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Abstract

It is shown that every almost linear almost ∗-derivation h : A → A
on a unital C∗-algebra, JC∗-algebra, or Lie C∗-algebra A is a linear
∗-derivation when h(rx) = rh(x) (r > 1) for all x ∈ A.

We moreover prove the Cauchy–Rassias stability of linear ∗-derivations
on unital C∗-algebras, on unital JC∗-algebras, or on unital Lie C∗-
algebras.

Keywords and Phrases: JC∗-algebra, Lie C∗-algebra, Linear ∗-derivation,
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1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively.
Consider f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R
for each fixed x ∈ X. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1)
such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)
∗2000 Mathematics Subject Classification. 47C10, 39B52, 17Cxx, 46L05
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for all x, y ∈ X. Rassias [8] showed that there exists a unique R-linear mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X. Găvruta [1] generalized the Rassias’ result: Let G be an abelian
group and Y a Banach space. Denote by ϕ : G×G → [0,∞) a function such
that

ϕ̃(x, y) =
∞∑

j=0

2−jϕ(2jx, 2jy) < ∞

for all x, y ∈ G. Suppose that f : G → Y is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → Y such
that

‖f(x)− T (x)‖ ≤ 1

2
ϕ̃(x, x)

for all x ∈ G. Park [5] applied the Găvruta’s result to linear functional equa-
tions in Banach modules over a C∗-algebra.

Jun and Lee [2] proved the Cauchy–Rassias stability of Jensen’s equation.
C. Park and W. Park [7] applied the Jun and Lee’s result to the Jensen’s
equation in Banach modules over a C∗-algebra.

Recently, Trif [9] proved the stability of a functional equation deriving from
an inequality of Popoviciu for convex functions. And Park [6] applied the Trif’s
result to the Trif functional equation in Banach modules over a C∗-algebra.

Throughout this paper, let A be a unital C∗-algebra with norm ‖ · ‖, and
U(A) be the unitary group of A. Let l and d be integers with 2 ≤ l ≤ d − 1,
and r a real number greater than 1.

In this paper, we prove that every almost linear almost ∗-derivation h :
A → A on a unital C∗-algebra, JC∗-algebra, or Lie C∗-algebra A is a linear
∗-derivation when h(rx) = rh(x) (r > 1) for all x ∈ A, and prove the Cauchy–
Rassias stability of linear ∗-derivations on unital C∗-algebras, on unital JC∗-
algebras, or on unital Lie C∗-algebras.
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2. Linear ∗-Derivations on C∗-Algebras

Throughout this section, assume that h(rx) = rh(x) for all x ∈ A.
We are going to investigate linear ∗-derivations on C∗-algebras associated

with the Cauchy functional equation.

Theorem 2.1 Let h : A → A be a mapping for which there exists a function
ϕ : A2 → [0,∞) such that

∞∑
j=0

r−jϕ(rjx, rjy) < ∞, (2.i)

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y), (2.ii)

‖h(rnu∗)− h(rnu)∗‖ ≤ ϕ(rnu, rnu), (2.iii)

‖h(rnuy)− h(rnu)y − rnuh(y)‖ ≤ ϕ(rnu, y) (2.iv)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1}, all u ∈ U(A), n = 0, 1, · · · , and all
x, y ∈ A. Then the mapping h : A → A is a C-linear ∗-derivation.

Proof. Since h(0) = rh(0), h(0) = 0. Put µ = 1 ∈ T1 in (2.ii). By (2.ii) and
the assumption that h(rx) = rh(x) for all x ∈ A,

‖h(x + y)− h(x)− h(y)‖ =
1

rn
‖h(rnx + rny)− h(rnx)− h(rny)‖

≤ 1

rn
ϕ(rnx, rny)

which tends to zero as n →∞ by (2.i). So

h(x + y) = h(x) + h(y) (2.1)

for all x, y ∈ A.
Put y = 0 in (2.ii). By (2.ii) and the assumption that h(rx) = rh(x) for

all x ∈ A,

‖h(µx)− µh(x)‖ =
1

rn
‖h(rnµx)− µh(rnx)‖ ≤ 1

rn
ϕ(rnx, 0),

which tends to zero as n →∞ by (2.i). So

h(µx) = µh(x) (2.2)
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for all x ∈ A.
Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ|. Then

| λ
M
| < 1

4
< 1 − 2

3
= 1

3
. By [3, Theorem 1], there exist three elements

µ1, µ2, µ3 ∈ T1 such that 3 λ
M

= µ1 + µ2 + µ3. Thus by (2.1) and (2.2)

h(λx) = h(
M

3
· 3 λ

M
x) = M · h(

1

3
· 3 λ

M
x) =

M

3
h(3

λ

M
x)

