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Abstract

The maximum entropy principle initiated by Jaynes [5] is a powerful
optimization technique of determining the distribution of random sys-
tem in the case of partial or incomplete information or data available
about the system [7,10,12,13]. In our real world problem input data
or parameters are often fuzzy or imprecise because of incomplete or
non-obtainable information. The system is pipe line network , Which
delivers known demands from source, Which are fuzzy number, to con-
sumers. Traditional mathematical programming is unable to solve this
type of problem. The paper deals with the estimation of optimal distri-
bution of water in a water supply network by modifying the maximum
entropy principle after ranking of fuzzy number.
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1. Introduction

In recent years, fuzzy set theory has been given place in the realm of
logistics. Zimmermann [15] first applied the fuzzy set theory concept with
some suitable membership functions to solve linear programming problem with
several objective functions. He showed that solutions obtained by fuzzy linear
programming are always efficient.

In this paper we introduce looped water supply network. Network has a
single source from where water is distributed to different demand which are
known and fuzzy number. We estimate the flow rate. In our practical life
demand , source are not always crisp. First we have constructed an equivalent
crisp model by ranking fuzzy numbers with respect to their total integral value.
In order to calculate the flow rate (in m3/hr) in the pipes of a looped system
accurately we need additional information to enable us to calculate the head
losses around the loops and so determine the flow rates. The conventional
computer oriented pipe network analysis method [1,10] are useless in this situ-
ation as they require data on pipe lengths, diameters, and friction coefficients
which we do not have. We can then infer some sort of ”most likely” flow rate
based only upon the incomplete information that we possess.

2. Preliminary Concepts

The problem considered in this study arises when a decision maker has
vague or imprecise data in hand. At this point the coefficients in the problem
can be defined by fuzzy numbers [4, 6]. Before developing optimization model,
some basic concepts of fuzzy set theory and ranking fuzzy number functions
are described below.

2.1 Fuzzy Sets and Fuzzy Numbers

Definition 2.1. Define a universe of discourse , X, as a collection of ob-
jects all having the same characteristics. A fuzzy set Ã of X is defined by
membership function µÃ : X −→ [0, 1]. µÃ(x) is the degree of membership

of x in Ã. The closer the value of µÃ(x) is to unity, higher the grade of x

in Ã. Therefore, Ã is completely characterized by the set of ordered pairs :

Ã =
{

(x, µÃ(x))| x ∈ X
}
.
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Definition 2.2. Let F (<) be a set of all triangular fuzzy numbers in real line

<. A triangular fuzzy number Ã ∈ F (<) is a fuzzy number with the member-
ship function µÃ : < −→ [0, 1] parameterized by a triplet (aL, a, aR) where aL
and aR denote the lower and upper limits of the support of a fuzzy number Ã
with mode a :

µÃ(x) =


µL
Ã
(x) = x− aL

a− aL
, ifaL ≤ x ≤ a

1 , x = a

µR
Ã
(x) = x− aR

a− aR
, ifa ≤ x ≤ aR

(1)

where aL ≤ a ≤ aR are real numbers, and µL
Ã
(x) and µR

Ã
(x) are the left mem-

bership function and right membership function of the fuzzy number Ã.
µL
Ã
(x) : [aL, a] −→ [0, 1] is continuous and strictly increasing and µR

Ã
(x) :

[a, aR] −→ [0, 1] is continuous and strictly decreasing function.

Figure 1: Triangular Fuzzy Number

In the triangular fuzzy number Ã denoted by Ã = (aL, a, aR), the parameter
a gives the maximal grade of µ

Ã
(a), i.e. µ

Ã
(a)=1; it is the most possible

value of the evaluation data. aL and aR are the lower and upper bounds of
the available areas of the evaluation data. For a non fuzzy number A, this
can be expressed as Ã = (a, a, a). A triangular fuzzy number is therefore a
generalization of a non-fuzzy number.

By the extension principle Zadeh [14], an arithmetics operation W̃ = Ũ ∗
Ṽ of two triangular fuzzy numbers Ũ = (uL, u, uR) and Ṽ = (vL, v, vR), is
a triangular fuzzy number whose membership function µ

W̃
(x) is defined by

Dubois and Prade [2] and Kaufmann and Gupta [6] as :

µW̃ (z) = µŨ∗Ṽ (z) = sup
z=x∗y

min{µŨ(x), µṼ (y)}

where ∗ denotes the one of the arithmetic operations +, – or ×. Then, the
result of fuzzy addition Ũ⊕Ṽ = (uL+vL, u+v, uR+vR) is also a triangular fuzzy

number. The operation of fuzzy subtraction Ũ − Ṽ = (uL− vR, u− v, uR− vL)
and scaler multiplication

k × ṽ = (kvL, kv, kvR), k ≥ 0

= (kvR, kv, kvL), k < 0
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are also fuzzy number.

