Linear *-Derivations on C^* -Algebras*

Chun-Gil Park †

Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea.

Received July 29, 2005, Accepted October 5, 2005.

Abstract

It is shown that every almost linear almost *-derivation $h: A \to A$ on a unital C^* -algebra, JC^* -algebra, or Lie C^* -algebra A is a linear *-derivation when h(rx) = rh(x) (r > 1) for all $x \in A$.

We moreover prove the Cauchy–Rassias stability of linear *-derivations on unital C^* -algebras, on unital JC^* -algebras, or on unital Lie C^* algebras.

Keywords and Phrases: *JC*^{*}*-algebra, Lie C*^{*}*-algebra, Linear* **-derivation, Stability, Linear functional equation.*

1. Introduction

Let X and Y be Banach spaces with norms $|| \cdot ||$ and $|| \cdot ||$, respectively. Consider $f: X \to Y$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

 $||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p)$

^{*2000} Mathematics Subject Classification. 47C10, 39B52, 17Cxx, 46L05 †E-mail: cgparkmath.cnu.ac.kr

for all $x, y \in X$. Rassias [8] showed that there exists a unique \mathbb{R} -linear mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

for all $x \in X$. Găvruta [1] generalized the Rassias' result: Let G be an abelian group and Y a Banach space. Denote by $\varphi : G \times G \to [0, \infty)$ a function such that

$$\widetilde{\varphi}(x,y) = \sum_{j=0}^{\infty} 2^{-j} \varphi(2^j x, 2^j y) < \infty$$

for all $x, y \in G$. Suppose that $f: G \to Y$ is a mapping satisfying

$$||f(x+y) - f(x) - f(y)|| \le \varphi(x,y)$$

for all $x, y \in G$. Then there exists a unique additive mapping $T: G \to Y$ such that

$$||f(x) - T(x)|| \le \frac{1}{2}\widetilde{\varphi}(x,x)$$

for all $x \in G$. Park [5] applied the Găvruta's result to linear functional equations in Banach modules over a C^* -algebra.

Jun and Lee [2] proved the Cauchy–Rassias stability of Jensen's equation. C. Park and W. Park [7] applied the Jun and Lee's result to the Jensen's equation in Banach modules over a C^* -algebra.

Recently, Trif [9] proved the stability of a functional equation deriving from an inequality of Popoviciu for convex functions. And Park [6] applied the Trif's result to the Trif functional equation in Banach modules over a C^* -algebra.

Throughout this paper, let A be a unital C^* -algebra with norm $\|\cdot\|$, and U(A) be the unitary group of A. Let l and d be integers with $2 \leq l \leq d-1$, and r a real number greater than 1.

In this paper, we prove that every almost linear almost *-derivation $h : A \to A$ on a unital C^* -algebra, JC^* -algebra, or Lie C^* -algebra A is a linear *-derivation when h(rx) = rh(x) (r > 1) for all $x \in A$, and prove the Cauchy–Rassias stability of linear *-derivations on unital C^* -algebras, on unital JC^* -algebras, or on unital Lie C^* -algebras.

2. Linear *-Derivations on C^* -Algebras

Throughout this section, assume that h(rx) = rh(x) for all $x \in A$.

We are going to investigate linear *-derivations on C^* -algebras associated with the Cauchy functional equation.

Theorem 2.1 Let $h : A \to A$ be a mapping for which there exists a function $\varphi : A^2 \to [0, \infty)$ such that

$$\sum_{j=0}^{\infty} r^{-j} \varphi(r^j x, r^j y) < \infty, \tag{2.i}$$

$$||h(\mu x + \mu y) - \mu h(x) - \mu h(y)|| \le \varphi(x, y),$$
 (2.*ii*)

$$||h(r^{n}u^{*}) - h(r^{n}u)^{*}|| \le \varphi(r^{n}u, r^{n}u), \qquad (2.iii)$$

$$\|h(r^n uy) - h(r^n u)y - r^n uh(y)\| \le \varphi(r^n u, y)$$

$$(2.iv)$$

for all $\mu \in \mathbb{T}^1 := \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then the mapping $h : A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. Since h(0) = rh(0), h(0) = 0. Put $\mu = 1 \in \mathbb{T}^1$ in (2.ii). By (2.ii) and the assumption that h(rx) = rh(x) for all $x \in A$,

