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Abstract

It is shown that every almost linear almost *-derivation h: A — A
on a unital C*-algebra, JC*-algebra, or Lie C*-algebra A is a linear
«-derivation when h(rz) = rh(z) (r > 1) for all x € A.

We moreover prove the Cauchy—Rassias stability of linear *-derivations
on unital C*-algebras, on unital JC*-algebras, or on unital Lie C*-
algebras.
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1. Introduction

Let X and Y be Banach spaces with norms || - || and || - ||, respectively.
Consider f: X — Y to be a mapping such that f(¢z) is continuous in ¢t € R
for each fixed x € X. Assume that there exist constants § > 0 and p € [0,1)
such that

1z +y) = f@) = )l < 0" + [[yl")
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for all z,y € X. Rassias [8] showed that there exists a unique R-linear mapping
T : X — Y such that
20

I1£() - T(@)] < 5=

1E41

for all z € X. Gavruta [1] generalized the Rassias’ result: Let G be an abelian
group and Y a Banach space. Denote by ¢ : G x G — [0,00) a function such
that

Px,y) = 27p(Yx, Vy) < o0
=0
for all x,y € G. Suppose that f: G — Y is a mapping satisfying

1z +y) = fl2) = F)ll < (e, y)

for all z,y € G. Then there exists a unique additive mapping 7" : G — Y such
that

|7(@) ~ T@)] < 55z,

for all x € G. Park [5] applied the Gavruta’s result to linear functional equa-
tions in Banach modules over a C*-algebra.

Jun and Lee [2] proved the Cauchy—Rassias stability of Jensen’s equation.
C. Park and W. Park [7] applied the Jun and Lee’s result to the Jensen’s
equation in Banach modules over a C*-algebra.

Recently, Trif [9] proved the stability of a functional equation deriving from
an inequality of Popoviciu for convex functions. And Park [6] applied the Trif’s
result to the Trif functional equation in Banach modules over a C*-algebra.

Throughout this paper, let A be a unital C*-algebra with norm || - ||, and
U(A) be the unitary group of A. Let [ and d be integers with 2 <1 < d — 1,
and r a real number greater than 1.

In this paper, we prove that every almost linear almost *x-derivation A :
A — A on a unital C*-algebra, JC*-algebra, or Lie C*-algebra A is a linear
«-derivation when h(rz) = rh(z) (r > 1) for all z € A, and prove the Cauchy—
Rassias stability of linear x-derivations on unital C*-algebras, on unital JC*-
algebras, or on unital Lie C*-algebras.
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2. Linear x-Derivations on C*-Algebras

Throughout this section, assume that h(rz) = rh(x) for all z € A.
We are going to investigate linear x-derivations on C*-algebras associated
with the Cauchy functional equation.

Theorem 2.1 Let h: A — A be a mapping for which there exists a function
¢ A? — [0,00) such that

Zr‘jgo(rjx,rjy) < 00, (2.1)

[h(px + py) — phiz) — ph(y)|| < o(z,y), (2.i7)
|h(r"u*) — h(r"uw)*|| < o(r"u, r"u), (2.i41)

[h(r"uy) — h(r"u)y — r"uh(y)|| < o(r"u,y) (2.iv)

forallp e TV :={Ne€ C| [N =1}, alu € U(A), n =0,1,---, and all
x,y € A. Then the mapping h : A — A is a C-linear x-derivation.

Proof. Since h(0) = rh(0), h(0) = 0. Put p =1 € T' in (2.ii). By (2.ii) and
the assumption that h(rxz) = rh(z) for all x € A,

1 n n n n
1h(z +y) = h(z) = My)| = ZllA(r"z + ") = h(r"z) = h(r"y)|
1 n n
< e, rty)
which tends to zero as n — oo by (2.i). So
ha +y) = h(z) + h(y) (2.1)

for all z,y € A.
Put y = 0 in (2.ii). By (2.ii) and the assumption that h(rz) = rh(z) for
all x € A,

1 1
1h(pz) = ph(@)l| = —lh(r®pe) — ph(r" )| < —(r*z, 0),
which tends to zero as n — oo by (2.i). So

h(pz) = ph(z) (2.2)
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for all z € A.
Now let A € (C (A 0) and M an integer greater than 4|\|. Then
2] <1 <1-2 = % By [3, Theorem 1], there exist three elements

