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Abstract

An identity due to P. Cerone for the Čebyšev functional is extended
for Stieltjes integrals. A sharp inequality and its application in approx-
imating Stieltjes integrals are also given.
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1. Introduction

In 2001, P. Cerone [1] established the following identity for the Čebyšev
functional:

T (f, g; p) :=
1∫ b

a
p (s) ds

∫ b

a

p (t) f (t) g (t) dt (1.1)

− 1∫ b

a
p (s) ds

∫ b

a

p (t) f (t) dt · 1∫ b

a
p (s) ds

∫ b

a

p (t) g (t) dt
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=
1(∫ b

a
p (s) ds

)2

∫ b

a

[∫ t

a

p (s) ds

∫ b

t

p (s) g (s) ds

−
∫ b

t

p (s) ds

∫ t

a

p (s) g (s) ds

]
df (t) ,

provided f is of bounded variation on [a, b] and g is continuous on [a, b] . He
proved (1) on utilising the auxiliary function Ψ : [a, b] → R,

Ψ (t) := (t− a)

∫ b

t

g (s) ds− (b− t)

∫ t

a

g (s) ds (1.2)

and integrating by parts in the Stieltjes integral
∫ b

a
Ψ (t) df (t) , which exists,

since f is of bounded variation and Ψ is differentiable on (a, b) .
One may observe that the result remains valid if one assumes that g is

Lebesgue integrable on [a, b] and f is of bounded variation. This follows by the
fact that, in this case Ψ becomes absolutely continuous on [a, b], the Stieltjes

integral
∫ b

a
Ψ (t) df (t) still exists and the argument will follow as in [1].

The weighted version of this inequality has been obtained in the same paper
[1] and can be stated as:

T (f, g; p) :=
1∫ b

a
p (s) ds

∫ b

a

p (t) f (t) g (t) dt (1.3)

− 1∫ b

a
p (s) ds

∫ b

a

p (t) f (t) dt · 1∫ b

a
p (s) ds

∫ b

a

p (t) g (t) dt

=
1(∫ b

a
p (s) ds

)2

∫ b

a

[∫ t

a

p (s) ds

∫ b

t

p (s) g (s) ds

−
∫ b

t

p (s) ds

∫ t

a

p (s) g (s) ds

]
df (t) ,

provided f is of bounded variation on [a, b] and p, g are continuous on [a, b]

with
∫ b

a
p (s) ds > 0. The same remark for the extension of the identity in the
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case that p, g are Lebesgue integrable on [a, b] so that pg is also integrable,
may apply.

The above two identities have been applied in [1] to obtain some interesting
new bounds for the Čebyšev functionals T (f, g) and T (f, g; p) from which we
only mention the following:

|T (f, g)|

≤ 1

(b− a)2 ×



sup
t∈[a,b]

|Ψ (t)|
∨b

a (f) ;

L
∫ b

a
|Ψ (t)| dt for f L− Lipschitzian;∫ b

a
|Ψ (t)| df (t) for f monotonic nondecreasing,

(1.4)

where
∨b

a (f) is the total variation of f on [a, b] , Ψ (t) is given by (1) , and

|T (f, g; p)|

≤ 1(∫ b

a
p (s) ds

)2×



sup
t∈[a,b]

|Ψp (t)|
∨b

a (f) ;

L
∫ b

a
|Ψp (t)| dt if f is L− Lipschitzian;∫ b

a
|Ψp (t)| df (t) for f monotonically nondecreasing,

(1.5)

where in this case the wighted auxiliary mapping Ψp is defined as Ψp : [a, b] →
R,

Ψp (t) :=

∫ t

a

p (s) ds

∫ b

t

p (s) g (s) ds−
∫ b

t

p (s) ds

∫ t

a

p (s) g (s) ds.

For other inequalities and applications for moments, see [1].

For further results, see the follow up paper [2] where various lower and
other upper bounds were established.
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2. A Related Functional

In [4], the authors have considered the following functional

D (f ;u) :=

∫ b

a

f (x) du (x)− [u (b)− u (a)] · 1

b− a

∫ b

a

f (t) dt, (2.1)

provided that the Stieltjes integral
∫ b

a
f (x) du (x) exists.