$$\|h(x+y) - h(x) - h(y)\| = \frac{1}{r^n} \|h(r^n x + r^n y) - h(r^n x) - h(r^n y)\|$$

$$\leq \frac{1}{r^n} \varphi(r^n x, r^n y)$$

which tends to zero as $n \to \infty$ by (2.i). So

$$h(x+y) = h(x) + h(y)$$
 (2.1)

for all $x, y \in A$.

Put y = 0 in (2.ii). By (2.ii) and the assumption that h(rx) = rh(x) for all $x \in A$,

$$\|h(\mu x) - \mu h(x)\| = \frac{1}{r^n} \|h(r^n \mu x) - \mu h(r^n x)\| \le \frac{1}{r^n} \varphi(r^n x, 0),$$

which tends to zero as $n \to \infty$ by (2.i). So

$$h(\mu x) = \mu h(x) \tag{2.2}$$

for all $x \in A$.

Now let $\lambda \in \mathbb{C}$ ($\lambda \neq 0$) and M an integer greater than $4|\lambda|$. Then $|\frac{\lambda}{M}| < \frac{1}{4} < 1 - \frac{2}{3} = \frac{1}{3}$. By [3, Theorem 1], there exist three elements $\mu_1, \mu_2, \mu_3 \in \mathbb{T}^1$ such that $3\frac{\lambda}{M} = \mu_1 + \mu_2 + \mu_3$. Thus by (2.1) and (2.2)

$$h(\lambda x) = h(\frac{M}{3} \cdot 3\frac{\lambda}{M}x) = M \cdot h(\frac{1}{3} \cdot 3\frac{\lambda}{M}x) = \frac{M}{3}h(3\frac{\lambda}{M}x)$$

= $\frac{M}{3}h(\mu_1 x + \mu_2 x + \mu_3 x) = \frac{M}{3}(h(\mu_1 x) + h(\mu_2 x) + h(\mu_3 x))$
= $\frac{M}{3}(\mu_1 + \mu_2 + \mu_3)h(x) = \frac{M}{3} \cdot 3\frac{\lambda}{M}h(x)$
= $\lambda h(x)$

for all $x \in A$. Hence

$$h(\zeta x + \eta y) = h(\zeta x) + h(\eta y) = \zeta h(x) + \eta h(y)$$

for all $\zeta, \eta \in \mathbb{C}(\zeta, \eta \neq 0)$ and all $x, y \in A$. And h(0x) = 0 = 0h(x) for all $x \in A$. So the mapping $h : A \to A$ is a \mathbb{C} -linear mapping.

By (2.iii) and the assumption that h(rx) = rh(x) for all $x \in A$,

$$||h(u^*) - h(u)^*|| = \frac{1}{r^n} ||h(r^n u^*) - h(r^n u)^*|| \le \frac{1}{r^n} \varphi(r^n u, r^n u),$$

which tends to zero as $n \to \infty$ by (2.i). So

$$h(u^*) = h(u)^*$$

for all $u \in U(A)$. Since $h : A \to A$ is \mathbb{C} -linear and each $x \in A$ is a finite linear combination of unitary elements (see [4, Theorem 4.1.7]), i.e., $x = \sum_{j=1}^{m} \lambda_j u_j \ (\lambda_j \in \mathbb{C}, u_j \in U(A)),$

$$h(x^*) = h(\sum_{j=1}^m \overline{\lambda_j} u_j^*) = \sum_{j=1}^m \overline{\lambda_j} h(u_j^*) = \sum_{j=1}^m \overline{\lambda_j} h(u_j)^* = (\sum_{j=1}^m \lambda_j h(u_j))^*$$
$$= h(\sum_{j=1}^m \lambda_j u_j)^* = h(x)^*$$

for all $x \in A$.