1, f, i3 € T such that 3% f1 + pro + p3. Thus by (2.1) and (2.2)

h(\r) = h(% - 3%@ M h(% 3%1«) _ %h(?)%x)
M M
= ?h(/ﬁw + poT + p3x) = g(h(:“lx) + h(paw) + h(psr))
= S+ e+ () = 5 - 33h()
= A\h(x)

for all z € A. Hence

h(Cz +ny) = h(Cx) + h(ny) = Ch(x) + nh(y)

for all {,n € C(¢,n # 0) and all z,y € A. And h(0z) = 0 = 0h(z) for all
x € A. So the mapping h: A — A is a C-linear mapping.
By (2.iii) and the assumption that h(rx) = rh(z) for all x € A,
* * 1 n_ ok n * 1 n n
1h(u) = h(w)™ll = ZllA(r"u™) = h(r"w)*l} < —o(r™u, 1),

which tends to zero as n — oo by (2.i). So

for all u € U(A). Since h : A — A is C-linear and each x € A is a
finite linear combination of unitary elements (see [4, Theorem 4.1.7]), i.e

x =370 Ay (A € Couy € U(A)),

= (3R = S A) = DR = (O A’
zm: A uj = h(z
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for all z € A.
By (2.iv) and the assumption that h(rz) = rh(x) for all z € A,

1
1h(uy) = h(w)y = uh(y)| = S lIP("w - r"y) = h(r"u)r®y — ruh(r"y)|
1 1
< mg&(r”u,r”y) < r—ngp(rnu,r”y),

which tends to zero as n — oo by (2.i). So

h(uy) = h(u)y + uh(y)
for all u € U(A) and all y € A. Since h: A — A is C-linear and each x € A

is a finite linear combination of unitary elements, i.e., z = 37" \ju; (A €
C,Uj S U(A)),
m

h(zy) = h(z Ajuy) = Z Nih(uzy) =Y A (h(uy)y + uih(y))

7=1
= h()_ Ay + (Y Ajuph(y) = h(z)y + wh(y)
j=1 j=1
for all =,y € A. Hence the mapping h : A — A is a C-linear *-derivation, as

desired. n

Corollary 2.2. Let h: A — A be a mapping for which there exist constants
0 >0 andp € [0,1) such that

|h(p + py) — phiz) — ph(y)|] < 0(z[|” + [lyl).
|h(r"u®) — h(r"u)*|| < 2r"P,
|h(r"uy) — h(r"u)y — r"uh(y)|| < 60" + [|ly||?)

for all p € T', allu € U(A), n = 0,1,---, and all z,y € A. Then the
mapping h : A — A is a C-linear x-derivation.

Proof. Define ¢(z,y) = 6(||z||” + ||y||*), and apply Theorem 2.1. O

Theorem 2.3. Let h : A — A be a mapping for which there exists a function
@ A% — [0,00) satisfying (2.i), (2.iii), and (2.iv) such that

[h(px + py) — ph(z) — ph(y)| < ¢(z,y) (2.v)
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for p = 1,i, and all x,y € A. If h(tx) is continuous in t € R for each fixed
x € A, then the mapping h : A — A is a C-linear x-derivation.

Proof. Put g =1in (2.v). By the same reasoning as in the proof of Theorem
2.1, the mapping h : A — A is additive. By the same reasoning as in the proof
of [8, Theorem], the additive mapping h : A — A is R-linear.

Put g =i in (2.v). By the same method as in the proof of Theorem 2.1,
one can obtain that

h(iz) = ih(x)
for all x € A. For each element A € C, A = s + it, where s,t € R. So
h(Ax) = h(sx +itx) = sh(x) + th(ix) = sh(x) + ith(z) = (s + it)h(x)
= M\h(x)
for all A € C and all z € A. So

h(Cz + ny) = h(Cx) + h(ny) = Ch(x) + nh(y)

for all (,n € C, and all x,y € A. Hence the mapping h : A — A is C-linear.
The rest of the proof is the same as in the proof of Theorem 2.1. O
Now we are going to investigate linear x-derivations on C*-algebras asso-
ciated with the Jensen functional equation.

Theorem 2.4. Let h: A — A be a mapping for which there exists a function
¢ A% — [0, 00) satisfying (2.i), (2.iii), and (2.iv) such that

I2n(“ ) — ih(a) — pih(y)] < (), (2.01)

for all p € T' and all x,y € A. Then the mapping h : A — A is a C-linear
x-derivation.

