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Abstract

In this paper, five functionals fixed point theorem is extended and
applied to singular boundary value problem with p-Laplacian. The
existence of at least three positive solutions is obtained.
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1. Introduction

Nonlinear multi-point boundary value problems have been studied exten-
sively in the literature (see [?], [?], and [?], and the references cited therein).
Singular differential boundary value problems arise in many nonlinear complex
phenomena in the science, engineering and technology and have been studied
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extensively (see [1-4, 8, 9]).
Agarwal et al. [?] consider the following one-dimensional singular equation{

(Φpy
′)′ + q(t)f(t, y) = 0, 0 < t < 1,

y(0) = y(1) = 0.

The existence of one positive solution have been obtained by using upper-lower
solution method.

Xian Xu [?] consider the following boundary value problems{
y′′ + λf(t, y) = 0, 0 < t < 1,

y(0) = 0, y(1) =
∑m−2

i=0 αiy(ηi),

give some existence results for at least one positive solution by using Leray-
Schauder continuation theorem.

Motivated by the results mentioned, we study the existence of three positive
solutions for the following BVP{

(Φp(u
′))′ + e(t)f(t, u) = 0, 0 < t < 1,

u(0) = 0, u(1) = αu(η),
(1)

where Φpv := |v|p−2v, p > 1, 0 ≤ α < 1, f(t, u) : [0, 1]×(0,∞) → [0,∞), f may
have singularity at u = 0. e(t) is a nonnegative measurable function defined
on (0, 1), and e(t) is not identically zero on any compact subinterval of (0, 1).

Furthermore e(t) satisfies 0 <
∫ 1

0
e(t)dt < +∞. When α = 0, (1.1) becomes

the Dirichlet problem.
As far as we know, there were not any papers to consider singular 3-point

boundary value problem with p-laplacian operator by means of five functionals
fixed point theorem[19]. The main reason is that A : P (γ, c) → P (γ, c) is
difficult to verified. To implying the theorem we improve the condition of five
functionals fixed point theorem such that we only need to verify A : ∂P (γ, c) →
P (γ, c). At least three positive solutions for singular p-laplacian equation(1.1)
are obtained.

By a positive solution of problem (1.1), we mean a function y ∈ C1[0, 1],
Φp(y

′) ∈ C1(0, 1] satisfying the boundary value problem (1.1) and that y(t) > 0
for t ∈ (0, 1].

The paper is organized as follows. Section 2 present some background
definitions and five functionals fixed point theorem. Furthermore, we extend
the five functionals fixed point theorem. The main result about the existence
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of solutions to BVP(1.1) are given in Section 3. Section 4 present the proof of
existence theorem.

2. Background Knowledge and Results

Let γ, β, θ be nonnegative continuous convex functionals on K and let α, ψ
be nonnegative continuous concave functionals on K . Then for nonnegative
numbers h, a, b, d, and c, we define the following convex sets:

P (γ, c) = {x ∈ K|γ(x) < c}, P (γ, α, a, c) = {x ∈ K|a ≤ α(x), γ(x) ≤ c},

Q(γ, β, d, c) = {x ∈ K|β(x) ≤ d, γ(x) ≤ c},

P (γ, θ, α, a, b, c) = {x ∈ K|a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c},

Q(γ, β, ψ, h, d, c) = {x ∈ K|h ≤ ψ(x), β(x) ≤ d, γ(x) ≤ c}.

Theorem 2.1[19]. Let K be a cone in a real Banach space E. Let α and
ψ be nonnegative continuous concave functionals on K and γ, β, and θ are
nonnegative continuous convex functionals on K such that for some positive
numbers c and m,

α(x) ≤ β(x) and ‖x‖ ≤ mγ(x) for all x ∈ P (γ, c).

Suppose further that A : P (γ, c) → P (γ, c) is completely continuous and there
exist h, d, a, b ≥ 0 with 0 < d < a such that each of the following is satisfied:

(A1){x ∈ P (γ, θ, α, a, b, c)|α(x) > a} 6= ∅ and α(Ax) > a for x ∈ P (γ, θ, α, a, b, c),

(A2){x ∈ Q(γ, β, ψ, h, d, c)|β(x) < d} 6= ∅ and β(Ax) < d for x ∈ Q(γ, β, ψ, h, d, c),

(A3)α(Ax) > a provided x ∈ P (γ, α, a, c) with θ(Ax) > b,

(A4)β(Ax) < d provided x ∈ Q(γ, β, d, c) with ψ(Ax) < h.