By (2.iv) and the assumption that h(rx) = rh(x) for all $x \in A$,

$$\begin{split} \|h(uy) - h(u)y - uh(y)\| &= \frac{1}{r^{2n}} \|h(r^n u \cdot r^n y) - h(r^n u)r^n y - r^n uh(r^n y)\| \\ &\leq \frac{1}{r^{2n}} \varphi(r^n u, r^n y) \leq \frac{1}{r^n} \varphi(r^n u, r^n y), \end{split}$$

which tends to zero as $n \to \infty$ by (2.i). So

$$h(uy) = h(u)y + uh(y)$$

for all $u \in U(A)$ and all $y \in A$. Since $h : A \to A$ is \mathbb{C} -linear and each $x \in A$ is a finite linear combination of unitary elements, i.e., $x = \sum_{j=1}^{m} \lambda_j u_j$ ($\lambda_j \in \mathbb{C}, u_j \in U(A)$),

$$h(xy) = h(\sum_{j=1}^{m} \lambda_j u_j y) = \sum_{j=1}^{m} \lambda_j h(u_j y) = \sum_{j=1}^{m} \lambda_j (h(u_j)y + u_j h(y))$$

= $h(\sum_{j=1}^{m} \lambda_j u_j)y + (\sum_{j=1}^{m} \lambda_j u_j)h(y) = h(x)y + xh(y)$

for all $x, y \in A$. Hence the mapping $h : A \to A$ is a \mathbb{C} -linear *-derivation, as desired. \Box

Corollary 2.2. Let $h : A \to A$ be a mapping for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|h(r^n u^*) - h(r^n u)^*\| &\leq 2r^{np}\theta, \\ \|h(r^n uy) - h(r^n u)y - r^n uh(y)\| &\leq \theta(r^{np} + \|y\|^p) \end{aligned}$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then the mapping $h : A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 2.1.

Theorem 2.3. Let $h : A \to A$ be a mapping for which there exists a function $\varphi : A^2 \to [0, \infty)$ satisfying (2.i), (2.iii), and (2.iv) such that

$$\|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| \le \varphi(x, y)$$
(2.v)

for $\mu = 1, i$, and all $x, y \in A$. If h(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then the mapping $h : A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. Put $\mu = 1$ in (2.v). By the same reasoning as in the proof of Theorem 2.1, the mapping $h : A \to A$ is additive. By the same reasoning as in the proof of [8, Theorem], the additive mapping $h : A \to A$ is \mathbb{R} -linear.

Put $\mu = i$ in (2.v). By the same method as in the proof of Theorem 2.1, one can obtain that

$$h(ix) = ih(x)$$

for all $x \in A$. For each element $\lambda \in \mathbb{C}$, $\lambda = s + it$, where $s, t \in \mathbb{R}$. So

$$h(\lambda x) = h(sx + itx) = sh(x) + th(ix) = sh(x) + ith(x) = (s + it)h(x)$$
$$= \lambda h(x)$$

for all $\lambda \in \mathbb{C}$ and all $x \in A$. So

$$h(\zeta x + \eta y) = h(\zeta x) + h(\eta y) = \zeta h(x) + \eta h(y)$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in A$. Hence the mapping $h : A \to A$ is \mathbb{C} -linear.

The rest of the proof is the same as in the proof of Theorem 2.1.

Now we are going to investigate linear *-derivations on C^* -algebras associated with the Jensen functional equation.

Theorem 2.4. Let $h: A \to A$ be a mapping for which there exists a function $\varphi: A^2 \to [0, \infty)$ satisfying (2.i), (2.iii), and (2.iv) such that

$$\|2h(\frac{\mu x + \mu y}{2}) - \mu h(x) - \mu h(y)\| \le \varphi(x, y),$$
(2.vi)

for all $\mu \in \mathbb{T}^1$ and all $x, y \in A$. Then the mapping $h : A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. Put $\mu = 1 \in \mathbb{T}^1$ in (2.vi). By (2.vi) and the assumption that h(rx) = rh(x) for all $x \in A$,

$$\begin{aligned} \|2h(\frac{x+y}{2}) - h(x) - h(y)\| &= \frac{1}{r^n} \|2h(\frac{r^n x + r^n y}{2}) - h(r^n x) - h(r^n y)\| \\ &\leq \frac{1}{r^n} \varphi(r^n x, r^n y), \end{aligned}$$

which tends to zero as $n \to \infty$ by (2.i). So

$$2h(\frac{x+y}{2}) = h(x) + h(y)$$
(2.3)

for all $x, y \in A$. Let y = 0 in (2.3). Then $2h(\frac{x}{2}) = h(x)$ for all $x \in A$. Thus

$$h(x+y) = 2h(\frac{x+y}{2}) = h(x) + h(y)$$

for all $x, y \in A$.