=
M

3
h(µ1x + µ2x + µ3x) =

M

3
(h(µ1x) + h(µ2x) + h(µ3x))

=
M

3
(µ1 + µ2 + µ3)h(x) =

M

3
· 3 λ

M
h(x)

= λh(x)

for all x ∈ A. Hence

h(ζx + ηy) = h(ζx) + h(ηy) = ζh(x) + ηh(y)

for all ζ, η ∈ C(ζ, η 6= 0) and all x, y ∈ A. And h(0x) = 0 = 0h(x) for all
x ∈ A. So the mapping h : A → A is a C-linear mapping.

By (2.iii) and the assumption that h(rx) = rh(x) for all x ∈ A,

‖h(u∗)− h(u)∗‖ =
1

rn
‖h(rnu∗)− h(rnu)∗‖ ≤ 1

rn
ϕ(rnu, rnu),

which tends to zero as n →∞ by (2.i). So

h(u∗) = h(u)∗

for all u ∈ U(A). Since h : A → A is C-linear and each x ∈ A is a
finite linear combination of unitary elements (see [4, Theorem 4.1.7]), i.e.,
x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

h(x∗) = h(
m∑

j=1

λju
∗
j) =

m∑
j=1

λjh(u∗j) =
m∑

j=1

λjh(uj)
∗ = (

m∑
j=1

λjh(uj))
∗

= h(
m∑

j=1

λjuj)
∗ = h(x)∗
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for all x ∈ A.
By (2.iv) and the assumption that h(rx) = rh(x) for all x ∈ A,

‖h(uy)− h(u)y − uh(y)‖ =
1

r2n
‖h(rnu · rny)− h(rnu)rny − rnuh(rny)‖

≤ 1

r2n
ϕ(rnu, rny) ≤ 1

rn
ϕ(rnu, rny),

which tends to zero as n →∞ by (2.i). So

h(uy) = h(u)y + uh(y)

for all u ∈ U(A) and all y ∈ A. Since h : A → A is C-linear and each x ∈ A
is a finite linear combination of unitary elements, i.e., x =

∑m
j=1 λjuj (λj ∈

C, uj ∈ U(A)),

h(xy) = h(
m∑

j=1

λjujy) =
m∑

j=1

λjh(ujy) =
m∑

j=1

λj(h(uj)y + ujh(y))

= h(
m∑

j=1

λjuj)y + (
m∑

j=1

λjuj)h(y) = h(x)y + xh(y)

for all x, y ∈ A. Hence the mapping h : A → A is a C-linear ∗-derivation, as
desired.

Corollary 2.2. Let h : A → A be a mapping for which there exist constants
θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖h(rnu∗)− h(rnu)∗‖ ≤ 2rnpθ,

‖h(rnuy)− h(rnu)y − rnuh(y)‖ ≤ θ(rnp + ‖y‖p)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A. Then the
mapping h : A → A is a C-linear ∗-derivation.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 2.1.

Theorem 2.3. Let h : A → A be a mapping for which there exists a function
ϕ : A2 → [0,∞) satisfying (2.i), (2.iii), and (2.iv) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y) (2.v)
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for µ = 1, i, and all x, y ∈ A. If h(tx) is continuous in t ∈ R for each fixed
x ∈ A, then the mapping h : A → A is a C-linear ∗-derivation.

Proof. Put µ = 1 in (2.v). By the same reasoning as in the proof of Theorem
2.1, the mapping h : A → A is additive. By the same reasoning as in the proof
of [8, Theorem], the additive mapping h : A → A is R-linear.

Put µ = i in (2.v). By the same method as in the proof of Theorem 2.1,
one can obtain that

h(ix) = ih(x)

for all x ∈ A. For each element λ ∈ C, λ = s + it, where s, t ∈ R. So

h(λx) = h(sx + itx) = sh(x) + th(ix) = sh(x) + ith(x) = (s + it)h(x)

= λh(x)

for all λ ∈ C and all x ∈ A. So

h(ζx + ηy) = h(ζx) + h(ηy) = ζh(x) + ηh(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the mapping h : A → A is C-linear.
The rest of the proof is the same as in the proof of Theorem 2.1.
Now we are going to investigate linear ∗-derivations on C∗-algebras asso-

ciated with the Jensen functional equation.

