# A Simple Bjective Proof of Generalized Schur's Theorem * 

Padmavathamma! ${ }^{\dagger}$ R. Raghavendra ${ }^{\ddagger}$ and B. M. Chandrashekara ${ }^{\S}$<br>Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka, India

Received April 22, 2005, Accepted July 26, 2006.


#### Abstract

The object of this paper is to give a simple bijective proof of the generalized version of Schur's theorem stated and proved by D.M. Bressoud in the year 1980 .


Keywords and Phrases: Schur's theorem, Generalized version, Bijective Proof.

## 1. Introduction

In 1980, D. M. Bressoud [4] gave a combinatorial proof of Schur's 1926 theorem by establishing a one-to-one correspondence between the two types of partitions counted in the theorem. In fact he proved the following generalized version of Schur's theorem:

[^0]Theorem 1 (Generalized Schur's theorem). Given positive integers $r$ and $m$ such that $r<m / 2$, let $C_{r, m}(n)$ denote the number of partitions of $n$ into distinct parts $\equiv \pm r(m)$ and let $D_{r, m}(n)$ denote the number of partitions of $n$ of the form $b_{1}+\cdots+b_{s}$ such that $b_{i} \equiv 0, \pm r(m), b_{i}-b_{i+1} \geq m$, and $b_{i}-b_{i+1} \geq 2 m$ when $b_{i} \equiv b_{i+1} \equiv 0(m)$. Then $C_{r, m}(n)=D_{r, m}(n)$ for all $n$.

In the year 2003, Padmavathamma and M. Ruby Salestina [5] gave a different combinatorial proof of the above theorem for the case when $m=4$ and $r=1$. The object of this paper is to give a simple bijective proof of Theorem 1.

## 2. Proof

We construct a mapping from the partitions enumerated by $C_{r, m}(n)$ to those enumerated by $D_{r, m}(n)$. Let $\pi=b_{1}+b_{2}+\cdots+b_{s}$ denote a partition enumerated by $C_{r, m}(n)$. If every pair of $b_{i}$ and $b_{i+1}$ satisfies $b_{i}-b_{i+1} \geq m$, then $\pi$ is a partition enumerated by $D_{r, m}$ also. We adopt the following procedure to map the rest of partition of $C_{r, m}(n)$ into $D_{r, m}(n)$.
Step $C D_{1}$ : List the parts of $\pi$ in a column in decreasing order. Let $\pi^{1}$ denote this partition.
Step $C D_{2}$ : From the top look for the first $i$ say $\alpha$ for which $b_{\alpha}-b_{\alpha+1}<m$. The only two possibilities are:
(i) $b_{\alpha}=m(k+1)-r$ and $b_{\alpha+1}=m k+r \quad$ or
(ii) $b_{\alpha}=m k+r$ and $b_{\alpha+1}=m k-r$

In both cases we replace the two consecutive parts $b_{\alpha}$ and $b_{\alpha+1}$ with just one part $\left(b_{i_{1}}+b_{i_{1}+1}\right)$. We note that the sum will always be $\equiv 0(m)$. In the first case $\left(b_{\alpha}+b_{\alpha+1}\right)=m(2 k+1)$ while in the second case $\left(b_{\alpha}+b_{\alpha+1}\right)=m(2 k)$.

Eg: Let $m=5$ and $r=1$
(i) $\begin{aligned} & 4 \\ & 1\end{aligned} \longrightarrow 5$
(ii) $\begin{aligned} & 6 \\ & 4\end{aligned} \longrightarrow 10$

Let $\pi^{2}$ denote the resulting partition. We now get two possibilities.
Case 1: $\quad b_{\alpha-1}-\left(b_{\alpha}+b_{\alpha+1}\right)<m$.
Case 2: $\quad b_{\alpha-1}-\left(b_{\alpha}+b_{\alpha+1}\right)>m$

We note that the possibility that $b_{\alpha-1}-\left(b_{\alpha}+b_{\alpha+1}\right)=m$ will not arise since $b_{\alpha-1} \not \equiv 0(m)$ and $\left(b_{\alpha}+b_{\alpha+1}\right) \equiv 0(m)$.

In case 1, we replace the pair

$$
\binom{b_{\alpha-1}}{b_{\alpha}+b_{\alpha+1}} \text { by }\binom{b_{\alpha}+b_{\alpha+1}+m}{b_{\alpha-1}-m}
$$

Eg: Let $m=8$ and $r=3$
i) $\begin{gathered}27 \\ 11 \\ 5\end{gathered} \longrightarrow \begin{aligned} & 27 \\ & 16\end{aligned}$
13
ii)
5
3 $\longrightarrow \begin{gathered}13 \\ 8\end{gathered} \longrightarrow \begin{gathered}16 \\ 5\end{gathered}$

Once again we get two possibilities for case 1 .

$$
b_{\alpha-2}-\left(b_{\alpha}+b_{\alpha+1}+m\right)<m \quad \text { and } \quad b_{\alpha-2}-\left(b_{\alpha}+b_{\alpha+1}+m\right)>m .
$$

As before, in the first case we apply the procedure explained in case 1 . This procedure is continued until we meet the second case or we find $\left(b_{\alpha}+b_{\alpha+1}+t m\right)$ on the top.