The rest of the proof is the same as in the proof of Theorem 2.1. \Box

One can obtain similar results to Corollary 2.2 and Theorem 2.3 for the Jensen functional equation.

We are going to investigate linear *-derivations on C^* -algebras associated with the Trif functional equation.

Theorem 2.5. Let $h : A \to A$ be a mapping for which there exists a function $\varphi : A^d \to [0, \infty)$ such that

$$\sum_{j=0}^{\infty} r^{-j} \varphi(r^j x_1, \cdots, r^j x_d) < \infty, \qquad (2.vii)$$

$$\|d_{d-2}C_{l-2}h(\frac{\mu x_{1} + \dots + \mu x_{d}}{d}) + {}_{d-2}C_{l-1}\sum_{j=1}^{d}\mu h(x_{j})$$
$$-l\sum_{1\leq j_{1}<\dots< j_{l}\leq d}\mu h(\frac{x_{j_{1}} + \dots + x_{j_{l}}}{l})\| \leq \varphi(x_{1},\dots,x_{d}), \qquad (2.viii)$$
$$\|h(r^{n}u^{*}) - h(r^{n}u)^{*}\| \leq \varphi(\underbrace{r^{n}u,\dots,r^{n}u}_{d \text{ times}}), \qquad (2.ix)$$
$$\|h(r^{n}uy) - h(r^{n}u)y - r^{n}uh(y)\| \leq \varphi(r^{n}u,\underbrace{y,\dots,y}_{d-1 \text{ times}})$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x_1, \dots, x_d \in A$. Then the mapping $h : A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. The proof is similar to the proofs of Theorems 2.1 and 2.4. \Box

One can obtain similar results to Corollary 2.2 and Theorem 2.3 for the Trif functional equation.

3. Linear *-Derivations on JC^* -Algebras and on Lie C^* -Algebras

The original motivation to introduce the class of nonassociative algebras known as Jordan algebras came from quantum mechanics (see [?]). Let H be a complex Hilbert space, regarded as the "state space" of a quantum mechanical system. Let L(H) be the real vector space of all bounded self-adjoint linear operators on H, interpreted as the (bounded) observables of the system. In 1932, Jordan observed that L(H) is a (nonassociative) algebra via the anticommutator product $x \circ y := \frac{xy+yx}{2}$. A commutative algebra X with product $x \circ y$ is called a Jordan algebra if $x^2 \circ (x \circ y) = x \circ (x^2 \circ y)$ holds.

A complex Jordan algebra C with product $x \circ y$ and involution $x \mapsto x^*$ is called a JB^* -algebra if C carries a Banach space norm $\|\cdot\|$ satisfying $\|x \circ y\| \leq$ $\|x\|\cdot\|y\|$ and $\|\{xx^*x\}\| = \|x\|^3$. Here $\{xy^*z\} := x \circ (y^* \circ z) - y^* \circ (z \circ x) + z \circ (x \circ y^*)$ denotes the Jordan triple product of $x, y, z \in C$. A Jordan C^* -subalgebra of a C^* -algebra, endowed with the anticommutator product, is called a JC^* algebra.

Throughout this section, assume that h(rx) = rh(x) for all $x \in A$.

We are going to investigate linear *-derivations on JC^* -algebras associated with the Cauchy functional equation.