Theorem 2.4. Let h : A → A be a mapping for which there exists a function
ϕ : A2 → [0,∞) satisfying (2.i), (2.iii), and (2.iv) such that

‖2h(
µx + µy

2
)− µh(x)− µh(y)‖ ≤ ϕ(x, y), (2.vi)

for all µ ∈ T1 and all x, y ∈ A. Then the mapping h : A → A is a C-linear
∗-derivation.

Proof. Put µ = 1 ∈ T1 in (2.vi). By (2.vi) and the assumption that h(rx) =
rh(x) for all x ∈ A,

‖2h(
x + y

2
)− h(x)− h(y)‖ =

1

rn
‖2h(

rnx + rny

2
)− h(rnx)− h(rny)‖

≤ 1

rn
ϕ(rnx, rny),
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which tends to zero as n →∞ by (2.i). So

2h(
x + y

2
) = h(x) + h(y) (2.3)

for all x, y ∈ A. Let y = 0 in (2.3). Then 2h(x
2
) = h(x) for all x ∈ A. Thus

h(x + y) = 2h(
x + y

2
) = h(x) + h(y)

for all x, y ∈ A.
The rest of the proof is the same as in the proof of Theorem 2.1.
One can obtain similar results to Corollary 2.2 and Theorem 2.3 for the

Jensen functional equation.
We are going to investigate linear ∗-derivations on C∗-algebras associated

with the Trif functional equation.

Theorem 2.5. Let h : A → A be a mapping for which there exists a function
ϕ : Ad → [0,∞) such that

∞∑
j=0

r−jϕ(rjx1, · · · , rjxd) < ∞, (2.vii)

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
) + d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)‖ ≤ ϕ(x1, · · · , xd), (2.viii)

‖h(rnu∗)− h(rnu)∗‖ ≤ ϕ(rnu, · · · , rnu︸ ︷︷ ︸
d times

), (2.ix)

‖h(rnuy)− h(rnu)y − rnuh(y)‖ ≤ ϕ(rnu, y, · · · , y︸ ︷︷ ︸
d− 1 times

)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x1, · · · , xd ∈ A. Then the
mapping h : A → A is a C-linear ∗-derivation.

Proof. The proof is similar to the proofs of Theorems 2.1 and 2.4.
One can obtain similar results to Corollary 2.2 and Theorem 2.3 for the

Trif functional equation.
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3. Linear ∗-Derivations on JC∗-Algebras and on

Lie C∗-Algebras

The original motivation to introduce the class of nonassociative algebras
known as Jordan algebras came from quantum mechanics (see [?]). Let H be a
complex Hilbert space, regarded as the “state space” of a quantum mechanical
system. Let L(H) be the real vector space of all bounded self-adjoint linear
operators on H, interpreted as the (bounded) observables of the system. In
1932, Jordan observed that L(H) is a (nonassociative) algebra via the anti-
commutator product x ◦ y := xy+yx

2
. A commutative algebra X with product

x ◦ y is called a Jordan algebra if x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) holds.
A complex Jordan algebra C with product x ◦ y and involution x 7→ x∗ is

called a JB∗-algebra if C carries a Banach space norm ‖·‖ satisfying ‖x◦y‖ ≤
‖x‖·‖y‖ and ‖{xx∗x}‖ = ‖x‖3. Here {xy∗z} := x◦(y∗◦z)−y∗◦(z◦x)+z◦(x◦y∗)
denotes the Jordan triple product of x, y, z ∈ C. A Jordan C∗-subalgebra of
a C∗-algebra, endowed with the anticommutator product, is called a JC∗-
algebra.

Throughout this section, assume that h(rx) = rh(x) for all x ∈ A.
We are going to investigate linear ∗-derivations on JC∗-algebras associated

with the Cauchy functional equation.

Theorem 3.1. Let A be a unital JC∗-algebra. Let h : A → A be a mapping
for which there exists a function ϕ : A2 → [0,∞) satisfying (2.i), (2.ii), and
(2.iii) such that

‖h(rnu ◦ y)− h(rnu) ◦ y − rnu ◦ h(y)‖ ≤ ϕ(rnu, y)

for all u ∈ U(A), n = 0, 1, · · · , and all y ∈ A. Then the mapping h : A → A
is a C-linear ∗-derivation.

