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Abstract
In the present paper, the authors introduce a new subclass
B, (A a,pu, A, B, z) of A-Bazilevi¢ functions of type a + iu. The sub-
ordination relations and inequality properties are discussed by making
use of differential subordination method. The results presented here

generalize and improve some known results, and some other new results
are obtained.

Keywords and Phrases: \-Bazilevic functions of type o + ip, Differential
subordination.

1. Introduction and Definitions

Let A,, denote the class of functions of the form

f(z)=z+ i apz® (ne N =1{1,2,3,...}), (1.1)

k=n+1
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which are analytic in the unit disk & = {z : z < 1}. Also let §}(3) denote
the usual class of starlike functions of order 3, 0 < 3 < 1.

Let f(z) and F(z) be analytic in ¢. Then we say that the function f(z) is
subordinate to F(z) in U, if there exists an analytic function w(z) in U such
that w(z) < z and f(2) = F(w(z)), denoted by f < F or f(z) < F(z). If
F(z) is univalent in U, then the subordination is equivalent to f(0) = F(0)
and f(U) C F(U) (see [1]).

The following class of analytic functions were studied by various authors
(see [3]).

Definition 1. Let B, («, u, 3, g(z)) denote the class of functions in A,, satis-
fying the inequality

éR{Zf’(Z) (f@))aW} > 8 (zel), (1.2)

f(z) \g(2)

where « > 0, p€ R, 0 < < 1and g(z) € §(3). The function f(z) in this
class is said to be Bazilevi¢ function of type a4 1u and of order 5.

In the present paper, we define the following class of analytic functions.

Definition 2. Let B,(\, a, pu, A, B, g(z)) denote the class of functions in A4,
satisfying the inequality

TS (- F G < e

where 0 < A< 1, a>0,pe R, —1<B<1,A# B, A€ Rand g(2) € S(0).
All the powers in (1.3) are principal values, below we apply this agreement.
The function f(z) in this class is said to be A—Bazilevi¢ function of type a+ip .

Ilfa=1, p=0, A=1-2Fand B = —1, then the class B,,(\, a, i, A, B, g(2))
reduces to the class of A\—close-to-convex functions of order 3, 0 < § < 1. If
a=0, pu=0, A=1and B = —1, then the class B,(\, a,u, A, B,g(z)) re-
duces to the class of A—convex functions [6]. [f a =0, p =0, A=1-20 and
B = —1, then the class B, (A, a, i, A, B, g(2)) reduces to the class of A—convex
functions of order 3, 0 < < 1. If A =1—- 20 and B = —1, then the class
B\, a, 1, A, B, g(2)) reduces to the class of A—Bazilevi¢ functions of type
a+ip and of order 3, 0 < 5 < 1.

Li [3], Owa [4], Owa and Nunokawa [5] discussed the related properties of
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the classes B, (A, o, i, 1-28, —1, 2), B,(0,a,0,1—23,—1, 2) and B,(\,1,0,1—
23, —1, z), respectively. In the present paper, we will discuss the subordina-
tion relations and inequality properties of the class B, (A, o, u, A, B, z). The
results presented here generalize and improve some known results, and some
other new results are obtained.

2. Preliminaries Results

In order to establish our main results, we shall require the following lemmas.

Lemma 1 ([7]). Let F(z) =1+ b,2" + b,y12" " + - -+ be analytic in U, h(z)
be analytic and convex in U, h(0) = 1. If

1
F(z) 4+ =2F'(z) < h(2), (2.1)
c
where ¢ # 0 and R ¢ > 0, then
F(z) < £ /Z ti_lh(t)dt =< h(z),
n 0

and £z7n [§ta " h(t)dt is the best dominant for (2.1).
Lemma 2 ([8]). Let f(z) = 352, arz® be analytic inU, g(z) = 352, bpz" be
analytic and convex in U. If f(z) < g(z), then ap < by, fork=1,2,....

Lemma 3. Let 0 <A <1, a>0, peR, a+ip#0, - 1<B<1, A#B
and A € R. Then f(2) € B,(\, o, 1, A, B, 2) if and only if

1 1+ Az

!
< [
a(2) + a—l—mzq (2) 1+ B2’

(2.2)

where q(2) = (1= X) (f(2)/2)"™" + A(f'(2)* .