Then A has at least three fixed points x1, x2, x3 ∈ P (γ, c) such that

β(x1) < d, a < α(x2), and d < β(x3) with α(x3) < a.
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Theorem 2.2. Let K be a cone in a real Banach space E. Let α and ψ be
nonnegative continuous concave functionals on K and γ, β, and θ are nonneg-
ative continuous convex functionals on K such that for some positive numbers
c and m,

α(x) ≤ β(x) and ‖x‖ ≤ mγ(x) for all x ∈ P (γ, c).

Suppose further that A : P (γ, c) → K, is completely continuous, A|∂P (γ,c) :

∂P (γ, c) → P (γ, c) and there exist h, d, a, b ≥ 0 with 0 < d < a such that each
of the following is satisfied:

(C1){x ∈ P (γ, θ, α, a, b, c)|α(x) > a} 6= ∅ and α(Θ ◦ Ax) > a for x ∈
P (γ, θ, α, a, b, c),

(C2){x ∈ Q(γ, β, ψ, h, d, c)|β(x) < d} 6= ∅ and β(Θ ◦ Ax) < d for x ∈
Q(γ, β, ψ, h, d, c),

(C3)α(Θ ◦ Ax) > a provided x ∈ P (γ, α, a, c) with θ(Θ ◦ Ax) > b,

(C4)β(Θ ◦ Ax) < d provided x ∈ Q(γ, β, d, c) with ψ(Θ ◦ Ax) < h,

where Θ : K → P (γ, c) is a contraction operator such that

Θu = u for u ∈ P (γ, c); Θu ∈ ∂P (γ, c) for u 6∈ P (γ, c).

Then A has at least three fixed points x1, x2, x3 ∈ P (γ, c) such that

β(x1) < d, a < α(x2), and d < β(x3) with α(x3) < a.

Proof. By the definitions of A and Θ, Θ ◦A : P (γ, c) → P (γ, c) is completely
continuous. By Theorem 2.1 and (C1) − (C4), Θ ◦ A has at least three fixed
points, i.e., (Θ ◦ A)xi = xi, i = 1, 2, 3. We claim Axi = xi.
In fact, if Axi ∈ P (γ, c), then (Θ ◦ A)xi = Axi = xi; if Axi 6∈ P (γ, c), then
xi = (Θ ◦ A)xi ∈ ∂P (γ, c). So Axi ∈ P (γ, c), a contradiction.
Thus Axi ∈ P (γ, c) and Axi = xi, i = 1, 2, 3.

3. Main Result

In this paper we will use the following conditions
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(H1) the nonlinear term f(t, y) satisfies f(t, y) ≤ g(y) + h(y) for t ∈ [0, 1]
with f continuous on (0,∞), g > 0 continuous, non-increasing on (0,∞) and
h continuous on [0,∞),

(H2) there exists an ε > 0 such that f(t, u) is non-increasing in u ≤ ε for
all t ∈ [0, 1],

(H3)
∫ 1

0
e(s)g(ms)ds <∞, ∀ m > 0,

(H4) for each constant r > 0, there exists a function ϕr continuous on [0, 1]
and positive (0, 1) such that f(t, u) ≥ ϕr(t) on [0, 1]× (0, r].

The main result of this paper is the following

Theorem 3.1. Suppose (H1)-(H4) hold. If there exist

0 < t1 < t2 ≤ 1/2, 0 < t3 ≤ 1/2, 0 < d < a <
t2
t1
a ≤ c,

such that

f(t, u) ≥ max

 Φp(
2a
t1

)∫ t1+t2
2

t1
e(θ)dθ

,
Φp(

2a
1−t2

)∫ t2
t1+t2

2

e(θ)dθ

 , (t, u) ∈ [0, 1]× [t1a,
t2
t1
a+ 1],

(2)∫ 1

0

e(θ)

(
g(αη(1− η)dt3θ) + max

u∈[0,d+1]
h(u)

)
dθ ≤ Φp(d), (3)∫ 1

0

e(θ)

(
g(αη(1− η)cθ) + max

u∈[0,c+1]
h(u)