Proof. The proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let A be a unital JC∗-algebra. Let h : A → A be a mapping
for which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖h(rnu∗)− h(rnu)∗‖ ≤ 2rnpθ,

‖h(rnu ◦ y)− h(rnu) ◦ y − rnu ◦ h(y)‖ ≤ θ(rnp + ‖y‖p)
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for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A. Then the mapping
h : A → A is a C-linear ∗-derivation.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 3.1.
On JC∗-algebras, one can obtain similar results to Theorems 2.3, 2.4, and

2.5.
A unital C∗-algebra A, endowed with the Lie product [x, y] = xy − yx on

A, is called a Lie C∗-algebra. A C-linear mapping D on a Lie C∗-algebra A is
called a Lie derivation if D([x, y]) = [D(x), y]+[x, D(y)] holds for all x, y ∈ A.

Theorem 3.3. Let A be a unital Lie C∗-algebra. Let h : A → A be a mapping
for which there exists a function ϕ : A2 → [0,∞) satisfying (2.i), (2.ii), and
(2.iii) such that

‖h([rnu, y])− [h(rnu), y]− [rnu, h(y)]‖ ≤ ϕ(rnu, y)

for all u ∈ U(A), n = 0, 1, · · · , and all y ∈ A. Then the mapping h : A → A
is a C-linear ∗-derivation.

Proof. The proof is similar to the proof of Theorem 2.1.

Corollary 3.4. Let A be a unital Lie C∗-algebra. Let h : A → A be a mapping
for which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖h(rnu∗)− h(rnu)∗‖ ≤ 2rnpθ,

‖h([rnu, y])− [h(rnu), y]− [rnu, h(y)]‖ ≤ θ(rnp + ‖y‖p)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A. Then the mapping
h : A → A is a C-linear ∗-derivation.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 3.3.
On Lie C∗-algebras, one can obtain similar results to Theorems 2.3, 2.4,

and 2.5.

4. Stability of Linear ∗-Derivations on C∗-Algebras

We are going to show the Cauchy–Rassias stability of linear ∗-derivations
on C∗-algebras associated with the Cauchy functional equation.



164 Chun-Gil Park

Theorem 4.1. Let h : A → A be a mapping with h(0) = 0 for which there
exists a function ϕ : A2 → [0,∞) such that

ϕ̃(x, y) :=
∞∑

j=0

2−jϕ(2jx, 2jy) < ∞, (4.i)

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y), (4.ii)

‖h(2nu∗)− h(2nu)∗‖ ≤ ϕ(2nu, 2nu), (4.iii)

‖h(2nuy)− h(2nu)y − 2nuh(y)‖ ≤ ϕ(2nu, y) (4.iv)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A. Then there exists
a unique C-linear ∗-derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 1

2
ϕ̃(x, x) (4.v)

for all x ∈ A.

Proof. Put µ = 1 ∈ T1 in (4.ii). It follows from Găvruta Theorem [?] that
there exists a unique additive mapping D : A → A satisfying the inequality
(4.v). The additive mapping D : A → A is given by

D(x) = lim
n→∞

1

2n
h(2nx) (4.1)

for all x ∈ A.
Put y = 0 in (4.ii). It follows from (4.ii) that

1

2n
‖h(2nµx)− µh(2nx)‖ ≤ 1

2n
ϕ(2nx, 0),

which tends to zero as n →∞ by (4.i) for all µ ∈ T1 and all x ∈ A. Hence

D(µx) = lim
n→∞

h(2nµx)

2n
= lim

n→∞

µh(2nx)

2n
= µD(x)

for all µ ∈ T1 and all x ∈ A.
By the same method as in the proof of Theorem 2.1, one can show that

the mapping D : A → A is C-linear.
By (4.i) and (4.iii), we get

D(u∗) = lim
n→∞

h(2nu∗)

2n
= lim

n→∞

h(2nu)∗

2n
= ( lim

n→∞

h(2nu)

2n
)∗ = D(u)∗
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for all u ∈ U(A). By the same method as the proof of Theorem 2.1, one can
show that

D(x∗) = D(x)∗

for all x ∈ A.
It follows from (4.1) that

D(x) = lim
n→∞

h(22nx)

22n
(4.2)

for all x ∈ A. By (4.iv),

1

22n
‖h(2nu · 2ny)− h(2nu)2ny − 2nuh(2ny)‖ ≤ 1

22n
ϕ(2nu, 2ny)

≤ 1

2n
ϕ(2nu, 2ny) (4.3)

for all x, y ∈ A. By (4.i), (4.2), and (4.3),

D(uy) = lim
n→∞

h(22nuy)

22n
= lim

n→∞

h(2nu · 2ny)

22n
= lim

n→∞
(

1

2n
h(2nu)y + u

1

2n
h(2ny))

= D(u)y + uD(y)

for all u ∈ U(A) and all y ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1. Hence the

mapping D : A → A is a C-linear ∗-derivation satisfying the inequality (4.v),
as desired.

