k3

4µ  = 0.8   ,    β  = 0.05  ,        A =  0.106    , ∈ = 0.00165 

 τo = 0.02   ,     c =  5    ,  α* = 0.5     ,    and   X = 4 
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6. Concluding Remarks  

In order to study the stress and temperature we have drawn  several graphs 
(coupled and generalized; Fig.1 to Fig.8) for the different cases  i) thermal shock 
problem,  ii)  problem of lawer  medium and  iii)  plane distribution of  heat sources  
on whole  and semi space, for different values of the space variable and at times           
t1 = 0.025775,  t2 =  0.138382,  t3 =  0.352509,  t4 = 0.693147, t5 1.21376, t6 = 2.04612 
and t7 =  3.67119.  It is observed that   

1) The characteristic of the stress σ and temperature θ for the material considered 
in [16] are almost the same in respect of wave propagation for all the problems 
of i), ii) and iii) 

2) For fixed values of x, the amplitudes of stress σ gradually decreases with 
greater wave length as t increases. 

3) For fixed values of time the absolute values of the stress σ and temperature θ  
gradually decreases as x increases.  

4) For fixed values of space variable the absolute values of stress σ and 
temperature decreases as t increases.  

5) The distribution of temperature for the problem (iii) is symmetric with respect 
to the position of the heat source.  

Again it presents ome typical graphs (Fig.9 to Fig.16) from [23] for numerical 
checks to support the reliability of the present results. 
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