)
dθ < Φp(c). (4)

Then problem (1.1) has at least three positive solutions ui ∈ C1[0, 1],Φpu
′
i ∈

C1(0, 1], with ui ∈ P (γ, c), i = 1, 2, 3 such that

max
t∈[0,1]

u1(t) ≤ d,
u2(t1) + u2(t2)

2
≥ a,

and

max
t∈[0,1]

u3(t) ≥ d, with
u3(t1) + u3(t2)

2
≤ a.
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4. Related Lemmas and Proof of Theorem 3.1

To prove the main result, we need some lemmas as follows:

Lemma 4.1. Suppose y : [0, 1] → (0,∞) is continuous, 0 ≤ α < 1. Then
boundary value problem{

(Φpu
′)′ + y(t) = 0, t ∈ [0, 1],

u(0) = 0, u(1) = αu(η)
(5)

has a unique solution u ∈ C1[0, 1],Φpu
′ ∈ C1[0, 1],

u(t) =



∫ t

0

Φq(

∫ σy

s

y(θ)dθ)ds,

0 ≤ t ≤ σy ≤ 1, η ≤ σy;∫ 1

t

Φq(

∫ s

σy

y(θ)dθ)ds+ α

∫ η

0

Φq(

∫ σy

s

y(θ)dθ)ds,

0 ≤ σy ≤ t ≤ 1, η ≤ σy;∫ 1

t

Φq(

∫ s

σy

y(θ)dθ)ds+
α

1− α

∫ 1

η

Φq(

∫ s

σy

y(θ)dθ)ds

0 ≤ σy ≤ t ≤ 1, σy ≤ η,

(6)

where∫ σy

0

Φq

(∫ σy

s

y(θ)dθ

)
ds =

∫ 1

σy

Φq

(∫ s

σy

y(θ)dθ

)
ds+α

∫ η

0

Φq

(∫ σy

s

y(θ)dθ

)
ds

=

∫ 1

σy

Φq

(∫ s

σy

y(θ)dθ

)
ds+

α

1− α

∫ 1

η

Φq

(∫ s

σy

y(θ)dθ

)
ds.

Proof. Firstly, integrating BVP(4.1) from 0 to s, then integrating again from
0 to t in s, the solution of BVP(4.1) may be represented as :

u(t) =

∫ t

0

Φq

(∫ σy

s

y(θ)dθ

)
ds (7)

where σy satisfies∫ 1

η

Φq

(∫ σy

s

y(θ)dθ

)
ds+ (1− α)

∫ η

0

Φq

(∫ σy

s

y(θ)dθ

)
ds = 0,
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i.e. ∫ 1

0

Φq

(∫ σy

s

y(θ)dθ

)
ds = α

∫ η

0

Φq

(∫ σy

s

y(θ)dθ

)
ds (8)

Set

F (σ) =

∫ 1

0

Φq

(∫ σ

s

y(θ)dθ

)
ds− α

∫ η

0

Φq

(∫ σ

s

y(θ)dθ

)
ds

= (1− α)

∫ η

0

φq

(∫ σ

s

y(θ)dθ

)
ds+

∫ 1

η

φq

(∫ σ

s

y(θ)dθ

)
ds.

Clearly F (σ) is continuous and increasing with respect to σ and

F (σ1) < 0 for σ1 = 0; F (σ2) > 0 for σ2 = 1. (9)

So there exists a unique σy ∈ [0, 1] satisfying F (σy) = 0. Thus there is a unique
solution u to BVP(4.1).

If η ≤ σy, by (4.3) (4.4) and t ≥ σy we have

u(t) = −
∫ 1

t

Φq

(∫ σy

s

y(θ)dθ

)
ds+ α

∫ η

0

Φq

(∫ σy

s

y(θ)dθ

)
ds

=

∫ 1

t

Φq

(∫ s

σy

y(θ)dθ

)
ds+ α

∫ η

0

Φq

(∫ σy

s

y(θ)dθ

)
ds.

If η ≥ σy, by (4.3) (4.4) and t ≥ σy we have

u(t) =−
∫ 1

t

Φq

(∫ σy

s

y(θ)dθ

)
ds+ α

∫ η

0

Φq

(∫ σy

s

y(θ)dθ

)
ds

=

∫ 1

t

Φq

(∫ s

σy

y(θ)dθ

)
ds+ α

∫ σy

0

Φq

(∫ σy

s

y(θ)dθ

)
ds

+ α

∫ η

σy

Φq

(∫ σy

s

y(θ)dθ

)
ds.