Theorem 3.1. Let A be a unital JC^* -algebra. Let $h : A \to A$ be a mapping for which there exists a function $\varphi : A^2 \to [0, \infty)$ satisfying (2.i), (2.ii), and (2.iii) such that

$$\|h(r^n u \circ y) - h(r^n u) \circ y - r^n u \circ h(y)\| \le \varphi(r^n u, y)$$

for all $u \in U(A)$, $n = 0, 1, \dots$, and all $y \in A$. Then the mapping $h : A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. The proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let A be a unital JC^* -algebra. Let $h : A \to A$ be a mapping for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{split} \|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|h(r^n u^*) - h(r^n u)^*\| &\leq 2r^{np}\theta, \\ \|h(r^n u \circ y) - h(r^n u) \circ y - r^n u \circ h(y)\| &\leq \theta(r^{np} + \|y\|^p) \end{split}$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then the mapping $h: A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 3.1.

On JC^* -algebras, one can obtain similar results to Theorems 2.3, 2.4, and 2.5.

A unital C^* -algebra A, endowed with the Lie product [x, y] = xy - yx on A, is called a *Lie C^**-algebra. A \mathbb{C} -linear mapping D on a Lie C^* -algebra A is called a *Lie derivation* if D([x, y]) = [D(x), y] + [x, D(y)] holds for all $x, y \in A$.

Theorem 3.3. Let A be a unital Lie C*-algebra. Let $h : A \to A$ be a mapping for which there exists a function $\varphi : A^2 \to [0, \infty)$ satisfying (2.i), (2.ii), and (2.iii) such that

$$\|h([r^{n}u, y]) - [h(r^{n}u), y] - [r^{n}u, h(y)]\| \le \varphi(r^{n}u, y)$$

for all $u \in U(A)$, $n = 0, 1, \dots$, and all $y \in A$. Then the mapping $h : A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. The proof is similar to the proof of Theorem 2.1.

Corollary 3.4. Let A be a unital Lie C^{*}-algebra. Let $h : A \to A$ be a mapping for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|h(r^n u^*) - h(r^n u)^*\| &\leq 2r^{np}\theta, \\ \|h([r^n u, y]) - [h(r^n u), y] - [r^n u, h(y)]\| &\leq \theta(r^{np} + \|y\|^p) \end{aligned}$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then the mapping $h: A \to A$ is a \mathbb{C} -linear *-derivation.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 3.3.

On Lie C^* -algebras, one can obtain similar results to Theorems 2.3, 2.4, and 2.5.

4. Stability of Linear *-Derivations on C*-Algebras

We are going to show the Cauchy–Rassias stability of linear *-derivations on C^* -algebras associated with the Cauchy functional equation.

Theorem 4.1. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exists a function $\varphi : A^2 \to [0, \infty)$ such that

$$\widetilde{\varphi}(x,y) := \sum_{j=0}^{\infty} 2^{-j} \varphi(2^j x, 2^j y) < \infty, \tag{4.i}$$

$$\|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| \le \varphi(x, y), \tag{4.ii}$$

$$\|h(2^n u^*) - h(2^n u)^*\| \le \varphi(2^n u - 2^n u) \tag{4.iii}$$

$$\|n(2^{n}u) - n(2^{n}u)\| \le \varphi(2^{n}u, 2^{n}u), \qquad (4.11)$$

$$||h(2^{n}uy) - h(2^{n}u)y - 2^{n}uh(y)|| \le \varphi(2^{n}u, y)$$
(4.*iv*)

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ such that

$$\|h(x) - D(x)\| \le \frac{1}{2}\widetilde{\varphi}(x, x) \tag{4.v}$$

for all $x \in A$.

Proof. Put $\mu = 1 \in \mathbb{T}^1$ in (4.ii). It follows from Găvruta Theorem [?] that there exists a unique additive mapping $D : A \to A$ satisfying the inequality (4.v). The additive mapping $D : A \to A$ is given by

$$D(x) = \lim_{n \to \infty} \frac{1}{2^n} h(2^n x)$$
(4.1)

for all $x \in A$.

Put y = 0 in (4.ii). It follows from (4.ii) that

$$\frac{1}{2^n} \|h(2^n \mu x) - \mu h(2^n x)\| \le \frac{1}{2^n} \varphi(2^n x, 0),$$

which tends to zero as $n \to \infty$ by (4.i) for all $\mu \in \mathbb{T}^1$ and all $x \in A$. Hence

$$D(\mu x) = \lim_{n \to \infty} \frac{h(2^n \mu x)}{2^n} = \lim_{n \to \infty} \frac{\mu h(2^n x)}{2^n} = \mu D(x)$$

for all $\mu \in \mathbb{T}^1$ and all $x \in A$.