Proof. Put p =1 ¢€ T' in (2.vi). By (2.vi) and the assumption that h(rz) =
rh(z) for all x € A,

Tty
2

rr +rty

12A( 2

) = h(z) = h(y)| = rinll%( ) = h(r"z) = h(r"y)||

1
< —p(r"z,r"y),
rn
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which tends to zero as n — oo by (2.i). So

r+y
2

for all 7,y € A. Let y = 0 in (2.3). Then 2A(5) = h(z) for all z € A. Thus

2h(“22) = h(a) + hy) (2.3)

r+y
2

Wz +y) = 2h( ) = h(z) + h(y)
for all x,y € A.
The rest of the proof is the same as in the proof of Theorem 2.1. m
One can obtain similar results to Corollary 2.2 and Theorem 2.3 for the
Jensen functional equation.
We are going to investigate linear *-derivations on C*-algebras associated
with the Trif functional equation.

Theorem 2.5. Let h : A — A be a mapping for which there exists a function
¢ : A4 —[0,00) such that

Z T_j¢<rj$1, . ,zjd) < 00, (2?]22)
j=0
ld 4—2Ci_oh(—— y 9+ 4-2Cic1 Y ph(z))
j=1
Tj +- T
= Z Mh(%)” < @(xh U 7Id)7 (2'0”2)

1<ii<-<gi<d

hir™u®) — h(r™u)*ll < n7”_’n7 24
1A ™) = h(r*u)"|| < o(ru, - - "), (24z)

d times
h(r"uy) — h(r"u)y — r"uh < rnu7 R
[A(r"uy) — h(r"u)y Wl < ¢ i/ y)
— 1 times

forall p € T, allu € U(A), n=0,1,---, and all z1,--- ,xq € A. Then the
mapping h : A — A is a C-linear x-derivation.

Proof. The proof is similar to the proofs of Theorems 2.1 and 2.4. O]
One can obtain similar results to Corollary 2.2 and Theorem 2.3 for the
Trif functional equation.
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3. Linear x-Derivations on JC*-Algebras and on
Lie C*-Algebras

The original motivation to introduce the class of nonassociative algebras
known as Jordan algebras came from quantum mechanics (see [?]). Let H be a
complex Hilbert space, regarded as the “state space” of a quantum mechanical
system. Let L(H) be the real vector space of all bounded self-adjoint linear
operators on H, interpreted as the (bounded) observables of the system. In
1932, Jordan observed that L(H) is a (nonassociative) algebra via the anti-
commutator product x oy = % A commutative algebra X with product
x oy is called a Jordan algebra if % o (x oy) = x o (x? o y) holds.

A complex Jordan algebra C' with product x o y and involution = +— x* is
called a JB*-algebra if C' carries a Banach space norm || || satisfying ||z oy|| <
|zl ly[l and [[{zz*2}]| = [l=]*. Here {zy*z} := xo(y*oz)—y o(z0z)+z0(zoy")
denotes the Jordan triple product of x,y,z € C. A Jordan C*-subalgebra of
a C*-algebra, endowed with the anticommutator product, is called a JC*-
algebra.

Throughout this section, assume that h(rz) = rh(x) for all z € A.

We are going to investigate linear *-derivations on JC*-algebras associated
with the Cauchy functional equation.

Theorem 3.1. Let A be a unital JC*-algebra. Let h : A — A be a mapping
for which there exists a function ¢ : A2 — [0,00) satisfying (2.i), (2.ii), and
(2.iii) such that

[h(r"woy) — h(r"u) oy — r"uo h(y)|| < ¢(r"u,y)
for allu € U(A), n=0,1,---, and ally € A. Then the mapping h : A — A

1s a C-linear *-derivation.

Proof. The proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let A be a unital JC*-algebra. Let h: A — A be a mapping
for which there exist constants 0 > 0 and p € [0,1) such that

|h(px + py) — phiz) — ph(y)|| < 0z +[[y|P),
lh(r"u®) — h(r"uw)*|| < 2r™P0,
[A(r"u o y) — h(r"u) oy —r"uo h(y)|| < 0" + [y|”)
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forallp e T, allu e U(A), n=0,1,---, and all x,y € A. Then the mapping
h:A— A is a C-linear x-derivation.

Proof. Define ¢(z,y) = (||z||” + ||y||”), and apply Theorem 3.1.

On J(C*-algebras, one can obtain similar results to Theorems 2.3, 2.4, and
2.5.