(10)
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Then ∫ σy

0

Φq

(∫ σy

s

y(θ)dθ

)
ds

= u(σy)

=

∫ 1

σy

Φq

(∫ s

σy

y(θ)dθ

)
ds+ α

∫ σy

0

Φq

(∫ σy

s

y(θ)dθ

)
ds

+α

∫ η

σy

Φq

(∫ σy

s

y(θ)dθ

)
ds.

i.e., ∫ σy

0

Φq

(∫ σy

s

y(θ)dθ

)
ds

=
1

1− α

(∫ 1

σy

Φq

(∫ s

σy

y(θ)dθ

)
ds+ α

∫ η

σy

Φq

(∫ σy

s

y(θ)dθ

)
ds

)
.

So (4.6) becomes

u(t) =

∫ 1

t

Φq

(∫ s

σy

y(θ)dθ

)
ds+

α

1− α

(∫ 1

σy

Φq

(∫ s

σy

y(θ)dθ

)
ds

+α

∫ η

σy

Φq

(∫ σy

s

y(θ)dθ

)
ds+ α

∫ η

σy

Φq

(∫ σy

s

y(θ)dθ

)
ds

=

∫ 1

t

Φq

(∫ s

σy

y(θ)dθ

)
ds+

α

1− α

∫ 1

η

Φq

(∫ s

σy

y(θ)dθ

)
ds.

Thus (4.2) holds.

Let E = C[0, 1], ‖u‖ = sup
t∈[0,1]

|u(t)| for u ∈ E,

K = {u ∈ E : u(t) is nonnegative, concave valued on [0, 1], u(0) = 0, u(1) = αu(η)}.

Finally on K we define the nonnegative continuous concave functionals α, ψ
and nonnegative continuous convex functionals β, θ, γ by

γ(u) = max
t∈[0,1]

u(t), ψ(u) = min
t∈[t3,1−t3]

u(t), β(u) = max
t∈[0,1]

u(t),
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α(u) =
u(t1) + u(t2)

2
, θ(u) = max

t∈[t1,t2]
u(t),

for 0 < t1 < t2 ≤ 1/2, 0 < t3 ≤ 1/2. It is obvious that for each u ∈ P, α(u) ≤
β(u).

Lemma 4.2 Let u ∈ K. Then u(t) ≥ αη(1− η)‖u‖t, ∀ t ∈ [0, 1].

Proof. Without loss of generality, suppose u(ξ) = u(1). By the concavity of
u we have

u(t) ≥ u(ξ)t = u(1)t, t ∈ [0, ξ].

In addition, u(t) ≥ u(1) ≥ u(1)t for t ∈ [ξ, 1].
By u ∈ P , we have u(1) = αu(η) ≥ αη(1−η)‖u‖. So u(t) ≥ αη(1−η)‖u‖t, t ∈
[0, 1].

Consider boundary value problem (Φpx
′)′ + e(t)f(t, [u]∗ +

1

n
) = 0, 0 < t < 1,

x(0) = 0, x(1) = αx(η),
(11)

where [u]∗ =

{
u, u ≥ 0;
0, u ≤ 0.

Define the operator T by

(Tu)(t) =



∫ t

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds,

0 ≤ t ≤ σu ≤ 1, η ≤ σu;∫ 1

t

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

+ α

∫ η

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds,

0 ≤ σu ≤ t ≤ 1, η ≤ σu;∫ 1

t

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

+
α

1− α

∫ 1

η

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds,

0 ≤ σu ≤ t ≤ 1, σu ≤ η.

(12)
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Lemma 4.3. Suppose the conditions in Theorem 3.1 hold, then T has at least
three fixed points, uin ∈ P (γ, c), i = 1, 2, 3 satisfying

max
t∈[0,1]

u1n(t) < d,
u2n(t1) + u2n(t2)

2
> a,

and max
t∈[0,1]

u3n(t) > d,
u3n(t1) + u3n(t2)

2
< a.