By the same method as in the proof of Theorem 2.1, one can show that the mapping $D: A \to A$ is \mathbb{C} -linear.

By (4.i) and (4.iii), we get

$$D(u^*) = \lim_{n \to \infty} \frac{h(2^n u^*)}{2^n} = \lim_{n \to \infty} \frac{h(2^n u)^*}{2^n} = (\lim_{n \to \infty} \frac{h(2^n u)}{2^n})^* = D(u)^*$$

for all $u \in U(A)$. By the same method as the proof of Theorem 2.1, one can show that

$$D(x^*) = D(x)^*$$

for all $x \in A$.

It follows from (4.1) that

$$D(x) = \lim_{n \to \infty} \frac{h(2^{2n}x)}{2^{2n}}$$
(4.2)

for all $x \in A$. By (4.iv),

$$\frac{1}{2^{2n}} \|h(2^n u \cdot 2^n y) - h(2^n u) 2^n y - 2^n u h(2^n y)\| \le \frac{1}{2^{2n}} \varphi(2^n u, 2^n y) \\
\le \frac{1}{2^n} \varphi(2^n u, 2^n y) \tag{4.3}$$

for all $x, y \in A$. By (4.i), (4.2), and (4.3),

$$D(uy) = \lim_{n \to \infty} \frac{h(2^{2n}uy)}{2^{2n}} = \lim_{n \to \infty} \frac{h(2^n u \cdot 2^n y)}{2^{2n}} = \lim_{n \to \infty} \left(\frac{1}{2^n} h(2^n u)y + u\frac{1}{2^n} h(2^n y)\right)$$
$$= D(u)y + uD(y)$$

for all $u \in U(A)$ and all $y \in A$.

The rest of the proof is similar to the proof of Theorem 2.1. Hence the mapping $D: A \to A$ is a \mathbb{C} -linear *-derivation satisfying the inequality (4.v), as desired.

Corollary 4.2. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|h(2^n u^*) - h(2^n u)^*\| &\leq 2 \cdot 2^{np}\theta, \\ \|h(2^n uy) - h(2^n u)y - 2^n uh(y)\| &\leq \theta(2^{np} + \|y\|^p) \end{aligned}$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ such that

$$||h(x) - D(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

for all $x \in A$.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 4.1.

One can obtain a similar result to Theorem 2.3 for the Cauchy functional equation.

Now we are going to show the Cauchy–Rassias stability of linear *-derivations on C^* -algebras associated with the Jensen functional equation.

Theorem 4.3. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exists a function $\varphi : A^2 \to [0, \infty)$ such that

$$\widetilde{\varphi}(x,y) := \sum_{j=0}^{\infty} 3^{-j} \varphi(3^j x, 3^j y) < \infty, \tag{4.vi}$$

$$\|2h(\frac{\mu x + \mu y}{2}) - \mu h(x) - \mu h(y)\| \le \varphi(x, y), \tag{4.vii}$$

$$||h(3^{n}u^{*}) - h(3^{n}u)^{*}|| \leq \varphi(3^{n}u, 3^{n}u), \qquad (4.viii)$$

$$\|h(3^{n}uy) - h(3^{n}u)y - 3^{n}uh(y)\| \le \varphi(3^{n}u, y)$$
(4.*ix*)

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A \setminus \{0\}$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ such that

$$\|h(x) - D(x)\| \le \frac{1}{3}(\widetilde{\varphi}(x, -x) + \widetilde{\varphi}(-x, 3x)) \tag{4.x}$$

for all $x \in A \setminus \{0\}$.

Proof. Put $\mu = 1 \in \mathbb{T}^1$ in (4.vii). It follows from Jun and Lee Theorem [2, Theorem 1] that there exists a unique additive mapping $D : A \to A$ satisfying the inequality (4.x). The additive mapping $D : A \to A$ is given by

$$D(x) = \lim_{n \to \infty} \frac{1}{3^n} h(3^n x)$$

for all $x \in A$.