2.2 Ranking Fuzzy Numbers with Respect to their Total
Integral Value

Before making a decision, decision-makers have to assess the alternatives
with fuzzy numbers and rank these fuzzy numbers correspondingly Liou and
Wang [8]. It can be seen that ranking of fuzzy numbers is an important pro-
cedure in solving the fuzzy programming problem. Many methods have been
proposed for ranking of fuzzy numbers. A relatively simple computation and
easily understood method proposed by Liou and Wang [8] is considered in this
study.

Definition 2.3. Let Ã be a triangular fuzzy number with membership function
(1). The left integral value ofÃ is defined as

IL(Ã) =

∫ 1

0

(µLÃ)
−1(y) dy (2)

and the right integral value of Ã is defined as

IR(Ã) =

∫ 1

0

(µRÃ)
−1(y) dy (3)

Where (µR
Ã
)−1(y) and (µL

Ã
)−1

(y)aretheinversefunctionsofµL
Ã
(x) and µR

Ã
(x) respctively.

For TFN Ã = (aL, a, aR)

(µLÃ)
−1(y) = aL + (a− aL)y and (µRÃ)

−1(y) = aR + (a− aR)y , y ∈ [0, 1]

Thus, we have

IL(Ã) =
1

2
(aL + a) (4)

and

IR(Ã) =
1

2
(a+ aR), (5)
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The left integral value IL(Ã) and the right integral value IR(Ã) of a TFN

Ã are geometrically interpreted as the areas of trapezoids OLPQ and ORPQ
respectively (Figure 1)

Definition 2.4. Let Ã be a triangular fuzzy number with membership function
(1), then the total λ -integral value of Ã with index of optimism λ ∈ [0, 1] is
defined as

IλT (Ã) = λIR(Ã) + (1− λ)IL(Ã)

=
1

2
[λaR + a+ (1− λ)aL] (6)

where IR(Ã) and IR(Ã) are the right and left integral values of Ã respectively.
The left integral value is used to reflect the pessimistic viewpoint and the

right integral value is used to reflect the optimistic viewpoint of the decision
maker. The total λ-integral value is a convex combination of right and left
integral values through an index of optimism.

Remarks. When Ã is a crisp number, denoted by (a, a, a), then

IλT (Ã) = λIR(Ã) + (1− λ)IL(Ã)

=
1

2
[λa+ a+ (1− λ)a] = a

It is observed that the total integral value of a non-fuzzy number Ã [=
(a, a, a)] is a for all values of λ.

Definition 2.5. Let S = {Ã1, Ã2, · · · , Ãn} be a set of convex fuzzy num-
bers, and that ranking function R R : S −→ < is a mapping from S to the
real line <. For any distinct Ãi, Ãj ∈ S, the ranking function has the following
properties :

(1) R(Ãi) < R(Ãj) implies Ãi < Ãj,

(2) R(Ãi) = R(Ãj) implies Ãi = Ãj,

(3) R(Ãi) > R(Ãj) implies Ãi > Ãj

In this study, total λ-integral value of fuzzy numbers is used as the
ranking function. Under a given level of optimism λ ∈ [0, 1], fuzzy numbers
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can be ordered by comparing their total integral value with their λ- value.
That is, for any distinct Ãi, Ãj ∈ F (<) ⊂ S, we use the following criteria to
rank a fuzzy number based on Definition 2.5:

(1) IλT (Ãi) < IλT (Ãj) implies Ãi < Ãj (Ãi is smaller than Ãj),

(2) IλT (Ãi) = IλT (Ãj) implies Ãi = Ãj (Ãi is equal to Ãj),

(3) IλT (Ãi) > IλT (Ãj) implies Ãi > Ãj (Ãi is greater than Ãj).

Obviously, the ranking function for fuzzy numbers is affected by the de-
cision maker’s degree of optimism, which is represented by the parameters
λ ∈ [0, 1]. A larger λ specifies a higher degree of optimism. For instance,

when λ = 1, the total integral value I1
T (Ã) = IR(Ã) represents an optimistic

decision maker’s point of view. On the other hand, when λ = 0, the total
integral value I0

T (Ã) = IL(Ã) indicates pessimistic decision maker’s point of
view.