A unital C*-algebra A, endowed with the Lie product [z,y] = xy — yx on
A, is called a Lie C*-algebra. A C-linear mapping D on a Lie C*-algebra A is
called a Lie derivation if D([x,y]) = [D(x), y]+ [z, D(y)] holds for all z,y € A.

Theorem 3.3. Let A be a unital Lie C*-algebra. Let h: A — A be a mapping
for which there exists a function ¢ : A*> — [0,00) satisfying (2.1), (2.ii), and
(2.iil) such that

[A([r"w, y]) — [R(r™u), y] — [r™u, R < o(r"u, y)

for allu € U(A), n=0,1,---, and all y € A. Then the mapping h : A — A
is a C-linear x-derivation.

Proof. The proof is similar to the proof of Theorem 2.1. n

Corollary 3.4. Let A be a unital Lie C*-algebra. Let h : A — A be a mapping
for which there exist constants 6 > 0 and p € [0,1) such that

|A(px + py) — phiz) — ph(y)|| < O(=|” + lly[*),
|h(r"u®) — h(r"uw)*|| < 2r™P,
[A([r"u, y]) — [R(r"u), y] — [r"u, h(y)]]| < O™ + [[y|")

forallp e T, allu e U(A), n=0,1,---, and all x,y € A. Then the mapping
h:A— A is a C-linear x-derivation.

Proof. Define ¢(x,y) = (||z||” + ||y||?), and apply Theorem 3.3. O
On Lie C*-algebras, one can obtain similar results to Theorems 2.3, 2.4,
and 2.5.

4. Stability of Linear x-Derivations on C*-Algebras

We are going to show the Cauchy-Rassias stability of linear *-derivations
on C*-algebras associated with the Cauchy functional equation.
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Theorem 4.1. Let h: A — A be a mapping with h(0) = 0 for which there
exists a function p : A*> — [0,00) such that

o(x,y) == 22’%0(2%, 279)) < oo, (4.9)
[h(px + py) — phiz) — ph(y)|| < o(z,y), (4.37)
|h(2"u*) — h(2"w)*|| < @(2"u, 2"u), (4.731)
1h(2"uy) — h(2"u)y — 2"uh(y)|| < ¢(2"u, y) (4.iv)

forall p €T, allu € U(A), n=0,1,---, and all x,y € A. Then there exists
a unique C-linear x-derivation D : A — A such that

Ih(e) - D@ < 55w, (4.0
for all z € A.

Proof. Put =1 € T! in (4.ii). It follows from Gavruta Theorem [?] that
there exists a unique additive mapping D : A — A satisfying the inequality
(4.v). The additive mapping D : A — A is given by

1
D(z) = lim —h(2"x) (4.1)
for all z € A.
Put y = 0 in (4.ii). It follows from (4.ii) that

1 1
o 1h(2" pa) — ph(2"2)|| < Soe(2"2,0),
which tends to zero as n — oo by (4.i) for all u € T! and all z € A. Hence

D) = tim MERD) _yp, #h(27)

= puD(z)

for all u € T and all z € A.

By the same method as in the proof of Theorem 2.1, one can show that
the mapping D : A — A is C-linear.

By (4.1) and (4.iii), we get

D(u*) = lim M — lim M = (lim h(2"u)

n—oo on n—oo on n—00 on

)" = D(u)’
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for all u € U(A). By the same method as the proof of Theorem 2.1, one can
show that

for all x € A.
It follows from (4.1) that
h(22"z)
D(x) = nh—%lo 5o (4.2)
for all z € A. By (4.iv),
1 1
2%Hh(Q”u <2My) — h(2™u)2"y — 2"uh(2"y)|| < 5o (2"u, 2"y)
1
< (2, 2") (4.3)
for all z,y € A. By (4.), (4.2), and (4.3),
. h(2%uy) . h(2™u - 2™y) PR R 1 ..
Plo) = g T =™ g - Byl g )
= D(u)y +uD(y)

for all w € U(A) and all y € A.