Proof. Let y
(@) =m(z). (2.3)
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Then, by taking the derivatives in the both sides of (2.3), we have

(2 5 atip
TS (1) =

m'(2),

o+

that is,

A5 ) (1)) e

Substituting f(z) by zf/'(z) in (2.4), we have

z

e ((FEp™™). @5

From equalities (2.4) and (2.5), we get

A o

o s
-»(22) <f'<z>>“““]

o+ ip

(14 L) e = oy +

z

!/

(- (f (z)) +A(f/(2))a”“] . (2.6

VA
+

a4+ i z

Now, suppose that f(z) € B,(\, a, i, A, B, z), and let

f < ok a-+1
)= (-0 () a g,
Thus, from the definition of B,(\, a, u, A, B, z) and equality (2.6), we can get
(2.2).

On the other hand, this deductive process can be converse. Therefore, the
proof of Lemma 3 is complete.
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3. Main Results and Their Proofs

Theorem 1. Let 0 < A <1, >0, p € R, a+in#0, -1<B<1, A#B
and A€ R. If f(z) € B,(\,a, 1, A, B, 2), then

f(2) o ' atip | o+ip L1+ Azu a+z# _1 1 + Az
1 - T .
( )\)( z A = n 0 1+Bzu du 1—|—Bz

Proof. First let ¢(2) = (1 = A) (f(2)/2)*T + A (f/(2))*™", then ¢(z) =1+
by 2" +bpy 12" 4 - - is analytic in . Now, suppose that f(z) € B,(\, o, u, A, B, 2),
by Lemma 3, we know

1 1+ Az

/
< .
cH—z'qu () 1+ Bz

q(z) +

It is obvious that h(z) = (1 + Az)/(1 4+ Bz) is analytic and convex in U,
h(0) = 1. Since v+ iy # 0 and « > 0, therefore it follows from Lemma 1 that

a+i . ) . ]
(1-2) <f<z>> LA < O‘““z—”‘ff“/o £ () dt

z n
O[+ZIUz 1 1+AZU/ &+'LH 1d 1+AZ
N n 0 1+Bzu 1—|—Bz'

Corollary 1. Let 0 < A <1, a >0, p € R, a+iu # 0 and  # 1. If
f(z) € A, satisfies

/ atip "
(- ) <f(2)> A <1 LA (2)> (Fyerin < LEUZ202 gy

f(2) Z f'(2) 1—=z
then
ot 1 — ZU a+m

(3.1)
and (3.1) is equivalent to

octip , —Bla+i L1+ 20 otiu
(1-3) <M> (S () < g LAt “)/0 LRA e e ).

z n 1—2zu
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Theorem 2. Let 0 < A <1, >0, pe R, a+in#0, -1<B<1, A#B
and A€ R. If f(z) € B,(\,a,u, A, B, z), then

a+i
mgr {0 [ g ) < %%1—»<ﬂ@> M+Mwu»”w}

n o 14+ Bzu z

a+ip 114+ Azu w_ld}
n wy.

< §R{
Sup n o 1+ Bzu

zeU
Proof. Suppose that f(z) € B,(\ a,pu, A, B, z), from Theorem 1 we know

atip . ]
(1=A) <f(2)> + A (f/(Z»aH“ < o i 1 Azuuﬁ#_ldu.

z n o 1+ Bzu

Therefore it follows from the definition of the subordination that

atip ) 1 22U atip
%{u—m(“”> +Mf@fﬂ}>nﬁm(””“ LA o),

> zeU n o 14+ Bzu

and

atip ) 1 2U  atip
§R{(1—)\)<f(z)> +A<f/<z))a““}<supa%{o‘“” LA un_ldu}.

z zeU n o 1+ Bzu

Corollary 2. Let 0 < A <1, a>0, p € R, a+ip #0 and § < 1. If
f(2) € Bu(A o, i, 1 — 206, -1, 2), then
) 1 1 a+tip
o+ +zuu:_1du}