Proof. We will finish the proof applying Theorem 2.2.
First we show T : ∂P (γ, c) → P (γ, c).
For any u ∈ ∂P (γ, c), we have c ≥ u(t) ≥ αη(1− η)‖u‖t = αη(1− η)ct, t ∈

[0, 1], by Lemma 4.2. So [u]∗ = u.
By Lemma 4.1, (H1), (H3) and (3.3) we have

γ(Tu) = max
t∈[0,1]

Tu(t) = (Tu)(σu) =

∫ σu

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

≤ Φq

(∫ 1

0

e(θ)f(θ, u(θ) +
1

n
)dθ

)
≤ Φq

(∫ 1

0

e(θ)

(
g(αη(1− η)cθ) + max

u∈[0,c+1]
h(u)

)
dθ

)
< c

So T : ∂P (γ, c) → P (γ, c).
In addition, standard argument shows that T : P (γ, c) → K is completely

continuous.
Following we will show (C1) − (C4) hold. Therefore T has at least three

fixed points.
Let b = t2

t1
a, h = dt3,

{u ∈ P (γ, θ, α, a, t2
t1
a, c)|α(u) > a} 6= ∅

{u ∈ Q(γ, β, ψ, dt3, d, c)|β(u) < d} 6= ∅ .
In the following claims, we verify the remaining conditions of Theorem 2.2.
Let (Θu)(t) = min{u(t), c}. So Θ : K → P (γ, c) is a contraction operator.

Claim 1. If u ∈ P (γ, θ, α, a, t2
t1
a, c), then α(Θ ◦ Tu) > a.

By u ∈ P (γ, θ, α, a, t2
t1
a, c), we claim u(t) ∈ [t1a,

t2
t1
a] holds for t ∈ [t1, t2]. In

fact, by u ∈ K we have

min
t∈[t1,t2]

u(t) = u(t1) ≥ t1‖u‖ ≥ t1α(u) ≥ t1a, for t1 < t2 ≤ σu;
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min
t∈[t1,t2]

u(t) = u(t2) ≥ (1− t2)‖u‖ ≥ t1α(u) ≥ t1a for σu ≤ t1 < t2;

min
t∈[t1,t2]

u(t) = min{u(t1), u(t2)} ≥ t1a for t1 ≤ σu ≤ t2.

When t1 ≤ t2 ≤ σu, it follows from (3.1) that

α(Θ ◦ Tu) =
(Θ ◦ T )u(t1) + (Θ ◦ T )u(t2)

2
> (Θ ◦ T )u(t1)

= min

{∫ t1

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≥ min

{∫ t1

0

Φq

(∫ t2

t1

e(θ)f(θ, u(θ) +
1

n
)dθ

)
ds, c

}

≥ min

t1Φq

∫ t2

t1

e(θ)
Φp(

2a
t1

)∫ t1+t2
2

t1
e(s)ds

dθ

 , c

 > a.

When σu ≤ t1 ≤ t2, similar to the above process we obtain

α(Θ ◦ Tu) =
(Θ ◦ T )u(t1) + (Θ ◦ T )u(t2)

2
> (Θ ◦ T )u(t2) > a.

When t1 ≤ σu ≤ t2, it follows from (3.1) that

α(Θ ◦ Tu) =
(Θ ◦ T )u(t1) + (Θ ◦ T )u(t2)

2

>
1

2
min

{∫ t1

0

Φq

(∫ σu

s

e(θ)f(θ, [u]∗ +
1

n
)dθ

)
ds, c

}
+ min

{∫ 1

t2

Φq

(∫ s

σu

e(θ)f(θ, [u]∗ +
1

n
)dθ

)
ds, c

}
>

1

2
min

{
t1Φq

(∫ t1+t2
2

t1

e(θ)f(θ, u(θ) +
1

n
)dθ

)
, c

}

or
1

2
min

{
(1− t2)Φq

(∫ t2

t1+t2
2

e(θ)f(θ, u(θ) +
1

n
)dθ

)
, c

}
> a.