When λ = 0.5, I0.5

T (Ã) =
1

2
(IR(Ã) + IL(Ã))

=
(aL + 2a+ aR)

4

which is the same as ordinary representation of Ã Kaufmann and Gupta , [6].
It indicates a moderately optimistic decision maker’s point of view and is well
qualified to be a defuzzification of the fuzzy number Ã.

3. The Maximum Entropy Principle

Probabilistic Distribution

Consider a random process which can be described by discrete random vari-
able X with n possible outcomes { x1, x2, · · · , xN}. Define pi , i = 1, 2, · · · , N
, to be the probability that X has the values xi , i = 1, 2, · · · , N. i.e. P (X =
xi) = pi. The probabilities are not known. Some information is available
about the random process in the form of M expectation function

N∑
j=1

pjaij(x) = E[ai], i = 1, 2, · · · ,M (7)
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N∑
j=1

pj = 1 (8)

Our problem is that of finding a probability assignment which avoids bias
while agreeing with whatever information is given. The distribution random
process possesses great deal disorder or chaos. This measure of disorder was
given by Shanon [9] as:

S(p1, p2, · · · , pN) = −K
N∑

j=1

pj lnpj (9)

where K is a positive constant called the Boltzmann constant, depends upon
the unit measurement of entropy. Jaynes’s Maximum Entropy Principle casts
the problem of determining the discrete probabilities p into the form of an
optimization problem. Modified form of Maximum Entropy Principle [3] is
used to generate solution to wider , more general problems where the available
information is not complete.

Problem

Maximize S = −
N∑

j=1

pj ln(pj), (K = 1) (10)

Subject to linear constraints :
N∑

j=1

pj = 1 (11)

N∑
j=1

pj bij = ci , i = 1, 2, · · · ,M (12)

The solution of the problem I is

pj = exp
{
− µ−

M∑
i=1

βibij

}
, j = 1, 2, · · · , N (13)

where βi , i = 1, 2, · · · ,M and µ are Lagrange multipliers associated with
(12) and (11) respectively. To determine the probabilities pj , j = 1, 2, · · · , N
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from the equation (13) it is therefore necessary to know the values of Lagrange
multipliers. This can be found solving the equations

N∑
j=1

exp
{
−

M∑
i=1

βibij

}
= exp(µ) (14)

N∑
j=1

bij exp
{
− µ−

M∑
i=1

βibij

}
= ci , i = 1, 2, · · · ,M (15)

Solving the (M + 1) non-linear equations we can find (M + 1) Lagrange
multipliers, which is awkward and tedious and required laborious numerical
calculation. We modify this process in the following way :

Assume that the matrix B = [b∗ij](M+1)×N where b∗ij = bij, i = 1, 2, · · · ,M

= 1 , i = M + 1 , j = 1, 2, · · · , N

has the rank (M + 1) [M + 1 < N , otherwise equations (14) and (15) would
themselves be sufficient to determine the unknown probabilities uniquely and
would consist of complete rather than partial information.]

Then we can write

p1 = ψ1(pM+2, pM+3, · · · , pN)

p2 = ψ2(pM+2, pM+3, · · · , pN)

· · · · · · · · · · · · · · · · · · (16)

pM+1 = ψM+1(pM+2, pM+3, · · · , pN)

Then original problem is then reduced to unconstrained optimization prob-
lem. For maximization ∂S

∂pj
= 0. Then

pj

M+1∏
i=1

ψ
(
∂ψi
∂pj

)

i = exp
[
−

{
1 +

M+1∑
i=1

∂ψi

∂pj

}]
, j = M + 2,M + 3, · · · , N. (17)

Hence N − (M + 1) equations and N − (M + 1) unknowns , which can be
solved to find the values (pM+2, pM+3, · · · , pN) and then from the relations (16)
we can find the whole set (p1, p2, · · · , pN)
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4. Water Supply Network Analysis

Water distribution system connect consumers to sources of water, using hy-
draulic components, such as pipes, valves and reservoirs. The engineer faced
with the design of such a system or of additions to an existing system, has
to select sizes of its components. Also he has to consider the way in which
the operational components will used to supply the required demands with
adequate pressures. A problem is to estimate of least biased pipe flow rate
through different known direction of a looped water network from known de-
mand, which is usually made that all the demands occur at the nodes. In
order to calculate the flow rates in the pipes of a looped system accurately we
need additional information to enable us to calculate the head losses around
the two loops and so determine the flow rates. The conventional computer
oriented pipe network analysis [1,9,10, 11] are useless in this situation as they
required data on pipe lengths, diameters, friction coefficients etc. which we do
not have.