This functional palys an important role in approximating the Stieltjes inte-
gral

∫ b

a
f (x) du (x) in terms of the Riemann integral

∫ b

a
f (t) dt and the divided

diference of the integrator u. Therefore, further bounds on D (f ;u) will gen-
erate a flow of different error estimates for the approximation of the Stieltjes
integral that plays an important role in various fields of Analysis, Numerical
Analysis, Integral Operator Theory, Probability & Statistics and other fields
of Modern Mathematics.

In [4], the following result in estimating the above functional D (f ;u) has
been obtained:

|D (f ;u)| ≤ 1

2
L (M −m) (b− a) , (2.2)

provided u is L−Lipschitzian and f is Riemann integrable and with the prop-
erty that there exists the constants m,M ∈ R such that

m ≤ f (x) ≤M for any x ∈ [a, b] . (2.3)

The constant 1
2

is best possible in (3) in the sense that it cannot be replaced
by a smaller quantity.

If one assumes that u is of bounded variation and f is K−Lipschitzian,
then D (f, u) satisfies the inequality [5]

|D (f ;u)| ≤ 1

2
K (b− a)

b∨
a

(u) . (2.4)

Here the constant 1
2

is also best possible.

The above inequalities have been used in [4] and [5] for obtaining inequal-
ities between special means and on estimating the error in approximating the
Stieltjes integral

∫ b

a
f (x) du (x) in terms of the Riemann integral for the func-

tion f and the divided difference of u.
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Now, for the function u : [a, b] → R, consider the following auxiliary map-
pings Φ,Γ and ∆ [3]:

Φ (t) :=
(t− a)u (b) + (b− t)u (a)

b− a
− u (t) , t ∈ [a, b] ,

Γ (t) := (t− a) [u (b)− u (t)]− (b− t) [u (t)− u (a)] , t ∈ [a, b] ,

∆ (t) := [u; b, t]− [u; t, a] , t ∈ (a, b) ,

where [u;α, β] is the divided difference of u in α, β, i.e.,

[u;α, β] :=
u (α)− u (β)

α− β
.

The following representation of D (f, u) may be stated.

Theorem 1. Let f, u : [a, b] → R be such that the Stieltjes integral
∫ b

a
f (t) du (t)

and the Riemann integral
∫ b

a
f (t) dt exist. Then

D (f, u) =

∫ b

a

Φ (t) df (t) =
1

b− a

∫ b

a

Γ (t) df (t) (2.5)

=
1

b− a

∫ b

a

(t− a) (b− t) ∆ (t) df (t) .

Proof. Since
∫ b

a
f (t) du (t) exists, hence

∫ b

a
Φ (t) df (t) also exists, and the

integration by parts formula for Stieltjes integrals gives that∫ b

a

Φ (t) df (t) =

∫ b

a

[
(t− a)u (b) + (b− t)u (a)

b− a
− u (t)

]
df (t)

=

[
(t− a)u (b) + (b− t)u (a)

b− a
− u (t)

]
f (t)

∣∣∣∣b
a

−
∫ b

a

f (t) d

[
(t− a)u (b) + (b− t)u (a)

b− a
− u (t)

]
= −

∫ b

a

f (t)

[
u (b)− u (a)

b− a
dt− du (t)

]
= D (f, u) ,

proving the required identity.
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Remark 1. The identity (1) has been established in [3]. There were some
typographical errors in [3] that have been corrected above.

Remark 2. If u is an integral, i.e., u (t) =
∫ t

a
g (s) ds, t ∈ [a, b] , then

Φ (t) =
t− a

b− a

∫ b

a

g (s) ds−
∫ t

a

g (s) ds,

Γ (t) = (t− a)

∫ b

t

g (s) ds− (b− t)

∫ t

a

g (s) ds,

∆ (t) =

∫ b

t
g (s) ds

b− t
−

∫ t

a
g (s) ds

t− a
,

and then, from (1), one may recapture Cerone’s identity (1) for the Čebyšev
functional T (f, g) .

Since it well known that u is an integral if and only if u is absolutely
continuous, and in this case g (s) = u′ (s) for s ∈ [a, b] , hence (1) is indeed
a proper generalisation of (1) holding for larger classes of functions than the
absolutely continuous functions.