The rest of the proof is similar to the proofs of Theorems 2.1 and 4.1. \Box

Corollary 4.4. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|h(3^n u^*) - h(3^n u)^*\| &\leq 2 \cdot 3^{np} \theta, \\ \|h(3^n uy) - h(3^n u)y - 3^n u h(y)\| &\leq \theta(3^{np} + \|y\|^p) \end{aligned}$$

166

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ such that

$$||h(x) - D(x)|| \le \frac{3+3^p}{3-3^p} \theta ||x||^p$$

for all $x \in A \setminus \{0\}$.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 4.3.

One can obtain a similar result to Theorem 2.3 for the Jensen functional equation.

Now we are going to show the Cauchy–Rassias stability of linear *-derivations on C^* -algebras associated with the Trif functional equation.

Theorem 4.5. Let $q = \frac{l(d-1)}{d-l}$ and $q' = -\frac{l}{d-l}$. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exists a function $\varphi : A^d \to [0, \infty)$ such that

$$\widetilde{\varphi}(x_1,\cdots,x_d) := \sum_{j=0}^{\infty} q^{-j} \varphi(q^j x_1,\cdots,q^j x_d) < \infty, \qquad (4.xi)$$

$$\|d_{d-2}C_{l-2}h(\frac{\mu x_1 + \dots + \mu x_d}{d}) + {}_{d-2}C_{l-1}\sum_{j=1}^d \mu h(x_j) - l\sum_{1 \le j_1 < \dots < j_l \le d} \mu h(\frac{x_{j_1} + \dots + x_{j_l}}{l}) \| \le \varphi(x_1, \dots, x_d), \quad (4.xii)$$

$$\|h(q^n u^*) - h(q^n u)^*\| \le \varphi(\underbrace{q^n u, \cdots, q^n u}_{d \text{ times}}), \qquad (4.xiii)$$

$$\|h(q^{n}uy) - h(q^{n}u)y - q^{n}uh(y)\| \le \varphi(q^{n}u, \underbrace{y, \cdots, y}_{d-1 \text{ times}})$$

$$(4.xiv)$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x_1, \dots, x_d \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ such that

$$\|h(x) - D(x)\| \le \frac{1}{l \cdot d - 1} \widetilde{\varphi}(qx, \underbrace{q'x, \cdots, q'x}_{d-1 \text{ times}})$$

$$(4.xv)$$

for all $x \in A$.

Chun-Gil Park

Proof. Put $\mu = 1 \in \mathbb{T}^1$ in (4.xii). It follows from Trif Theorem [9, Theorem 3.1] that there exists a unique additive mapping $D : A \to A$ satisfying the inequality (4.xv). The additive mapping $D : A \to A$ is given by

$$D(x) = \lim_{n \to \infty} \frac{1}{q^n} h(q^n x)$$

for all $x \in A$.

The rest of the proof is similar to the proofs of Theorems 2.1 and 4.1. \Box

Corollary 4.6. Let $q = \frac{l(d-1)}{d-l}$. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exist constants $\theta \ge 0$ and $p \in [0,1)$ such that

$$\begin{aligned} |d_{d-2}C_{l-2}h(\frac{\mu x_1 + \dots + \mu x_d}{d}) + {}_{d-2}C_{l-1}\sum_{j=1}^d \mu h(x_j) \\ -l\sum_{1 \le j_1 < \dots < j_l \le d} \mu h(\frac{x_{j_1} + \dots + x_{j_l}}{l}) || \le \theta(\sum_{j=1}^d ||x_j||^p), \\ ||h(q^n u^*) - h(q^n u)^*|| \le dq^{np}\theta, \\ ||h(q^n uy) - h(q^n u)y - q^n uh(y)|| \le \theta(q^{np} + (d-1)||y||^p) \end{aligned}$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x_1, \dots, x_d \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ such that

$$\|h(x) - D(x)\| \le \frac{q^{1-p}(q^p + (d-1)r^p)\theta}{l_{d-1}C_{l-1}(q^{1-p} - 1)} \|x\|^p$$

for all $x \in A$.