Again in our real world problem input data or parameters are often fuzzy
or imprecise because of incomplete or non-obtainable information. Traditional
mathematical programming techniques, obviously, can not solve this type of
problem. Here the demands, sources are characterized as triangular fuzzy
number (TFN). First these model have been converted into deterministic ones
via the ranking function of the fuzzy numbers with respect to their total inte-
gral values and maximum entropy technique developed in the previous section
can successfully used in determining the flow rate.

5. Small Looped Water Network Problem

Consider a looped water supply network Fig-2 with 7 nodes and 8 pipes
whose source and demand are triangular fuzzy number. Note Fig-2 shows the
connectivity of the system and the flow direction in each pipe but does not
give any data for the individual pipes. If the network were branched we would
have no difficulty in calculating the flow rates in the pipes of the branched
system. We could simply work backwards along each branch accumulating
demand quantities as flow rates until we reach the single source. Let Qi be
the assumed flow rate(m3/hour) through i th pipe (i = 1, 2, · · · , 8). Then we
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have equations

Q1 = (1060, 1120, 1200)

Q2 +Q3 = (940, 1020, 1110)

Q2 −Q7 = (90, 100, 110)

Q8 +Q6 = (190, 200, 210)

Q5 −Q6 = (320, 330, 340) (18)

Q3 −Q4 −Q5 = (110, 120, 130)

Q4 +Q7 −Q8 = (260, 270, 290)

First convert this model into crisp one by (6). Which gives

Q1 = 1090 + 70λ

Q2 +Q3 = 980 + 85λ

Q2 −Q7 = 95 + 10λ

Q8 +Q6 = 195 + 10λ

Q5 −Q6 = 325 + 10λ (19)

Q3 −Q4 −Q5 = 115 + 10λ

Q4 +Q7 −Q8 = 265 + 15λ

All input and output flow rates have also been scaled by appropriate factor
of (980 + 85λ) and using (17) we find the least biased estimation of the pipe
flow rate for different values of λ

λ Flow rate
0 Q1 = 1090 Q2 = 355.210 Q3 = 639.895 Q4 = 144.562

Q5 = 379.323 Q6 = 55.827 Q7 = 260.153 Q8 = 141.030
0.3 Q1 = 1111 Q2 = 362.123 Q3 = 649.287 Q4 = 147.134

Q5 = 382.564 Q6 = 56.289 Q7 = 263.753 Q8 = 142.158
0.5 Q1 = 1125 Q2 = 366.145 Q3 = 656.054 Q4 = 149.566

Q5 = 385.134 Q6 = 56.916 Q7 = 265.573 Q8 = 14.612
0.7 Q1 = 1139 Q2 = 370.923 Q3 = 662.254 Q4 = 150.857

Q5 = 388.028 Q6 = 57.734 Q7 = 268.873 Q8 = 146.331
1 Q1 = 1160 Q2 = 377.834 Q3 = 672.012 Q4 = 153.237

Q5 = 391.985 Q6 = 58.152 Q7 = 271.904 Q8 = 147.876
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Table : 1 / Flow rate for different values of λ

6. Conclusion

For large engineering systems such as pipe line networks, traffic networks
etc, complete and accurate data is rarely available and often the calculated
performance depends upon’engineering judgements’ in supplying guesses at
values for data items in order to be able to use existing computer programs.
Again in our real world problem input data or parameters are often fuzzy or
imprecise because of incomplete or non-obtainable information. Traditional
mathematical programming techniques, obviously, can not solve this type of
problem. Here the demands, sources are characterized as triangular fuzzy
number (TFN).

The above the process shown how the entropy measure of uncertainty and
the Maximum Entropy Principle can be used to infer least biased results us-
ing incomplete data. In the network described we have specified initially the
direction of flow and demand, source which are TFN. If the direction of flow
is not given we shall consider all possible kinds of direction of the network
and estimate the corresponding maximum entropy for each case. We shall
select the one which yields the greatest value. Initially the problem has been
converted into crisp one by ranking of fuzzy numbers with respect to their
integral values and then maximum entropy principle can successfully used in
determining the flow rate.
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