In case 2 from the top we look for the next $i$ say $\beta$ for which $b_{\beta}-b_{\beta+1}<m$ and we follow the same procedure explained in Step $C D_{2}$ until we meet the second case for $\beta$.

The requirement of the minimal difference between multiples of $m$ is clearly satisfied in our mapping for the following reason.

Let $\pi=(\cdots, a, b, \cdots, c, d, \cdots)$ where $(a, b)$ and $(c, d)$ are two consecutive pairs who need to be treated by Step $C D_{2}$. Clearly, $a+b \geq c+d+(t+2) m$ where $t$ counts the number of parts between $b$ and $c$. The procedure still needs to lift parts $(a, b)$ and $(c, d)$ up if necessary. For every lifting, each part is increased by $m$; but there is no way to lift the part caused by $(c, d)$ above the one caused by $(a, b)$. Therefore, the final two parts caused by $(a, b)$ and $(c, d)$ must have minimal difference $2 m$.

Following the procedure explained in Step $C D_{2}$ (in a finite number of steps) we arrive at a stage where difference condition is satisfied for all the parts of $\pi$. We associate this resulting partition $\pi^{4}$ which is enumerated by $D_{r, m}(n)$ to $\pi$.

We illustrate our procedure by an example by taking $m=5$ and $r=2$.

$$
\text { Let } \quad \pi=47+42+38+37+28+27+23+18+13+12+3+2
$$

be a partition enumerated by $C_{2,5}(290)$.

$$
C_{r, m}(n) \rightarrow D_{r, m}(n)
$$

| 47 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42 |  | 47 |  | 85 |  | 85 |  | 85 |  | 85 |
| 38 |  | 80 |  | 42 |  | 42 |  | 42 |  | 65 |
| 37 |  | 37 |  | 37 |  | 37 |  | 60 |  | 37 |
| 28 |  | 28 |  | 28 |  | 55 |  | 32 |  | 32 |
| 27 |  | 27 |  | 27 |  | 23 |  | 23 |  | 23 |
| 23 | $\rightarrow$ | 23 | $\rightarrow$ | 23 | $\rightarrow$ | 18 | $\rightarrow$ | 18 | $\rightarrow$ | 18 |
| 18 |  | 18 |  | 18 |  | 13 |  | 13 |  | 13 |
| 13 |  | 13 |  | 13 |  | 12 |  | 12 |  | 12 |
| 12 |  | 12 |  | 12 |  | 3 |  | 3 |  | 3 |
| 3 |  | 3 |  |  |  | 2 |  | 2 |  | 2 |
| 2 |  |  |  |  |  |  |  |  |  |  |


|  | 85 |  | 85 |  | 85 |  | 85 |  | 85 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 65 |  | 65 |  | 65 |  | 65 |  | 65 |  | 85 |
|  | 37 |  | 37 |  | 37 |  | 37 |  | 45 |  | 65 |
|  | 32 |  | 32 |  | 32 |  | 40 |  | 32 |  | 45 32 |
| $\rightarrow$ | 23 | $\rightarrow$ | 23 \} | $\rightarrow$ | 35 | $\rightarrow$ | 27 | $\rightarrow$ | 27 | $\rightarrow$ | 32 |
|  | 18 |  | 30 \} |  | 18 |  | 18 |  | 18 |  | 18 |
|  | 25 |  | 13 |  | 13 |  | 13 |  | 13 |  | 18 |
|  | 3 |  | 3 |  | 3 |  | 3 |  | 3 ) |  | 5 |
|  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 5 |

The last partition is the associated partition of $\pi$ enumerated by $D_{2,5}(290)$.
We now give the reverse mapping from $D_{r, m}(n)$ to $C_{r, m}(n)$. Let $\psi$ be a partition enumerated by $D_{r, m}(n)$. If no part is a multiple of $m$, then it is a partition enumerated by $C_{r, m}(n)$ also. We adopt the following procedure to map the rest of partition of $D_{r, m}(n)$ into $C_{r, m}(n)$.
Step $D C_{1}$ : Let the parts of $\psi$ be arranged in a column in decreasing order. Let $\psi^{1}$ denote this partition.