Claim 2. If u ∈ Q(γ, β, ψ, dt3, d, c), then β(Θ ◦ Tu) < a.
For u ∈ Q(γ, β, ψ, dt3, d, c), we have β(u) = max

t∈[0,1]
u(t) ≤ d, ψ(u) = min

t∈[t3,1−t3]
u(t) ≥
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dt3. It follows from Lemma 4.2 that u(t) ≥ αη(1− η)‖u‖t ≥ αη(1− η)dt3t, t ∈
[0, 1]. So [u]∗ = u. By (H1) (H3) (3.2) we have

β(Θ ◦ Tu) = max
t∈[0,1]

(Θ ◦ T )u(t) = min{max
t∈[0,1]

Tu(t), c} = min{Tu(σu), c}

≤ min

{
Φq

(∫ 1

0

e(θ)

(
g(αη(1− η)dt3θ) + max

u∈[0,d+1]
h(u)

)
dθ

)
, c

}
< d.

Claim 3. If u ∈ P (γ, α, a, c) with θ(Θ ◦ Tu) > t2
t1
a, then α(Θ ◦ Tu) > a.

For η ≤ σu, σu ≤ t1 we have

α(Θ ◦ Tu) =
(Θ ◦ T )u(t1) + (Θ ◦ T )u(t2)

2
> (Θ ◦ T )u(t2)

= min

{∫ 1

t2

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

+α

∫ η

0

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≥ min

{
1− t2
1− t1

∫ 1

t1

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

+ α

∫ η

0

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
=

1− t2
1− t1

max
t∈[t1,t2]

Θ ◦ Tu(t) =
1− t2
1− t1

θ(Θ ◦ Tu) > t1
t2
θ(Θ ◦ Tu) > a.

For η ≤ σu, t2 ≤ σu we have

α(Θ ◦ Tu) =
(Θ ◦ T )u(t1) + (Θ ◦ T )u(t2)

2
> (Θ ◦ T )u(t1)

= min

{∫ t1

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≥ min

{
t1
t2

∫ t2

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
=

t1
t2

min
t∈[t1,t2]

Θ ◦ Tu(t) =
t1
t2
θ(Θ ◦ Tu) > a.

For η ≤ σu, t1 ≤ σu ≤ t2, similar to the above process we have

α(Θ ◦ Tu) =
(Θ ◦ T )u(t1) + (Θ ◦ T )u(t2)

2
> a.
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For η ≥ σu, σu ≤ t1 we have

α(Θ ◦ Tu) =
(Θ ◦ T )u(t1) + Θ ◦ T )u(t2)

2
> (Θ ◦ T )u(t2)

= min

{∫ 1

t2

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

+
α

1− α

∫ 1

η

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≥ min

{
1− t2
1− t1

∫ 1

t1

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

+
α

1− α

∫ 1

η

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≥ 1− t2

1− t1
max

t∈[t1,t2]
Θ ◦ Tu(t) =

1− t2
1− t1

θ(Θ ◦ Tu) > t1
t2
θ(Θ ◦ Tu) > a.

For the case η ≥ σu, t2 ≤ σu and η ≥ σu, t1 ≤ σu ≤ t2. The proof is similar to
η ≤ σu, t2 ≤ σu and η ≤ σu, t1 ≤ σu ≤ t2, respectively. So we omit it here.

Claim 4. If u ∈ Q(γ, β, d, c) with ψ(Θ ◦ Tu) < dt3, then β(Θ ◦ Tu) < d.

For u ∈ Q(γ, β, d, c), u(t) ∈ [0, d], t ∈ [0, 1]. So [u]∗ = u.

For η ≤ σu, 1− t3 ≤ σu we have

β(Θ ◦ Tu) = (Θ ◦ Tu)(σu)

= min

{∫ σu

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≤ min

{
σu

t3

∫ t3

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≤ 1

t3
min{ min

t∈[t3,1−t3]
Tu(t), c} =

1

t3
Θ(ψ(Tu)) =

1

t3
ψ(Θ ◦ Tu) < d.
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For η ≤ σu, σu ≤ t3 ≤ 1− t3 we have

β(Θ ◦ Tu) = (Θ ◦ Tu)(σu)

= min

{∫ 1

σu

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

+α

∫ η

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≤ min

{
1− σu

t3

∫ 1

1−t3

Φq

(∫ s

σu

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

+α

∫ η

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
=

1

t3
min{ min

t∈[t3,1−t3]
Tu(t), c} =

1

t3
ψ(Θ ◦ Tu) < d.