Remark 3. If one chooses u : [a, b] → R,

u (t) =

∫ t

a
p (s) g (s) ds∫ b

a
p (s) ds

, t ∈ [a, b] ,

where p, g are Lebesgue integrable with pg is also integrable and
∫ b

a
p (s) ds 6= 0,

then the identity (1) produces the representation:

E (f, g; p) :=

∫ b

a
p (s) f (s) g (s) ds∫ b

a
p (s) ds

−
∫ b

a
p (s) g (s) ds∫ b

a
p (s) ds

· 1

b− a

∫ b

a

f (t) dt (2.6)

=

∫ b

a

Φp (t) df (t) =
1

b− a

∫ b

a

Γp (t) df (t)

=
1

b− a

∫ b

a

(t− a) (b− t) ∆p (t) df (t) ,
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where

Φp (t) :=
t− a

b− a
·
∫ b

a
p (s) g (s) ds∫ b

a
p (s) ds

−
∫ t

a
p (s) g (s) ds∫ b

a
p (s) ds

,

Γp (t) := (t− a)

∫ b

t
p (s) g (s) ds∫ b

a
p (s) ds

− (b− t)

∫ t

a
p (s) g (s) ds∫ b

a
p (s) ds

and

∆p (t) :=

∫ b

t
p (s) g (s) ds

(b− t)
∫ b

a
p (s) ds

−
∫ t

a
p (s) g (s) ds

(t− a)
∫ b

a
p (s) ds

.

One must observe that the identity (3) is not the same as Cerone’s identity
for weighted integrals (1).

For recent inequalities related to D (f ;u) for various pairs of functions
(f, u) , see [3, pp. 112-118].

3. A Bound for f of Bounded Variation and u

Continuous

It is known that if u is continuous on [a, b] and f is of bounded variation

on [a, b] , then the Stieltjes integral
∫ b

a
f (t) du (t) exists. This integral may

exists even for larger clases of integrators f , for instance, piecewise continuous
functions for which the discontinuities of the integrand f do not overlap with
those of the integrator u.

The following result may be stated:

Theorem 2. Let f : [a, b] → R be of bounded variation on [a, b] and u :
[a, b] → R such that there exist the constants γ,Γ ∈ R with:

γ ≤ u (t) ≤ Γ for any t ∈ [a, b] (3.1)

and the Stieltjes integral
∫ b

a
f (t) du (t) exists. Then

|D (f ;u)| ≤ (Γ− γ)
b∨
a

(f) . (3.2)

The multiplicative constant 1 in front of Γ− γ cannot be replaced by a smaller
quantity.
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Proof. By (1), we obviously have:

γ (b− t) ≤ (b− t)u (a) ≤ (b− t) Γ,

γ (t− a) ≤ (t− a)u (b) ≤ (t− a) Γ,

− (b− a) Γ ≤ − (b− a)u (t) ≤ − (b− a) γ,

which gives by addition and division with b− a that

− (Γ− γ) ≤ (b− t)u (a) + (t− a)u (b)

b− a
− u (t) ≤ Γ− γ,

showing that |Φ (t)| ≤ Γ− γ for any t ∈ [a, b] .
Taking into account that for ϕ bounded and ψ of bounded variation on

[a, b] one has ∣∣∣∣∫ b

a

ϕ (t) dψ (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|ϕ (t)|
b∨
a

(ψ) ,

provided the Stieltjes integral exists, we have by (1) that

|D (f ;u)| ≤ sup
t∈[a,b]

|φ (t)|
b∨
a

(f) ≤ (Γ− γ)
b∨
a

(f) ,

proving the required inequality (7).
Now, for the sharpness of the inequality.
Assume that there exists a c > 0 such that

|D (f ;u)| ≤ c (Γ− γ)
b∨
a

(f) , (3.3)

where u and f are as in the hypothesis of the theorem.
Consider u, f : [a, b] → R with

u(t) = 1
2

(
t− a+b

2

)2
, f (t) = sgn

(
t− a+b

2

)
, t ∈ [a, b] .Then u is contin-

uous, f is of bounded variation, the integral
∫ b

a
f (t) du (t) exists and

b∨
a

(f) = 2,

∫ b

a

f (t) dt = 0,

Γ = sup
t∈[a,b]

u (t) =
(b− a)2

8
, γ = inf

t∈[a,b]
u (t) = 0,
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∫ b

a

f (t) du (t) =

∫ b

a

sgn

(
t− a+ b

2

) (
t− a+ b

2

)
dt

=

∫ b

a

∣∣∣∣t− a+ b

2

∣∣∣∣ dt =
(b− a)2

4
.