Step $D C_{2}$ : From the bottom look for the first multiple of $m$ say $x$. We split $x$ into $(\alpha, \beta)$ tentatively as below:

TABLE

$$
\begin{aligned}
& x=m *(2 k) \rightarrow(m k+r, m k-r) . \\
& x=m *(2 k+1) \rightarrow(m(k+1)-r, m k+r) .
\end{aligned}
$$

Suppose $y$ lies below $x$. If $y<\beta$ then the tentative splitting is just what we want; otherwise, we replace

$$
\binom{x}{y} \text { by }\binom{y+m}{x-m}
$$

Now split $x-m$ into $(\alpha, \beta)$ tentatively as before, and then apply the same procedure on $x-m$ and the part below it. This process is continued till the end. Let the resulting partition be $\psi^{2}$.
Eg1: Let $m=8$ and $r=3$


Eg2: Let $m=8$ and $r=1$
56
32
17

7 $\longrightarrow$\begin{tabular}{c}
56 <br>
25 <br>
24 <br>
7

$\longrightarrow$

56 <br>
25 <br>
15 <br>
9 <br>
7
\end{tabular}

Step $D C_{2}$ will not create multiples of $m$. This is obvious if $y<\beta$. When $y \geq \beta$, the step involves only addition or subtraction of $m$ which does not change the congurecy of $x$ or $y(\bmod m)$.

From the bottom look for the next multiple of $m$ say $x^{1}$ and follow the same procedure explained in Step $D C_{2}$ to split $x^{1}$.

We apply Step $D C_{2}$ until all the multiples of $\psi$ are split into parts $\equiv \pm r(m)$. The resulting partition will be a partition enumerated by $C_{r, m}(n)$.
We also claim: Let $\pi=(\cdots, x, \cdots, y, \cdots)$ where $x$ and $y$ are two consecutive multiples of $m$. Clearly, $x \geq y+(t+2) m$ where $t$ counts the number of parts
between $x$ and $y$. During the procedure $x$ and $y$ would be moved downward with $m$ subtracted each time. However, the splitting caused by $x$ will never go under nor between the ones caused by $y$. This is obvious because if the resulting parts obtained are $x^{\prime}$ and $y^{\prime}$ then $x^{\prime}$ will be $\geq y^{\prime}+2 m$ always. And $\beta$ part of $x^{\prime}$ will be $>\alpha$ part of $y^{\prime}$.

We now illustrate the reverse map by taking the same partition,

$$
\psi=85+65+45+32+27+18+13+5 \quad \text { where } m=5 \text { and } r=2
$$

obtained from

$$
\begin{gathered}
\pi=47+42+38+37+28+27+23+18+13+12+3+2 \\
D_{r, m}(n) \rightarrow C_{r, m}(n)
\end{gathered}
$$




The above two mappings $C_{r, m}(n) \rightarrow D_{r, m}(n)$ and $D_{r, m}(n) \rightarrow C_{r, m}(n)$ are inverse to each other follows from the reasons mentioned below.
i) $\binom{m k+r}{m k-r} \leftrightarrow m(2 k) \quad$ and $\binom{m(k+1)-r}{m k+r} \leftrightarrow m(2 k+1)$.
ii) $\left(\begin{array}{c}x \\ m k+r \\ m k-r\end{array}\right) \leftrightarrow\binom{x}{m(2 k)} \leftrightarrow\binom{m(2 k+1)}{x-m}$ where $x-m(2 k)<m$,
since $x \geq m k+r+m \Leftrightarrow x-m \geq m k+r$ which is $\beta$ part of $m(2 k+1)$.
ii) $\left(\begin{array}{c}x \\ m(k+1)-r \\ m k+r\end{array}\right) \leftrightarrow\binom{x}{m(2 k+1)} \leftrightarrow\binom{m(2 k+2)}{x-m}$ where $x-m(2 k+$ 1) $<m$
since $x \geq m(k+1)-r+m \Leftrightarrow x-m \geq m(k+1)-r$ which is $\beta$ part of $m(2 k+2)$.

## References

[1] A. J. Yee, A combinatorial proof of Andrews' partition functions related to Schur's partition theorem, (2001, Preprint).
[2] K. Alladi and B. Gordon, Generalizations of Schur's partition theorem, Manus. Math. 79 (1993), 113-126.
[3] C. Bessenrodtoud, A combinatorial proof of a refinemetn of the AndrewsOlsson partition identity, European J. Combin. 12 (1991), 271-276.
[4] D. M. Bressoud, A combinatorial proof of Schur's 1926 partition theorem, Proc. Amer. Math. Soc., Vol.79, 2 (1980), 338-340.
[5] Padmavathamma and M. Ruby Salestina, A simple proof of Schur's 1926 theorem on partitions, Applied Science Periodical, SIWAN, Bihar, Vol V, 3 (August 2003), 135-138.


[^0]:    *2000 Mathematics Subject Classification. Primary 11P81, 11P82, 11P83; Secondary 05A15, 05A17, 05A19
    ${ }^{\dagger}$ E-mail: vathamma@yahoo.com
    $\ddagger$ E-mail: maths@yahoo.co.in
    §E-mail: alur@yahoo.com

