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Abstract

Some Griiss type inequalities for the Bochner integral of vector-
valued functions in real or complex Banach spaces are given. Appli-
cations in connection to the Heisenberg inequality for functions with
values in Hilbert spaces are also pointed out.
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1. Introduction

In 1934, G. Griiss [5] proved the following inequality

1 b
‘b—a/f t)dt — b—a/f bdt — g(t)dt’

provided
—co<m< f(t)<M<oo, —oco<n<g(t)<N<o0

for a.e. ¢ € [a,b]; and showed that the constant 1 is the best possible.

An extension of the above result to vector-valued functions in Hilbert
spaces was obtained in 2001 by S.S. Dragomir [3]:

Let (H;(-,-)) be a Hilbert space over K, Q C R™ a measurable set, f, g :
0 — H Bochner measurable functions on Q and f,g € Ly, (2, H) , where

Lz,p(Q,H);:{f Q—>H/ VILF O dt<oo}

and p : Q — [0,00) is a Lebesgue integrable function with [, p (z)dx = 1. If
there exist vectors x, X,y,Y € H such that either

/Qp(t) Re(X — f(t),f(t)—2)dt >0, and (12)
| ot Ry =090 =it >0

or, equivalently, [1], either,

2
1
t) Hf (t) — 5 dt < 1 X — z|]?, and (1.3)

Amw%@—2332

1 2
dt < - ||Y —
—4H yll

then

[ra@.aoia-{[poswd [ o)

X =zl [V =yl (14)
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The constant 1 in (1.4) is again the best possible.
This result was improved in [1], where the authors, on using a finer argu-
ment, proved that

1¢@Mﬂwg@»ﬁ—<Apmfama4p@gwﬁﬂ (15)

1
< 71X =l |y -~y

—{Ap@RMX—f@%ﬂﬂ—@ﬁ

2

< [prety —g(0.90 - ) ar
1
< 71X =2y =yl
provided f and g satisfy either (1.2) or, equivalently, (1.3).

Under the same type of hypothesis, the authors of [1] also established the
following result:

Ap@a®f@ﬁ—4p®awﬁép@f®ﬁH (1.6)

1
< ;14— al|IX —a|

- (/Qp(t)Re [(A—a(t)) (W—a)} dt

< [ o= 1.0 -0 )
Q

2

1
< 7lA=allX —al,

provided f satisfies either (1.2) or (1.3) and the scalar function o : Q@ — K
satisfies the equivalent conditions:

Re [(A—a(t)) (m—aﬂ >0

and A
+a
-2

1
§§|A—6L’7
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for a.e. t € ), where A, a € K are given constants.

Note that in both inequalities (1.5) and (1.6) the quantity 1 is again the
best possible.

The main aim of this paper is to establish some Griiss type inequalities for
Bochner integrable functions taking values in a Banach space. Applications
for the case of Hilbert spaces and in connection with the Heisenberg inequality
are also given.

2. Inequalities in Banach Spaces

Theorem 1. Let (X, ||-||) be a Banach space over the real or complex number
field K, Q € R™ a measurable set and p : Q — [0,00) a Lebesque integrable
function with pr Ydr = 1. If a : Q — K is a Lebesque integrable function
such that there exzsts v, I' e K with

v+ T

R 2.1)

or, equivalently,
Re [(F—a(:v)) (M—vﬂ >0 (2.2)

for a.e. x € Q, and f : Q — X is a Bochner measurable function such that
paf and pf are Bochner integrable on €1, then,
‘/Qp(w)a(x>f(x)daf—/Qp(x)a(w)dx-/gp(x)f(w)dw
1
<gll=al/ ple
Q

The constant % in (2.3) is the best possible.

) ‘f(m)—/ﬂp(y)f(y)dy‘ dzx. (2.3)

Proof. The following Sonin type identity for the Bochner integral holds:

[o@a@s@an= [ p@awdr [ p@s
:/Qp(x) (a(x) 7”)( / >dx. (2.4)
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(for the scalar case, see [6, p. 246]). Taking the norm in (2.4), we deduce

‘/QW)“WW%—/Qﬂ<x>a<x>d:c-/Qp<x>f<x>dx
g/pu) L@ [owswaa

r—
_2| vl/

and the inequality (2.3) is obtained.
Now, to prove the Sharpness of the constant 1 , assume that (2.3) holds for
Q=la,b], X =R, p=—~, with a constant ¢ > 0 That is:

i ’ a(t) f(t)dt — — t)dt - — f t)dt
b—a /, b a a
1 / f(s)ds|d

€ [a,b], and fab is the usual

a(x) —

dz.