Proof. Define $\varphi(x_1, \dots, x_d) = \theta(\sum_{j=1}^d ||x_j||^p)$, and apply Theorem 4.5.

One can obtain a similar result to Theorem 2.3 for the Trif functional equation.

5. Stability of Linear *-Derivations on JC^* -Algebras and On Lie C^* -Algebras

We are going to show the Cauchy–Rassias stability of linear *-derivations on JC^* -algebras associated with the Cauchy functional equation.

Theorem 5.1. Let A be a unital JC^* -algebra. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exists a function $\varphi : A^2 \to [0, \infty)$ satisfying (4.i), (4.ii), and (4.iii) such that

$$||h(2^{n}u \circ y) - h(2^{n}u) \circ y - 2^{n}u \circ h(y)|| \le \varphi(2^{n}u, y)$$

for all $u \in U(A)$, $n = 0, 1, \dots$, and all $y \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ satisfying the inequality (4.v).

Proof. The proof is similar to the proofs of Theorems 2.1 and 4.1.

Corollary 5.2. Let A be a unital JC^* -algebra. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|h(2^n u^*) - h(2^n u)^*\| &\leq 2 \cdot 2^{np}\theta, \\ \|h(2^n u \circ y) - h(2^n u) \circ y - 2^n u \circ h(y)\| &\leq \theta(2^{np} + \|y\|^p) \end{aligned}$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ such that

$$||h(x) - D(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

for all $x \in A$.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 5.1.

On JC^* -algebras, one can obtain similar results to Theorems 4.3 and 4.5, and Corollaries 4.4 and 4.6.

Now we are going to show the Cauchy–Rassias stability of linear *-derivations on Lie C^* -algebras associated with the Cauchy functional equation.

Theorem 5.3. Let A be a unital Lie C^{*}-algebra. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exists a function $\varphi : A^2 \to [0, \infty)$ satisfying (4.i), (4.ii), and (4.iii) such that

$$||h([2^n u, y]) - [h(2^n u), y] - [2^n u, h(y)]|| \le \varphi(2^n u, y)$$

for all $u \in U(A)$, $n = 0, 1, \dots$, and all $y \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ satisfying the inequality (4.v).

Proof. The proof is similar to the proofs of Theorems 2.1 and 4.1.

Corollary 5.4. Let A be a unital Lie C^{*}-algebra. Let $h : A \to A$ be a mapping with h(0) = 0 for which there exist constants $\theta \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|h(\mu x + \mu y) - \mu h(x) - \mu h(y)\| &\leq \theta(\|x\|^p + \|y\|^p), \\ \|h(2^n u^*) - h(2^n u)^*\| &\leq 2 \cdot 2^{np} \theta, \\ \|h([2^n u, y]) - [h(2^n u), y] - [2^n u, h(y)]\| &\leq \theta(2^{np} + \|y\|^p) \end{aligned}$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(A)$, $n = 0, 1, \dots$, and all $x, y \in A$. Then there exists a unique \mathbb{C} -linear *-derivation $D : A \to A$ such that

$$||h(x) - D(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

for all $x \in A$.

Proof. Define $\varphi(x, y) = \theta(||x||^p + ||y||^p)$, and apply Theorem 5.3.

On Lie C^* -algebras, one can obtain similar results to Theorems 4.3 and 4.5, and Corollaries 4.4 and 4.6.

References

- P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [2] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
- [3] R. V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, *Math. Scand.* 57 (1985), 249-266.
- [4] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, New York, 1983.
- [5] C. Park , On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.

- [6] C. Park, Modified Trif's functional equations in Banach modules over a C*-algebra and approximate algebra homomorphisms, J. Math. Anal. Appl. 278 (2003), 93-108.
- [7] C. Park and W. Park, On the Jensen's equation in Banach modules, *Taiwanese J. Math.* 6 (2002), 523-531.
- [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [9] T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604-616.
- [10] H. Upmeier, Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics, Regional Conference Series in Mathematics, Amer. Math. Soc. 67 (1987), Providence.