ﬁ—{_(l_ﬁ)iggl%{ n o 1—zu
< 3%{(1—)\) <f(;)> +)\(f'(z))a+i“}

11+zu aip 1 }
u
1—zu

< ﬂ+(1—ﬁ)sup§]%{a+w/

zeU

Corollary 3. Let 0 < A <1, a>0, pu € R, a+ip #0 and > 1. If
f(z) € A, satisfies

R {(1 — )\)L(Z) <M>a+w + A (1 + Zf/l('”) (f’(z))a”“} <B (zel),

fz) \ =
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then

zeld n o 1—zu

=" {“ ) (JC()) "y A(f'(z))a“”}

) 1 1 a+1
< ﬁ+(1—ﬁ)inf§)%{a+w/ +Z“ut”1du}.
zeU n 0

1—z2u

) 1 ]_ a—+i
B+ (1—0) sup?R{a i + Zuufl“ldu}

Theorem 3. Let 0 < A <1, a>0and -1 < B< A< 1 If f(z) €
Bn.(\ a,0,A, B, z), then

a 11— Au a_q f(Z) ¢ / o
i < wloon (1) )

a 114+ Au o

wtd 2
< - 1T Ba" u (zel), (3.2)

and inequality (3.2) is sharp, with the extremal function defined by

(1- ) (M> A= [ A g,

— 3.3
z nJo 1+ Buz™ ( )

Proof. Suppose that f(z) € B,(\, «,0, A, B, z), from Theorem 1 we know

a0 (12) aer -

a (11+Azu o
——un du.
nJo 1+ Bzu

Therefore it follows from the definition of the subordination and A > B that

&e{u—x) (f(;)>a+A(f'(z))a} < supm{“/lm‘ui—ldu}

el nJo 1+ Bzu
a (1 14+ Azu) a
< 3%{} nlid
— nJo TQE 1+ Bzu Y Y
114+ Au o«
a + uuﬁ_ldu,

n Jo 1+ Bu
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and

%R{(l—)\) <‘f(z)>a+)\(f’(z))a} > mf@}%{/ol”‘%“ g 1du}

n 1+ Bzu

1 1+ A a

> e inf?)%{ + Zu}un_ldu
n Jo z€u 1+ Bzu

11— Au
uzﬁ’ldu.

> —_
nJo 1— Bu

It is obvious that inequality (3.2) is sharp, with the extremal function defined
by equality (3.3).

Corollary 4. Let 0 < A <1, a>0and § < 1. If f(2) € By(\,,0,1 —
23, -1, z), then

a/()ll_(l_zmuuildu < é}%{(l—)\) (@)aﬂ(f’(z))“}
o /11+<1—2ﬁ>u

n 1—u

< un'du (z €U), (3.4)

and inequality (3.4) is equivalent to

6+(1_5)0‘/011_“u3—1du < 9%{(1-» (f(z)>a+/\(f’(z))°‘}

n 1+ u z

(1—ﬁ)6¥ 11+U a_q
< [+ - /ol—uu du (z €lU).

Corollary 5. Let « > 0 and f < 1. If f(2) € A, satisfies

w{(1+) e} 5 G ew,

f'(2)
then

T e (U

a 114+ (1-20)u o 4
<5/0 ST T gy (2 e ), (3.5)

1—u
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and inequality (3.5) is equivalent to

ﬁ"‘ (]. _nﬁ)()é /01 1;Zu21du < %{(fI(Z))a}

1— 1] o
<ﬁ+( ﬁ)a/ LTS (zel),
n o 1—wu

inequality (3.5) is sharp, with the extremal function defined by

faﬂ(z) _ /Oz <Oé /01 1+ (1 — 2ﬁ)tnuuz—ldu>a dt. (36)

n 1—t"u

Corollary 6. Let A > 0 and 0 < 8 < 1. If f(2) € B,(\,1,0,1 — 253, —1, 2),
then for z =r < 1, we have

Ly 1= (1—20)t

, 1
@R{f(z)}>X/0p ot

Remark 1. Corollary 6 is the corresponding result obtained by Owa and
Nunokawa in [5].