The rest of the proof is similar to the proof of Theorem 2.1. Hence the
mapping D : A — A is a C-linear x-derivation satisfying the inequality (4.v),
as desired. O
Corollary 4.2. Let h: A — A be a mapping with h(0) = 0 for which there
exist constants @ > 0 and p € [0,1) such that

1P + py) — ph(z) — ph(y)| < 0= + llyll"),
|h(2"u") — h(2™u)*|| < 2- 2770,
[P(2"uy) — h(2"u)y — 2"uh(y)|| < 02" + [ly[|")

forall p €T, allu € U(A), n=0,1,---, and all x,y € A. Then there exists
a unique C-linear x-derivation D : A — A such that

20
2-—2r

1A () = D(x)]| <

(i

for all x € A.
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Proof. Define ¢(z,y) = 6(||z||” + ||y||?), and apply Theorem 4.1. O
One can obtain a similar result to Theorem 2.3 for the Cauchy functional
equation.
Now we are going to show the Cauchy—Rassias stability of linear x-derivations
on C*-algebras associated with the Jensen functional equation.

Theorem 4.3. Let h: A — A be a mapping with h(0) = 0 for which there
exists a function p : A*> — [0,00) such that

o(z,y) = Z 377 p(3x,37y) <oo, (4.vi)
I2n(“ ) — ih(a) — ph(y) | <oz, ) (4vid)
|h(3"u") — h(3"u)*|| <¢(3"u,3"u), (4.viii)

1P(3"uy) — h(3"u)y — 3" uh(y)|| <¢(3"u,y) (4.iz)

forallu €T, allu e U(A), n=0,1,---, and all x,y € A\ {0}. Then there
exists a unique C-linear x-deriwation D : A — A such that

[h(z) = D(@)]| < %(95(967 —x) + (=, 31)) (4.7)

for allx € A\ {0}.

Proof. Put 4 =1 € T' in (4.vii). It follows from Jun and Lee Theorem [2,
Theorem 1] that there exists a unique additive mapping D : A — A satisfying
the inequality (4.x). The additive mapping D : A — A is given by

1
D(z) = lim 3—nh(3"x)

for all z € A.
The rest of the proof is similar to the proofs of Theorems 2.1 and 4.1. [

Corollary 4.4. Let h : A — A be a mapping with h(0) = 0 for which there
exist constants @ > 0 and p € [0,1) such that

|h(px + py) — phiz) — ph(y)|| < 6(z|” + [[y|P),
IR (3"u*) — h(3™Mu)*|| < 2 - 377,
|~(3"uy) — h(3"u)y — 3"uh(y)|| < 0(3" + ||y||*)
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forall p € T, allu € U(A), n=0,1,---, and all x,y € A. Then there exists
a unique C-linear x-derivation D : A — A such that

3437
() ~ D)) < 22 paly
for allx € A\ {0}.
Proof. Define ¢(x,y) = 0(||z||” + ||y||?), and apply Theorem 4.3. O

One can obtain a similar result to Theorem 2.3 for the Jensen functional
equation.

Now we are going to show the Cauchy—Rassias stability of linear x-derivations
on C*-algebras associated with the Trif functional equation.

Theorem 4.5. Let q = l(;l%ll) and ¢ = —ﬁ. Let h : A — A be a mapping
with h(0) = 0 for which there exists a function ¢ : A4 — [0,00) such that
@(xh o ,fl’d) = Z qijgp(q]xb o 7qjxd> < 00, (4:62)
=0
ld a—2Crah(——————) + 4=2Cica Y ph(z;))
j=1
_ Z Mh(u)u <z, xa), (dii)
. . l
1<ji << <d
h(qg"u*) — h(q"u)*|| < "u, e, g ), 4.x1ii
1A (q"u) (61)||_<,0(qd q"u) (4.iii)
times
h(q"uy) — h(q"u)y — q"uh < ",y 4.xiv
17(q" uy) — h(q"w)y — ¢"uh(y)]| < ¢(q 2/ y) (4.wiv)
— 1 times

forallpeT, alue U(A),n=0,1,---, and all 1, -+ ,xq € A. Then there
exists a unique C-linear x-deriwvation D : A — A such that

1
hMz) — D(2)|| < ——@(qx, ¢z, -+ ,¢'x 4.xv
17 () ()”—l-d,lcl,f(q q q'z) (4.2v)

d — 1 times

for all z € A.
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Proof. Put =1 € T! in (4.xii). It follows from Trif Theorem [9, Theorem
3.1] that there exists a unique additive mapping D : A — A satisfying the
inequality (4.xv). The additive mapping D : A — A is given by
1
D(z) = lim —h(q"z)
n—oo ("
for all z € A.
The rest of the proof is similar to the proofs of Theorems 2.1 and 4.1. [

