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Abstract

The fundamental equations of generalized thermoviscoel asticity with one
relaxation time parameter have been written in the form of a vector matrix
differential equation in Laplace transform domain and solve by eigenvalue
approach. The resulting formulation is applied to different cases: (i)
thermal shock problem, (ii) problem of Layer medium, both without heat
sources and (iii) plane distribution of heat sources on whole and
semi—space. Finally numerical results are given and illustrated graphically
for each problem. Comparisons are made with the results predicted by both
the coupled theory and with the theory of generalized thermoviscoel asticity
with onerelaxation time parameter.
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1. Introduction

Since the work of Maxwell, Boltzmen, Voigt, Kelvin and others, linear
viscoelasticity remains an important area of research. Gross [1], Staverman and
Schwarz [2]. Alfey and Gurnee [3] and Ferry [4] investigated the mechanical model
representation of linear viscoelastic behaviour results. Solutons of boundary value
problems for linear viscoelastic materials including temperature variations in both
quasi static and dynamic problems have experienced great strides in the last decades in
the works of Biot [5, 6], Morland and Lee [7], Tanner [8], and Huilga and
Phan—Thien [9]. Bland [10] linked the solution of linear—viscoelasticity problems to
corresponding linear elastic—solutions. An approximation method for the linear
thermal viscoelastic problems given by Gurtin and Sternberg [11]. Sternberg [12], and
liloushin [13]. One can refer to the book of lioushin and Pobedria [14] for a
formulation of the mathematical theory of thermal viscoelasticity and the solution of
some boundary value problems as well as the work of probedria [15] for the coupled
problems in continuum mechanics. Results of important experiments determining the
mechanical properties of viscoelastic materials were involved in the book by
Koltunov [16].

The classical uncoupled theory of thermoelasticity predicts two phenomena that
are not compatible with physical observations. First, the equation of heat conduction
of this theory does not contain any elastic terms contrary to the fact that the elastic
changes produce heat effects. Second, the heat equation is of a parabolic type,
predicting infinite speeds of propagation for heat waves.

Biot[17] formulated the theory of coupled thermoelasticity to eliminate the
paradox inherent in the classical uncoupled theory that elastic changes have no effect
on temperature. The heat equations for both theories of the diffusion type predict
infinite speeds of propagation for heat waves contrary to physical observations.

Severa problems of generalized thermoelasticity have been solved by following
either Lord and Shulman [18] (L—S theory) involves one relaxation time parameter or
Green and Lindsay [19] (G-L theory) with two relaxation time parameter. In both the
theories of conventional Fourier law of heat conduction has been modified to a
hyperbolic type of equation which along with the equations of motion of
thermoelasticity (which are hyperbolic type) are considered for the solution of the
problem. As such, both theories ensures finite speed of propagation of the waves and
eliminates automatically the paradox of infinite speeds of propagation inherent in both
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the uncoupled and coupled theories of thermoelasticity vide Chandrasekharaiah and
Keshavan [20].

In dealing with coupled or generalized thermoelastic problems, the solution
procedure is usually to choose a suitable thermoelastic potential function, but this
approach has certain limitations as discussed by Bahar and Hetnarski [21].

In the present article we apply eigenvalue approach develop in [22] to problem of
thermoviscoelasticity of one dimension with one relaxation time. The resulting
formulation is applied to three different cases in the presence or absence of heat
sources as Ezzat et a [23]. The solution for the cases are given in closed form in the
Laplace transform domain. The inversion of the transform is carried out using a
numerical inversion technique [24]. Some results are presented graphically.

2. Nomenclature

A, B, a* emperica constants

c: = k
p
Ce Specific heat at constant strain
k thermal conductivity
K =i+ %p Bulk modulus
% Poisson’sratio
Q Intensity of applied heat source per unit mass
t time
T Absolute temperature

To Reference temperature chosen that |T — To| << 1
U components of displacement vector
R(t) relaxation function

oT Coefficient of linear thermal expansion
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Y = 3Kor
- i PéE
C
o =
A, 0 Lame sconstants
p Density
cij  components of stress tensor
€ij  components of strain tensor
&ij components of strain deviator tensor
Sij components of stress deviator tensor

To Relaxation time parameter

3. Formulation of the Problem

We consider a thermoviscoelastic solid occuping in the region —co<x <oo. The
governing equations for generalized thermoviscoelasticity with one relaxation time
parameter consists of the equation of motion