For η ≤ σu, t3 ≤ σu ≤ 1− t3, we have the following two inequlities hold.∫ σu

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds

≤ σu

t3

∫ t3

0

Φq

(∫ σu

s

e(θ)f(θ, u(θ) +
1

n
)dθ

)
ds ≤ Tu(t3)

t3

and ∫ σu

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds ≤ 1

t3
Tu(1− t3).

Then

β(Θ ◦ T1u) = (Θ ◦ T1u)(σu)

= min

{∫ σu

0

Φq

(∫ σu

s

e(θ)f(θ, [u(θ)]∗ +
1

n
)dθ

)
ds, c

}
≤ min

{
1

t3
Tu(t3),

1

t3
Tu(1− t3), c

}
≤ 1

t3
min{Tu(t3), Tu(1− t3), c}

=
1

t3
min{ψ(Tu), c} =

1

t3
ψ(Θ ◦ Tu) < d.

For σu ≤ η, 1− t3 ≤ σu, σu ≤ η, σu ≤ t3 and σu ≤ η, t3 ≤ σu ≤ 1− t3, we can
show β(Θ ◦ Tu) < d similarly. Therefore the hypotheses of Theorem 2.2 are
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satisfied and there exists three fixed points u1n, u2n, u3n ∈ P (γ, c) such that

β(u1n) = max
t∈[0,1]

u1n(t) < d, α(u2n) =
u2n(t1) + u2n(t2)

2
> a. (13)

β(u3n) = max
t∈[0,1]

u3n(t) > d, α(u3n) =
u3n(t1) + u3n(t2)

2
< a. (14)

Lemma 4.5. Set

S = {un|unis a fixed point of operator T},

A = {σun|σun ∈ (0, 1), u
′

n(σun) = 0, unis a fixed point of operator T}.

Then 0 < infA ≤ supA < 1.

Proof. For any un ∈ S, by the conclusion of Lemma 4.1, for η ≤ σun , σun

satisfies∫ σun

0

Φq

(∫ σun

s

e(θ)f(θ, [u]∗ +
1
n

)dθ

)
ds

=
∫ 1

σun

Φq

(∫ s

σun

e(θ)f(θ, [u]∗ +
1
n

)dθ

)
ds + α

∫ η

0

Φq

(∫ σun

s

e(θ)f(θ, [u]∗ +
1
n

)dθ

)
ds.

(15)
If σun → 1, taking limits on both sides of (4.12), we have∫ 1

0

Φq

(∫ 1

s

e(θ)f(θ, [u]∗ +
1
n

)dθ

)
ds

= α

∫ η

0

Φq

(∫ σun

s

e(θ)f(θ, [u]∗ +
1
n

)dθ

)
ds <

∫ 1

0

Φq

(∫ 1

s

e(θ)f(θ, [u]∗ +
1
n

)dθ

)
ds,

a contradiction. For σun ≤ η, similarly we get a contradiction. The proof is
completed.

Lemma 4.6. Let un be a fixed point of operator T . Suppose (H4) holds, then
there exists m > 0 (independent of n) such that un(t) ≥ mt.

Proof. Noticing un(0) = 0, u
′′
(0) ≤ 0, t ∈ [0, 1], we have un(t) ≥ un(1)t. So it

is sufficient to prove there exists m (independent of m) such that un(1) ≥ m.
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un(1) satisfied

un(1) =

{
α
∫ η

0
Φq

(∫ σun

s
e(θ)f(θ, [u(θ)]∗ + 1

n
)dθ
)
ds, η ≤ σun ;

α
1−α

∫ 1

η
Φq

(∫ s

σun
e(θ)f(θ, [u(θ)]∗ + 1

n
)dθ
)
ds σun ≤ η,

≥

{
α
∫ η

0
Φq

(∫ η

s
e(θ)ϕr(θ)dθ

)
ds, η ≤ σun ;

α
1−α

∫ 1

η
Φq

(∫ s

η
e(θ)ϕr(θ)dθ

)
ds σun ≤ η.

So there exists m (independent of n) such that un(1) ≥ m. The proof is com-
pleted.