‘f(x)— Qp(y)f@)dy\

(2.5)

7

c(l'=7) =

where —0o < v < a(t) < T < oo for ae. t
Lebesgue integral on [a, b] .
If we choose, in (2.5), « = f and [ : [a,b] — R defined by
-1 if z € [a,‘%b],

flx)=
1 if ze (“20],

then, obviously v = —1, I' =1,
/f2 dt—(b_ /f dt) =1,
b—a/ / f(s)ds|d

and by (2.5) we get ¢ > 1.
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Remark 1. If o takes real values and there exist constants m, M such that
—co<m<a<<M<oo fora.e. x € then (2.3) becomes:
|[r@raw i@ [p@awi [ oo
1
<gar-m [ o010~ [p0rma)

Note that a scalar version of this inequality has been obtained previously by
Cerone and Dragomir in [2], using a different technique.

dz.

Remark 2. A slightly more general result for a (t) € B (c,r) == {2 € C||z — | < 7}

for a.e. x €, is:
[r@a@s@a= [ p@a@ide- [ p@) @

\ :
ST/QP(SC)

Here the inequality (2.6) is also sharp.

dr. (2.6)

‘f(x)—/ﬂp(y)f(y)dy‘

The following dual result may be stated as well.

Theorem 2. Let (X, |||) and Q,p be as above. If f : Q@ — X is Bochner
measurable on Q0 and there exist vector v € X and r > 0 such that f (z) €

B(v,r) ={y e X||ly—v| <r} for ae. z € Q and a : Q — K a Lebesque
integrable function with paf, pf Bochner integrable functions on €1, then we
have the sharp inequalities

‘/QP(:E)O‘@)f(:C)dx—/Qp(x)a(x)dx./gp(x>f(x)dx

é?‘/ﬂp(ﬂf)

<r [/ﬂp(x)la(x)lzdx—

(2.7)

dx

a(as)—/gmwa(y)dy

/Qp(x)oz(x) do
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Proof. The first inequality in (2.7) is obvious from the Sonin type identity:

[r@a@s@d= [ p@a@ide- [ p@) @

Q

=/Qp(x) (a(x)—Lp(y)a(y)dy) (f () —v) du.

The second inequality follows by Schwarz’s integral inequality:

Ap@wuw—ép@a@Myws_mewuw—ép@awMyw4

The details are omitted.

The following particular case holding for Hilbert spaces may be useful for
applications.

Corollary 1. Let (H;(-,-)) be a Hilbert space over the real or complex number
field and 2, p and o as in Theorem 2. If there exist vectors v,V € H such that
for the Bochner measurable function p: ) — H either

Re(V — f(z), [ (z) —v) 20, (2.8)
or, equivalently,
1057 <51v - 29)

for a.e. x € Q and paf, pf Bochner integrable on €2, then,

Hlf“*“”fuﬂf—LP@MM@M+Ap@nﬁwm
<3Vl [ pa

S;W+m4£pw

(2.10)

dx

2
dx]

M@—Lp@a@My

N

a(w)—[)p(y)a(y)dy
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The quantity % is the best possible in both inequalities in (2.10).
Proof. The proof is obvious by Theorem 2 on taking into account that in the
Hilbert space (H; (-, -)) the following two statements are equivalent
D [ly == <2V -l
(i) Re(V —y,y—v) >0,
where y, v,V € H.

The following result is similar to (1.5).

Theorem 3. Let (H;(-,-)) be a Hilbert space over the real or complex number
field and f,g : Q — H Bochner measurable on Q while p : Q — [0,00) is
Lebesgue integrable and pr(x) dx = 1. If there exist vectors v,V € H such
that either (2.8) or, equivalently, (2.9) hold for a.e. x € Q and af, pg are
Bochner integrable on €1, then,

vt @ g@) o= { [ pw @i, |

—HV—vH/ )o@ /p<><>dy]Q
%nv—vnl/ )l (@ ||—H/

(provided g € Lo, (2, H) )

P9 de)| (1)

2 73
dm]

dx

| /\

IN

Again, the constant % 18 the best possible.

Proof. The following Sonin type identity may be stated as well.

Ap<x><f<x>,g<x>>dx—</Qp<x>f<:c>dx,/9p<x>g<x>dw>

- [o@ (10 - Y@= [swawar)an @)
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Taking the modulus, using the hypothesis and the Schwarz inequality in (H; (-, ),
we have,

L@@ g@has=( [ o @an [ pega)

< [r@(r@ -5 0w - [ o)
-

V;U Hg(x)—/ﬂp(y)g(y)dy‘
<5V =l [ @

‘g(fﬁ) —/Qp(y)g(y) dy’

dx

dx

dx

<§Wv_Apu>wwlf@mwmy34é

/Qp(fv) lg ()1I* - H/Qp(y)g(y)dy der,

provided g € Ly, (2, H).
Remark 3. Assume that for the Lebesque integrable function o : 2 — K there

exist v,I' € K such that either (2.1) or, equivalently, (2.2) hold, then,

2

0< [ pala @ [ pl)ats)ds (2.13)
§%|F—v|/gp(ﬂf) Oé(l’)—/ﬂp(y)a(y)dy d,
and [1]
0< /Qp(x)oz2 (z) dx — (/ﬂp(:c)a(x)d:c)2 (2.14)
<50 =al [ p@la@ = [ pwa )iz

The quantity % 18 sharp in both instances.