Gij,j = pUi (1)

The generalised heat conduction equation
" d 0° d
T; = a‘*‘ro? (PCeT +7Tou;;) — 1+T05 Q (2)

The constitutive equation given by Pobedria [15] and Fung [25]
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o8 (X,7)
or

s =] Rt dr = R(e;) (3)

where,

S =g, —2kkg

e
i i 3 O € =€ ——0;, €=€y, O=0y

ij?
and R(t) is the relaxation function given by Koltunov [16] and Karamany [26]
R(t) = 2,{1— Aj ; e‘ﬁtta*‘ldt} (4)

where 0 < a* <1, A >0and 3 > 0. Ignoring the relaxation effects of the volume
properties we can write for the generalized theory of thermoviscoelasticity with one
relaxation time parameter.

c = K[e - 30LT(T - To] (5)
where

Gj 2
c=—, 'YZS(XTK, K:7\.+§M

Using (5) in (3) we get,
Gy = Ii(eij _gsijj_Y(T_To)Sij + Keij (6)
Equation (1) together with (6) reduces to
N . 1 2 l
pl; = R(EV u; +Ee,ij+Kevi —y(T-T,), (7)

The equation for one dimension becomes
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o’u (2- o%u
p atz :(§R+kj axz _Y(T_TO),X (8)
kazT— 2+r i( CeT+1T, @j—(l-l—'f QJQ (9)
ox2 ot e \PrEN T ey 5t
o, =[§§+kj%—y(T—TO) (10)

We now introduce the following non—dimensional variables

2
X*=CoNeX,  U*=Conol, ¥ =Conyt,

pCe + _ Oj

™ =c2n, 1, = , ;i =—,

oMo Mo K i~k
ngﬁ, R*:iR, QZY(T—_ZTO)_ (11)

p 3K pCo

Q

]

kToC§n§

Using the non—-dimensional variables to (8) — (10) and (4) becomes of the form
(dropping the asterisks)

o°u -~ ..0°u &0

= (R+1 = 12
ot? ( )6x2 OX (12)
%0 (o o° 0 0% \éu 0
—=—+1,— 0+e| —+1,— | ——|1+1,— 13
ox? [at T"atzj e[at TOatzjax ( T°ath (13)
o, =(F“e+1)@—e (14)

OX

= M At et

R(t) = S Ajoe & Lat) (15)

Taking the Laplace transform defined by
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f(p)= f e ™ f(t)dt (16)

to the equations (12) — (15) we get,

d*u . de
y = ap2u+ad—x (17)
d’e — du —
> = p(L+t,p)0+ € pL+ 1,p)—— — (1+1,P)Q (18)
dx dx
G, -~ M g (19)
o dx
and
R |, Arl) (20)
p| - (p+p)
2 2—
where L R8 l: = pﬁd—l:, o= 1 and I'(a’) isagamma function.
X dx 1+pR

We also assume that at time t = O the body is at rest; in an undeformed and
unstressed state and is maintained at the reference temperature, so the following initial

conditions hold.
u(x’ O) - M =0
ot

0(x,0) = 0

00(x,0)
ot

Asin Das et a [22] the equations (17) and (18) can be written in vector matrix
different equation as follows:
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16(x,p) |
u(x,p)

6'(x,p)

[T (x,p)]
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C31 = P(1+ top),

— 2
C42_ ap )

0(x,p) |
u(x,p)

6'(x,p)

u'(x,p)]

C3s = €p (1+ 10p)

Caz3 =

(21)

(22)

The prime indicate differentiation with respect to X. The equation (22) can be written

as

where V(x,p)= [§(x, p),u(x,p),0'(x,p).u’(x, p)]T

and

dx

A(p) =

9 J(x,p) = AV (x, p)+ B(x, p)

B(x,p)=-Q(L+1,p)[0,0,1,0]

(23)
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4. Solution of the Vector—M atrixequation

The rudiments of the solution methodology through eigenvalue approach asin Das
et a [22]. We now proceed to solve equation (23) by eigenvalue approach.