Proof of Theorem 3.1. The proof is achieved in three steps.
Step 1. Let the operator T be defined by (4.8) for every n ∈ N . It follows
from Lemma 4.4 that T has at least three fixed points uin, i = 1, 2, 3 such that
uin ∈ P (γ, c), i.e. 0 ≤ uin(t) ≤ c on [0, 1] and satisfied (Φpu

′

in)
′
+ e(t)f(t, uin +

1

n
) = 0,

uin(0) = 0, uin(1) = αuin(η).
(16)

Step 2. Let S,A be defined as Lemma 4.5, we will show there exists an infinite
subset N+ of S such that {uin}n∈N+ is a relative compact set of C[0, 1].
From (4.10), (4.11), Lemma 4.2 and Lemma 4.6 we obtain

d > u1n(t) ≥ mt, c ≥ u3n(t) ≥ αη(1− η)‖u3n‖t > αη(1− η)dt,

c ≥ u2n(t) ≥ αη(1− η)‖u2n‖t ≥ αη(1− η)α(u2n)t > αη(1− η)at.

Thus {uin}N+ , i = 1, 2, 3, are uniformly bounded. Without loss of generality,
we suppose m′t ≤ uin(t) ≤ c, t ∈ [0, 1], i = 1, 2, 3.

Standard argument shows that {uin}n∈N+ , i = 1, 2, 3, are equi-continuous
family on [0, 1]. The Arzelà-Ascoli theorem guarantees the existence of the
subsequence N+ of S and a function ui ∈ C[0, 1] with uin converging uniformly
on [0, 1] to ui as n→∞ throughN+. Also ui(0) = 0, ui(1) = αui(η), i = 1, 2, 3.
ui(t) > 0 for t ∈ (0, 1]. In addition,

mt ≤ u1(t) ≤ d, αη(1− η)at ≤ u2(t) ≤ c, αη(1− η)dt ≤ u3(t) ≤ c,

and
u2(t1) + u2(t2)

2
≥ a, max

t∈[0,1]
u3(t) ≥ d,

u3(t1) + u3(t2)

2
≤ a.
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Step 3. For any uin ∈ {uin}n∈N1 we have

uin(t) = uin(ξ) +

∫ t

ξ

Φq

(
Φpu

′

in(ξ)−
∫ s

ξ

e(θ)f(θ, uin(θ) +
1

n
)dθ

)
ds (17)

for t ∈ (0, 1)\{ξ} where ξ = 1
2
,∫ t

ξ

Φq

(
Φpu

′

in(ξ)−
∫ s

ξ

e(θ)f(θ, uin(θ) +
1

n
)dθ

)
ds = uin(t)− uin(ξ).

Fixed t ∈ (0, 1)\{ξ}. Without loss of generality, suppose t = t0. Let
uin → ui uniformly on [ξ, t] ∪ [t, ξ]. Following we show lim

n→∞
u

′
in(ξ) = u

′
i(ξ).

uin(t0)− uin(ξ)− ui(t0) + ui(ξ)

=

∫ t0

ξ

Φq

(
Φpu

′

in(ξ)−
∫ s

ξ

e(θ)f(θ, uin(θ) +
1

n
)dθ

)
−Φq

(
Φpu

′

i(ξ)−
∫ s

ξ

e(θ)f(θ, ui(θ))dθ

)
ds.

By the mean value theorem for integrals then implies that there exists
ηin ∈ [0, 1] with

uin(t0)− uin(ξ)− ui(t0) + ui(ξ)

= Φq

(
Φpu

′

in(ξ)−
∫ ηin

ξ

e(θ)f(θ, uin(θ) +
1

n
)dθ

)
−Φq

(
Φpu

′

i(ξ)−
∫ ηin

ξ

e(θ)f(θ, ui(θ))dθ

)
and now let uin → ui uniformly on [ξ, t0] ∪ [t0, ξ], we have lim

n→∞
u

′
in(ξ) = u

′
i(ξ).

So we have

ui(t) = ui(ξ) +

∫ t

ξ

Φq

(
Φpu

′

i(ξ)−
∫ s

ξ

e(θ)f(θ, ui(θ))dθ

)
ds, t ∈ (0, 1)\{ξ}.

By direct computation, we have for t ∈ (0, 1)\{ξ},
(Φpu

′

i)
′
+ e(t)f(t, ui(t)) = 0 (4.15)

If we take ξ = 1/4 in (4.16), in a similar way above we see that (4.15) also
holds for t = 1/2. Obviously ui(0) = 0, ui(1) = αui(η). So ui(t), i = 1, 2, 3 are
three positive solutions of BVP (1.1).
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