Substituting into (8) we get (b−a)2

4
≤ c(b−a)2

4
, which implies that c ≥ 1.

Corollary 1. Let f : [a, b] → R be of bounded variation and u : [a, b] → R
continuous on [a, b] . Then:

|D (f ;u)| ≤
[
max
t∈[a,b]

u (t)− min
t∈[a,b]

u (t)

] b∨
a

(f) . (3.4)

The inequality (9) is sharp.

If we consider the Čebyšev functional T (f, g) , then we can state the fol-
lowing corollary as well:

Corollary 2. Let f : [a, b] → R be of bounded variation and g : [a, b] → R
a Lebesgue integrable function such that there exists the constants m and M
with

m ≤ g (s) ≤M for a.e. s ∈ [a, b] . (3.5)

Then

|T (f, g)| ≤ (b− a) (M −m)
b∨
a

(f) . (3.6)

Proof. We choose u (t) :=
∫ t

a
g (s) ds which is continuous on [a, b] and satisfies

the inequality (6) with γ = (b− a)m and Γ = (b− a)M and apply Theorem 2.

Remark 4. If we assume that for the Lebesgue integrable function g,
∫ ·

a
g (s) ds

satisfies the condition

γ ≤
∫ t

a

g (s) ds ≤ Γ for any t ∈ [a, b] ,



88 S. S. Dragomir

then

|T (f, g)| ≤ (Γ− γ)
b∨
a

(f)

and the inequality is sharp. The equality case is realised for g (t) = t − a+b
2

and f (t) = sgn
(
t− a+b

2

)
, t ∈ [a, b] .

It is an open problem wether or not the bound in (11) is sharp.

Remark 5. If p, g ∈ L [a, b] so that pg ∈ L [a, b] and
∫ b

a
p (s) ds 6= 0 and there

exists the constants δ,∆ so that

δ ≤
∫ t

a
p (s) g (s) ds∫ b

a
p (s) ds

≤ ∆

for any t ∈ [a, b] , then

|E (f, g; p)| ≤ (∆− δ)
b∨
a

(f) .

The last inequality is sharp.

4. Application for Approximating the Stieltjes

Integral

Let us consider the partition of the interval [a, b] given by

In : a = t0 < t1 < · · · < tn−1 < tn = b.

Denote v (In) := max {hi|i = 0, . . . , n− 1}, where hi := ti+1−ti, i = 0, . . . , n−
1. If u : [a, b] → R is continuous on [a, b] and if we define

Mi := sup
t∈[ti,ti+1]

u (t) , mi := inf
t∈[ti,ti+1]

u (t)

and
v (u, In) := max

0≤i≤n−1
(Mi −mi) ,

then, obviously, by the continuity of u on [a, b] , for any ε ≥ 0, there exists a
δ > 0 and a division In with norm v (In) < δ such that v (u, In) < ε.
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Consider now the quadrature rule

Sn (f, u, In) :=
n−1∑
i=0

[u (ti+1)− u (ti)]

ti+1 − ti
·
∫ ti+1

ti

f (t) dt, (4.1)

provided u is continuous on [a, b] and f is of bounded variation on [a, b] .
We may state the following result in approximating the Stieltjes integral:

Theorem 3. Let f, u : [a, b] → R be such that f is of bounded variation on
[a, b] and u is continuous on [a, b] . Then for any division In as above,∫ b

a

f (t) du (t) = Sn (f, u, In) +Rn (f, u, In) , (4.2)

where the remainder Rn (f, u, In) satisfies the estimate:

|Rn (f, u, In)| ≤ v (u, In)
b∨
a

(f) . (4.3)

Proof. Applying Theorem 2 on the intervals [ti, ti+1] , i = 0, . . . , n − 1, we
have sucessively:

|Rn (f, u, In)| =

∣∣∣∣∣
n−1∑
i=0

∫ ti+1

ti

f (t) du (t)− u (ti+1)− u (ti)

ti+1 − ti

∫ ti+1

ti

f (t) dt

∣∣∣∣∣
≤

n−1∑
i=0

∣∣∣∣∫ ti+1

ti

f (t) du (t)− u (ti+1)− u (ti)

ti+1 − ti

∫ ti+1

ti

f (t) dt

∣∣∣∣
≤

n−1∑
i=0

(Mi −mi)

ti+1∨
ti

(f) ≤ v (u, In)
b∨
a

(f)

and the estimate (14) is obtained.
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