100 N. S. Barnett, C. Buse, P. Cerone, and S. S. Dragomir

3. Applications for Some Integral Inequalities
of the Heisenberg Type

In the following we use the Griiss type inequality

Ameaﬂwya»w—m{[fuw@myA

P09 dt))

gémﬂwmlﬁuwmw—L%@mmeﬁ,@n

provided p € L ([a,b]), fab,o(t) dt =1, pf,pg € L(la,b],H), (H,(-,-)) is a real
or complex Hilbert space and f : [a,b] — H is Bochner measurable and such
that either

Re(V —f(t),f(t)—v) >0 forae. tE€la,b], (3.2)

or, equivalently,

Notice that the inequality (3.1) follows by (2.10) on taking into account that,
for complex numbers z € C, |Rez| < |z|.

It is well known that if (H;(-,-)) is a real or complex Hilbert space and
f :]a,b] C R —H is an absolutely continuous vector-valued function, then f
is differentiable almost everywhere on [a, b], the derivative f’ : [a,b] — H is
Bochner integrable on [a, b] and

v+

OEE

1
VH < ||V —w| forae. t€]a,b].

t
£t) = / F'(s)ds for any ¢ € [a,]. (3.3)
The following theorem provides a version of the Heisenberg inequality in

the general setting of Hilbert spaces and has been obtained by S.S. Dragomir
in [4].

Theorem 4. Let ¢ : [a,b] — H be an absolutely continuous function with the
property that bl (0)|* = alle (a)|*, then,

[W¢mes2UﬁW@w%vlﬂwwwwﬁr. (3.0
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The constant 2 is the best possible.

Remark 4. [t is obvious that a sufficient condition for (3.4) to hold is that
¢ (a) = () =0.

In the following we point out different upper bounds from (3.4), for the
integral [* ] (¢)] dt.

Proposition 1. Let ¢ : [a,b] — H be an absolutely continuous function with

the property that ¢ (a) = ¢ (b) = 0. If there exist vectors v,V € H such that
either

V 1
'¢’(t)—“; H < S|V =v| forae. t€lab (3.5)
or, equivalently,
Re{V — ¢ (t),¢' (t) —v) >0 fora.e. t€la,b], (3.6)

then,

to(t) — ﬁ/ s (s)ds

b b
[lewra<y-o [

Proof. Applying the inequality (3.1) for p (t) = =, f (t) = ¢’ (t) and g () =
to (t), t € [a,b], we can write:

dt.  (3.7)

‘bia/abtR‘?(@/(t),sO(t»dt

- Re<ﬁ/abgp'(t)dt,ﬁ/abt(p(t)dt»

L=l [0 - [ s
2 Ub—aa 7 b—aaSSOSS

dt. (3.8)
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/ tRe (¢! (1) 0 (1)) dt = — - / o (1)) dt, (3.10)

where, for the last equality we have used an identity obtained in [4] (see the Eq.
(5.3) from [4]) under the more general assumption, i.e., b (b)]|* = a ¢ (a)|*.
Making use of (3.9), (3.10) and (3.8), we conclude that (3.7) holds true and
the proposition is proven.

Proposition 2. Let ¢ : [a,b] — H be an absolutely continuous function with

the property that ¢ (a) = ¢ (b) = 0. If there exist vectors w,W € H so that
either

'up’(t) “’+WH Liw —wl| forae telay,  (311)
or, equivalently,
Re (W —t¢' (t),t¢' (t) —w) >0 for a.e. t € [a,b], (3.12)

then

Proof. Applying the inequality (3.1) for p(t) = — = t¢' (t) and
g(t)=p(t),t€la,b], we can write:

/abgo(t)dt

—30-a) [ el a

1

dt. (3.13)

(\]

dt. (3.14)

Since ¢ (a) = ¢ (b) = 0, hence

/b to' (t)dt = — /bcp (t)dt. (3.15)
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Therefore, by (3.10), (3.15) and (3.14), we deduce

e oresmftsfooncte ).

1 I
<yt =l [ o

b—a SD
which is clearly equivalent to (3.13).
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