The characteristic equation of the matrix ,Z\(p) takes of the form
S (031 +Cp t+ C34(:43)‘|' CyCpp =0 (24)

The roots of the characteristic equation (24) which are also the eigenvalues of the
matrix A are of theform
A=+hy, A=+0 (25)

where

2 42
A1 +A, =Cq +Cyp +C3Cphy
2,2
Aih5 =CqCypp (26)

The right eigen vector X =[x,,X,,X,,X,]" corresponding to the eigenvalue % can
be written as

X =[lcs - 22) —2cis, Mew —27)—27c,s]' (27)

From (27) we can easily calculate the eigenvector )?i corresponding to the

eigenvalue A = Ai, i = 1, 2, 3, 4. For our reference we shall use the following
notations :
>~(1 = [)~(]Hl, )~(2 = [;(]x?xu >~(3 = [)z]}\=7h2’ >~(4 = [;(]x?xz (28)

The left eigenvector Y =[y,,y,,Y,.,Y,] corresponding to the eigenvalue A can be
calculated as:
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(7‘2 —Cp )’ }‘C34 042’7\‘(7“2—_042), 7»_2 (29)
Cat Ca

Y

For simplicity, henceforth, we shall denote them as

.Y, = M (30)

A=—h,

A I A

A=k

- Ya=[Y
A=—Ny A=h,

41 THERMAL SHOCK SEMI-SPACE PROBLEM

We consider a semi—space homogeneous viscoel astic medium without heat source
occupying in theregion x > 0.

For this case the solution of the equation (23) is of the form

V(x,p)=C,X,e"* +C,X & (31)

where the terms containing exponentials of growing nature in the space variables
have been discarded. The constants C; and C; are to be determined from the boundary

conditions.

6(0, t) = 6,H(t) o(0,t)=0 (32)

where H(t) isaHeaviside unit step function.

Taking Laplace Transform of (32) we get

_ 0 _

6(0.p)=" and 5(0,p)=0 (33)
From (31) we can find

U(x,p) = Cis Ci1, ™ —C1 877 | (34)
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6(x,p)= (042 - ki)Cle‘MX + (042 —kzz)Cze‘”zx (35)

Using (33) in (34) and (35) we get,
u(x, p) = —a;e%ﬁ)[xle‘“ e ] (36)
1 2
0(x,p) = a}éei—}é)[(ki —op’ )E_MX - (Kzz —ap’ )E_AZX ] (37)

From (36), (37) and (19) we get

— 0 —hyX —AoX
5(x,p)= }:}‘i ", e — ] (38)
1 2

42 PROBLEM FORA LAYER MEDIA

Now we consider a viscoelastic medium occupying in theregion 0 < x < X with
adiabatic thermal boundary x = X.

For this case the solution of the equation (23) without heat source is of the form

V(x,p)= C,X,&” +C,X e +C,X ¥ +C,X, e (39)

where the constants C;, i = 1, 2, 3, 4 are to be determined from the following
conditions.

The surface x = 0 istaken astraction free. Hence

c(0,t)=0, or, &(0,p)=0 (40)

and is subjected to athermal shock
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0(0, t) = O,H(t), or, é(o,p)z%o (41)

Attherigidbasex = X
uX,t)=0, or, T(X,p)=0 (42)
and
q(X,t)=0, or, g(X,p)=0 (43)
where q denotes the component of heat flux vector perpendicular to the surface of

the layer. Using Fourier's law of heat conduction which is valid for the theory of
thermoel asticity of one relaxation time parameter, equation (42) reduces to

6'(X,p)=0 (44)

From (39) using (40) — (44) we Qet,

0 efMX
C =— o
™ Ry vy
0 24X
C,=- 2 Ze
Zp(x‘l - lz)COSh(?\,lX)
0 e—xzx
C,= Y
2p(7‘1 - 7‘2)(:05'1(7‘2)()
0 e
= 0 45
" 2plh oot X) )
Thus the displacement and temperature field can be written form (30) as
x.p) = —ab, |, S|nh{?L1(X—x)}_7L sinh{i, (X —x)} (46)

p2-22)| " cosh(x,X) > cosh(),X)
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- 0, 2 o\Coshih, (X=x)} (. 5ycosh{h, (X —x))
O0x.P) = M[(xl P cosh(1,X) (kz ) cosh(x,X) (47
From (46), (47) and (19) we get,
— oy opd, |cosh{r,(X-x)} coshi{i,(X-x)}
ox.p)= (2 - 932){ cosh(i,X) cosh(r,X) (48)