Corollary 4.2. Let h : A → A be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖h(2nu∗)− h(2nu)∗‖ ≤ 2 · 2npθ,

‖h(2nuy)− h(2nu)y − 2nuh(y)‖ ≤ θ(2np + ‖y‖p)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A. Then there exists
a unique C-linear ∗-derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ A.
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Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 4.1.
One can obtain a similar result to Theorem 2.3 for the Cauchy functional

equation.
Now we are going to show the Cauchy–Rassias stability of linear ∗-derivations

on C∗-algebras associated with the Jensen functional equation.

Theorem 4.3. Let h : A → A be a mapping with h(0) = 0 for which there
exists a function ϕ : A2 → [0,∞) such that

ϕ̃(x, y) :=
∞∑

j=0

3−jϕ(3jx, 3jy) <∞, (4.vi)

‖2h(
µx + µy

2
)− µh(x)− µh(y)‖ ≤ϕ(x, y), (4.vii)

‖h(3nu∗)− h(3nu)∗‖ ≤ϕ(3nu, 3nu), (4.viii)

‖h(3nuy)− h(3nu)y − 3nuh(y)‖ ≤ϕ(3nu, y) (4.ix)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A \ {0}. Then there
exists a unique C-linear ∗-derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 1

3
(ϕ̃(x,−x) + ϕ̃(−x, 3x)) (4.x)

for all x ∈ A \ {0}.

Proof. Put µ = 1 ∈ T1 in (4.vii). It follows from Jun and Lee Theorem [2,
Theorem 1] that there exists a unique additive mapping D : A → A satisfying
the inequality (4.x). The additive mapping D : A → A is given by

D(x) = lim
n→∞

1

3n
h(3nx)

for all x ∈ A.
The rest of the proof is similar to the proofs of Theorems 2.1 and 4.1.

Corollary 4.4. Let h : A → A be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖h(3nu∗)− h(3nu)∗‖ ≤ 2 · 3npθ,

‖h(3nuy)− h(3nu)y − 3nuh(y)‖ ≤ θ(3np + ‖y‖p)
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for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A. Then there exists
a unique C-linear ∗-derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 3 + 3p

3− 3p
θ‖x‖p

for all x ∈ A \ {0}.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 4.3.
One can obtain a similar result to Theorem 2.3 for the Jensen functional

equation.
Now we are going to show the Cauchy–Rassias stability of linear ∗-derivations

on C∗-algebras associated with the Trif functional equation.

Theorem 4.5. Let q = l(d−1)
d−l

and q′ = − l
d−l

. Let h : A → A be a mapping

with h(0) = 0 for which there exists a function ϕ : Ad → [0,∞) such that

ϕ̃(x1, · · · , xd) :=
∞∑

j=0

q−jϕ(qjx1, · · · , qjxd) < ∞, (4.xi)

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
) + d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)‖ ≤ ϕ(x1, · · · , xd), (4.xii)

‖h(qnu∗)− h(qnu)∗‖ ≤ ϕ(qnu, · · · , qnu︸ ︷︷ ︸
d times

), (4.xiii)

‖h(qnuy)− h(qnu)y − qnuh(y)‖ ≤ ϕ(qnu, y, · · · , y︸ ︷︷ ︸
d− 1 times

) (4.xiv)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x1, · · · , xd ∈ A. Then there
exists a unique C-linear ∗-derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 1

l · d−1Cl−1

ϕ̃(qx, q′x, · · · , q′x︸ ︷︷ ︸
d− 1 times

) (4.xv)

for all x ∈ A.
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Proof. Put µ = 1 ∈ T1 in (4.xii). It follows from Trif Theorem [9, Theorem
3.1] that there exists a unique additive mapping D : A → A satisfying the
inequality (4.xv). The additive mapping D : A → A is given by

D(x) = lim
n→∞

1

qn
h(qnx)

for all x ∈ A.
The rest of the proof is similar to the proofs of Theorems 2.1 and 4.1.