By applying the similar method as in Theorem 3, we have

Theorem 4. Let 0 < A <1, a>0and -1 < A< B < 1. If f(z) €
B,(\, a,0, A, B, 2), then

o 11+AU a_q f(Z) “ ! a
P Ay ol G 9‘%{(1—)\)<Z> +A(f(2))}

a 11— Au
< —_

oy
o du (z€U), (3.7)

and inequality (3.7) is sharp, with the extremal function defined by equality
Corollary 7. Let 0 < A <1, a >0 and 8 > 1. If f(z) € A, satisfies

R {(1 - A)i{ég) (ﬂj)y +A (1 + Z;é?) (f’(z))a} <8 (zel),
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then
o <l (M) )

a/ll—(1—2ﬁ)u

oy
- e Y du (z€U), (3.8)

<

and inequality (3.8) is equivalent to

6+(1_5>0‘/011+“u2—1du < 3%{(1-» (f(z)>a+/\(f’(z))°‘}

n 1—u z

1-0F)a *l1—u o,
< [+ - /01+uu du (z€lU).

Corollary 8. Let a > 0 and 5 > 1. If f(2) € A, satisfies

w{ (14 ) e <o G ew,

then
a/l 1+ (1—-28)u
0

n 1—u

ui~tdu < R{(f'(2)"}

11—(1-2 o
<g/ Muﬁ_ldu (zel), (3.9)
n Jo 1+u

and inequality (3.9) is equivalent to

g EEP Y g < {(71(2))°)

n 1—u
(1—5)&/11—u a4
< B+ - T o du (z €U),

inequality (3.9) is sharp, with the extremal function defined by equality (3.6).

Remark 2. Corollary 7-8 improve the corresponding results of Corollary 6-7
in [3], respectively.

If Rw > 0, then (Rw)

[N
N

< Rw? < w(z)? (see [2,9]). So we have



On Certain Subclass 151

Theorem 5. Let 0 < A <1, a>0and -1 < B< A< 1 If f(z) €
B.(\, a,0,A, B, z), then

(&) pmm) < %{[“W (fiz>>a+x<f'<z>>ar}

a P1+Au o 3
(n/o 1+ Bu' dU) (zed),  (3.10)

and inequality (3.10) is sharp, with the extremal function defined by equality

Proof. From Theorem 1 we know

-0 () e <115

z 1+ Bz

Since —1 < B < A <1, we have

0< i:g <3%{(1—>\) (f(;)) +>\(f’(z))a} < ig.

Thus, from inequality (3.2), we can get inequality (3.10). It is obvious that
inequality (3.10) is sharp, with the extremal function defined by equality (3.3).

By applying the similar method as in Theorem 5, we have

Theorem 6. Let 0 < A <1, a>0and -1 < A< B < 1. If f(2) €
Bn(\ a,0,A, B, z), then

(6 ramera) < wfo-n (%) aver] |

11— Au W 2
< (Z/ ”m—ldu) (zeu),  (3.11)
0

and inequality (3.11) is sharp, with the extremal function defined by equality
Remark 3. From Theorem 5-6 we also can obtain the corresponding results

about some other special classes of analytic functions, here we don’t give un-
necessary details any more.
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Theorem 7. Let 0 < A <1, a>0, - 1< B<1, A#Band A€ R. If
f(z) =2+ 220 apz* € B,(\,,0, A, B, 2), then

A-B
n+a)(An+1)’

(3.12)

Ap+1 S
(
and inequality (3.12) is sharp, with the extremal function defined by equality

(3.3).

Proof. Suppose that f(z) = z + 332,11 ax2" € Ba(A @,0, A, B, 2), then we

have
=0T (1) s (14 2 oy

e\ 7E)
= 1+ (n+a) I+ Daq2" +--- < 11—2'2
It follows from Lemma 2 that
(n+a)An+1)a, < A—B. (3.13)

Thus, from (3.13), we can get (3.12). Notice that

A-B
(n+ a)(An+1)

f(z) =2+ 2" e B\ a,0,A, B, 2),

we obtain that inequality (3.12) is sharp.
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