4.3 PLANE DISTRIBUTION OF HEAT SOURCES IN A VISCOELASTIC
MEDIUM

In this case we assume that heat source acts on the plane x = 0 and is of the form

Q(x,t)= QH(t)3(x) (49)

where Q, is the constant heat and 6(x) is Dirae's delta function. The laplace
transform of (49) is

Qx.p)=Q, ? (50)

Assuming the regularity condition at infinity asin Das et al [22], the solution of
the equation (23) can be written as

V(x,p)=a,(x)X,e™* +a,(x)X,e” , for x>0 (51)
where
a,(x) == L j[\?z‘l?;(z,p)e dz, x>0
Y2x2 Z=-

Therefore
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X 2
az(x): _ 1~ j 7‘1(7‘1 _C42)Qo(1+ Top)S(Z)eszdZ, x>0
Yo X, Ca p
1 (i -cy)Q+1,p)
Yo X, Ca p
a,(x) = Q, 7¥1(7V21~ C42)
et
Similarly
o) & Pt
P vV,
where \72 = \72522 and \74 = \?4)?4

The displacement and temperature field can be written from (51) as

D) =

alp) - O {xi(xi ~Ca) i, Me_w}
p v, v,

and

p Vv,

4

6(x,p)= &{M e 4 Me“x}
! 2

using (54) and (55) in (19) we can write stresscomponent G(x,p) as

)= Qe
5(x,p) 7 v

V,

t

P

Q, {xi (=) o, 2205 o )e-xzx}

V4

V4

P 2
2 C42) e—sz ]

&[M e M 4 Ay (k

(52)

(53)

(54)

(59)

(56)
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Equations (54), (55) and (56) determine completely the state of the solid for x >
0. The solution for the whole space (when the space x < 0 is aso included)
is obtained from (54), (55) and (56) by taking the symmetries under consideration.
Thus, considering the heat source to act at the location x = ¢ instead of x = 0, we
may write down the field variables as follows

u(x,p) = 2 {Xi(ﬁg Cio) getnteon , 2505~ Ca) ot
P \2 V.

} (57)

2 2
é(x, p) - _& 7‘1(7‘21: C42) ei(fkl(H)) " Ay (7‘22 - C42) ei(sz(H)) (58)
v, v,

—~

Qo Meﬂ—m»c» . fz(ﬁi——c@) RN
Vv, V,

> = =

p V2 V4

where the upper(plus) sign denotes the solution in the region x < c, while the lower
(minus) sign denotes the solution in theregion x > c.

2 2 2 2
+ QO [M ei(_kl(x_c)) + kz(kz — C42) e*(Kl(XC))} (59)

5. Numerical Solution

The inversion of Laplace transform for temperature and stresses in the space time
domain are very complex and we prefer to develop an efficient computer software for
the purpose of inversion of this integral transform. For the inversion of Laplace
transform we follow the method of Bellman [24] and choose seven values of the time
ti, i = 1to 7 at which stresses and temperature are to be determined wheret; are the
roots of the Legendre polynomial of degree seven.

a 0.8
3k

,=002 , c=5 |, a =0.5

, B =0.05, A = 0.106 e = 0.00165

, and X =4
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6. Concluding Remarks

In order to study the stress and temperature we have drawn severa graphs
(coupled and generalized; Fig.1 to Fig.8) for the different cases i) therma shock
problem, ii) problem of lawer medium and iii) plane distribution of heat sources
on whole and semi space, for different values of the space variable and at times
t; = 0.025775, t, = 0.138382, t3 = 0.352509, t, = 0.693147, t5 1.21376, ts = 2.04612
and t; = 3.67119. It isobserved that

1) The characteristic of the stress ¢ and temperature 6 for the material considered
in [16] are almost the same in respect of wave propagation for all the problems
of i), ii) and ii)

2) For fixed values of x, the amplitudes of stress ¢ gradually decreases with
greater wave length ast increases.

3) For fixed values of time the absolute values of the stress ¢ and temperature 6
gradually decreases as x increases.

4) For fixed values of space variable the absolute values of stress ¢ and
temperature decreases ast increases.

5) The distribution of temperature for the problem (iii) is symmetric with respect
to the position of the heat source.

Again it presents ome typical graphs (Fig.9 to Fig.16) from [23] for numerical
checks to support the reliability of the present results.
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