Corollary 4.6. Let q = l(d−1)
d−l

. Let h : A → A be a mapping with h(0) = 0 for
which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖d d−2Cl−2h(
µx1 + · · ·+ µxd

d
) + d−2Cl−1

d∑
j=1

µh(xj)

−l
∑

1≤j1<···<jl≤d

µh(
xj1 + · · ·+ xjl

l
)‖ ≤ θ(

d∑
j=1

‖xj‖p),

‖h(qnu∗)− h(qnu)∗‖ ≤ dqnpθ,

‖h(qnuy)− h(qnu)y − qnuh(y)‖ ≤ θ(qnp + (d− 1)‖y‖p)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x1, · · · , xd ∈ A. Then there
exists a unique C-linear ∗-derivation D : A → A such that

‖h(x)−D(x)‖ ≤ q1−p(qp + (d− 1)rp)θ

l d−1Cl−1(q1−p − 1)
‖x‖p

for all x ∈ A.

Proof. Define ϕ(x1, · · · , xd) = θ(
∑d

j=1 ‖xj‖p), and apply Theorem 4.5.
One can obtain a similar result to Theorem 2.3 for the Trif functional

equation.

5. Stability of Linear ∗-Derivations on JC∗-

Algebras and On Lie C∗-Algebras

We are going to show the Cauchy–Rassias stability of linear ∗-derivations
on JC∗-algebras associated with the Cauchy functional equation.
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Theorem 5.1. Let A be a unital JC∗-algebra. Let h : A → A be a mapping
with h(0) = 0 for which there exists a function ϕ : A2 → [0,∞) satisfying
(4.i), (4.ii), and (4.iii) such that

‖h(2nu ◦ y)− h(2nu) ◦ y − 2nu ◦ h(y)‖ ≤ ϕ(2nu, y)

for all u ∈ U(A), n = 0, 1, · · · , and all y ∈ A. Then there exists a unique
C-linear ∗-derivation D : A → A satisfying the inequality (4.v).

Proof. The proof is similar to the proofs of Theorems 2.1 and 4.1.

Corollary 5.2. Let A be a unital JC∗-algebra. Let h : A → A be a mapping
with h(0) = 0 for which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖h(2nu∗)− h(2nu)∗‖ ≤ 2 · 2npθ,

‖h(2nu ◦ y)− h(2nu) ◦ y − 2nu ◦ h(y)‖ ≤ θ(2np + ‖y‖p)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A. Then there exists
a unique C-linear ∗-derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ A.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 5.1.
On JC∗-algebras, one can obtain similar results to Theorems 4.3 and 4.5,

and Corollaries 4.4 and 4.6.
Now we are going to show the Cauchy–Rassias stability of linear ∗-derivations

on Lie C∗-algebras associated with the Cauchy functional equation.

Theorem 5.3. Let A be a unital Lie C∗-algebra. Let h : A → A be a mapping
with h(0) = 0 for which there exists a function ϕ : A2 → [0,∞) satisfying
(4.i), (4.ii), and (4.iii) such that

‖h([2nu, y])− [h(2nu), y]− [2nu, h(y)]‖ ≤ ϕ(2nu, y)

for all u ∈ U(A), n = 0, 1, · · · , and all y ∈ A. Then there exists a unique
C-linear ∗-derivation D : A → A satisfying the inequality (4.v).
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Proof. The proof is similar to the proofs of Theorems 2.1 and 4.1.

Corollary 5.4. Let A be a unital Lie C∗-algebra. Let h : A → A be a mapping
with h(0) = 0 for which there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(‖x‖p + ‖y‖p),

‖h(2nu∗)− h(2nu)∗‖ ≤ 2 · 2npθ,

‖h([2nu, y])− [h(2nu), y]− [2nu, h(y)]‖ ≤ θ(2np + ‖y‖p)

for all µ ∈ T1, all u ∈ U(A), n = 0, 1, · · · , and all x, y ∈ A. Then there exists
a unique C-linear ∗-derivation D : A → A such that

‖h(x)−D(x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ A.

Proof. Define ϕ(x, y) = θ(‖x‖p + ‖y‖p), and apply Theorem 5.3.
On Lie C∗-algebras, one can obtain similar results to Theorems 4.3 and

4.5, and Corollaries 4.4 and 4.6.
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