Corollary 4.6. Let ¢ = l(j:ll). Let h : A — A be a mapping with h(0) =0 for

which there ezist constants @ > 0 and p € [0,1) such that

d
Ty 4+ px
||d d_QCl_2h<lu L d a d) + d—QCl—l Zﬂh<5€j)

J=1

d
x.l_i_..._'_x.
—L Y ph(F——— <00 llzl”),
j=1

1< << <d
|h(¢"u") — h(q"u)"|| < dq""0,
|h(q"uy) — h(q"u)y — q"uh(y)| < 0(¢"" + (d — 1)[|y|")

forallpy € T, allu e U(A), n=0,1,---, and all vy, -+ ,xq € A. Then there
exists a unique C-linear x-derivation D : A — A such that

g+ (d = 1))

abLTE
[ 4-1C—1(¢*P —1) v

Ih(z) — D(@)| < 2

for all x € A.

Proof. Define p(xy,--- ,x4) = 9(2?:1 ||z;||”), and apply Theorem 4.5. O
One can obtain a similar result to Theorem 2.3 for the Trif functional
equation.

5. Stability of Linear x-Derivations on J(C"-
Algebras and On Lie C*-Algebras

We are going to show the Cauchy-Rassias stability of linear x-derivations
on J(C™-algebras associated with the Cauchy functional equation.
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Theorem 5.1. Let A be a unital JC*-algebra. Let h : A — A be a mapping
with h(0) = 0 for which there exists a function @ : A*> — [0,00) satisfying
(4.1), (4.i1), and (4.iii) such that

[P(2"uw 0 y) — h(2"u) 0y — 2"u o h(y)[| < ¢(2"u,y)
for alluw € U(A), n = 0,1,---, and all y € A. Then there exists a unique
C-linear *-derivation D : A — A satisfying the inequality (4.v).

Proof. The proof is similar to the proofs of Theorems 2.1 and 4.1. O

Corollary 5.2. Let A be a unital JC*-algebra. Let h: A — A be a mapping
with h(0) = 0 for which there exist constants > 0 and p € [0,1) such that

|h(pa + py) — phiz) — ph(y)l] < 6(z[|” + llyll?).
|h(2"u") — h(2™u)"|] < 2-27P0,
|h(2"u o y) — h(2"u) oy — 2"u o h(y)|| < (2™ + ||y||?)

forallp e T, allu e U(A), n=0,1,---, and all z,y € A. Then there exists
a unique C-linear x-derivation D : A — A such that

20
2-2pr

1A (z) = D(z)]| <

[
for all x € A.

Proof. Define ¢(x,y) = 0(||z||” + ||y||?), and apply Theorem 5.1. O
On J(C*-algebras, one can obtain similar results to Theorems 4.3 and 4.5,
and Corollaries 4.4 and 4.6.
Now we are going to show the Cauchy—Rassias stability of linear x-derivations
on Lie C*-algebras associated with the Cauchy functional equation.

Theorem 5.3. Let A be a unital Lie C*-algebra. Let h: A — A be a mapping
with h(0) = 0 for which there exists a function ¢ : A*> — [0,00) satisfying
(4.1), (4.i), and (4.iil) such that

1R([2"u, y]) — [A(2"u),y] — [2"u, M(y)]]| < ¢(2"u,y)

for allu € U(A), n = 0,1,---, and all y € A. Then there exists a unique
C-linear *-derivation D : A — A satisfying the inequality (4.v).
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Proof. The proof is similar to the proofs of Theorems 2.1 and 4.1. O

Corollary 5.4. Let A be a unital Lie C*-algebra. Leth : A — A be a mapping
with h(0) = 0 for which there exist constants @ > 0 and p € [0,1) such that

1A (p + py) — ph(z) — ph(y)ll < O(l][" + lly["),
1P (2" ") — ( w)ll <2-2™6,
1A(12"u, y]) = [P(2"u), y] = [2%u, h()][| < 02" + [ly||")

forall p e T, allu € U(A), n=0,1,---, and all x,y € A. Then there exists
a unique C-linear x-derivation D : A — A such that

[h(z) = D(@)]| <

2 el

for all x € A.

Proof. Define ¢(x,y) = 0(||z||” + ||y||?), and apply Theorem 5.3. O
On Lie C*-algebras, one can obtain similar results to Theorems 4.3 and
4.5, and Corollaries 4.4 and 4.6.
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