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Abstract

Classical and recent inequalities for Hermitian forms on real or com-
plex linear spaces are surveyed.

1. General Properties

1.1 Schwarz’s Inequality

Let K be the field of real or complex numbers, i.e., K=R or C and X be a
linear space over K.

Definition 1. A functional (-,-) : X x X — K is said to be a Hermitian form
on X if

(H1) (ax +by,z) =a(x,2)+b(y,z) for a,b € K and z,y,z € X

(H2) (z,y) = (y,z) for all z,y € X.
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The functional (-,-) is said to be positive semi-definite on a subspace Y of
X if

(H3) (y,y) > 0 for every y € Y,
and positive definite on Y if it is positive semi-definite on Y and
(H4) (y,y) =0, y € Y implies y = 0.

The functional (-, -) is said to be definite on Y provided that either (-,-) or
—(+,) is positive semi-definite on Y.

When a Hermitian functional (-, ) is positive-definite on the whole space
X, then, as usual, we will call it an inner product on X and will denote it by
().

We use the following notations related to a given Hermitian form (-,-) on
X

Xo :={z € X|(z,x) =0},
K :={zx € X|(z,z) < 0}

and, for a given z € X,
X® ={zeX|(z,2) =0} and L(z):={azlacK}.
The following fundamental facts concerning Hermitian forms hold [?]:
Theorem 1 (Kurepa, 1968). Let X and (-,-) be as above.

1. If e € X is such that (e, e) # 0, then we have the decomposition

X =L(e)P X, (1.1)
where @ denotes the direct sum of the linear subspaces X'© and L (e);

2. If the functional (-,-) is positive semi-definite on X'© for at least one
e € K, then (-,-) is positive semi-definite on XI) for each f € K;

3. The functional (-,-) is positive semi-definite on X© with e € K if and
only if the inequality

(. 9)* = (,2) (y.9) (1.2)
holds for all x € K and all y € X;
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4. The functional (-,-) is semi-definite on X if and only if the Schwarz’s
inequality
(2, 9)* < (2,2) (y,9) (1.3)

holds for all x,y € X;

5. The case of equality holds in (?7) for x,y € X and in (??), for x € K,
y € X, respectively; if and only if there exists a scalar a € K such that

y—azx e X\ = Xon X,

Proof. We follow the argument in [?].
If (e, e) # 0, then the element

has the property that (x,e) =0, ie., z € X (©) . This proves that X is a sum of
the subspaces L (¢) and X, The fact that the sum is direct is obvious.

Suppose that (e, e) # 0 and that (-, -) is positive semi-definite on X. Then
for each y € X we have y = ae + 2z with a € K and z € X, from where we
get

(e p)” = (e,e) (y,9) = — (ese) (2. 2) . (1.4)

From (?7) we get the inequality (?7?), with = = e, in the case that (e,e) > 0
and (?7) in the case that (e,e) < 0. In addition to this, from (?7) we observe
that the case of equality holds in (??) or in (??) if and only if (z,2) =0, i.e.,
if and only if y — ae € X(ge).

Conversely, if (?7) holds for all z,y € X, then (x,x) has the same sign
over the whole of X i.e., (-, +) is semi-definite on X. In the same manner, from
(?2), for y € X© we get (e, e) - (y,5) < 0, which implies (y,) >0, i.e., (-, )
is positive semi-definite on X (©).

Now, suppose that (-,-) is positive semi-definite on X(© for at least one
e € K. Let us prove that (-, ) is positive semi-definite on X /) for each f € K.

For a given f € K, consider the vector

PNCY)
' (f?f)

f. (1.5)
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Now,
I 6,6 :(676)(f7f)_‘<€7f)|2
(6,6)—( ’ ) (f,f) ’

and together with

(€. f)=0

(e, y)]* = (e¢) (yy) forany yeX

imply (¢’,¢e") > 0.

There are two cases to be considered: (¢/,¢’) > 0 and (¢/,¢') = 0.

If (¢/,€') > 0, then for any 2 € X /), the vector

(z,¢)

(e/,¢e)

=z —ae with a=

satisfies the conditions
(2';e)=0 and (2',f)=0
which implies
¢ e X9 and (z,2)=|a]’(€,€)+ («',2') > 0.

Therefore (-, -) is a positive semi-definite functional on X ),
From the parallelogram identity:

(z+y,z+y) +@—yr—y)=2[x,2)+ @y, zyeX

we conclude that the set Xée) = XoN X© is a linear subspace of X.

Since

1
(x,y):;L[(x+y,aﬁ+y)+(fc—y,:c—y)], T,y € X

in the case of real spaces, and

(,y) =[x +y,z+y)+ (x—y,z—y)

o |

]

"1

(1.6)

(1.7)

in the case of complex spaces, hence (z,y) = 0 provided that x and y belong

to X((]e).
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If (¢/,¢') = 0, then (¢/,e) = (¢/,€¢) = 0 and then we can conclude that
e € X(()e). Also, since (¢/,¢€') = 0 implies (e, f) # 0, hence we have

(f f
(e, f)

~—

f=ble—¢) with b=

Now write

X = X X,

where X(f) is any direct complement of Xée) in the space X If y # 0, then
y € Xf) implies (y,y) > 0. For such a vector y, the vector

is in X(® and therefore (', ') > 0.
On the other hand

W, y) =(y) =~

Hence y € Xff) implies that (¢/,y) =0, i.e.,
(e, f)
(f f)

which together with y € X leads to (f,y) = 0. Thus y € Xff) implies
Y E X(f)

On the other hand z € X(()e) and f =b(e—¢)imply (f,z) = =b(e/,x) =0
due to the fact that ¢,z € X7

Hence z € Xée) implies (z, f) =0, i.e., » € X,

From Xée) C XU and XJ(f) C XU we get X(© C XU, Since e ¢ X
and X = L (e) P X©, we deduce X© = X)) and then (-,-) is positive semi-
definite on X ),

The theorem is completely proved.

(e,y) = (f,y),

In the case of complex linear spaces we may state the following result as
well [?]:
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Theorem 2 (Kurepa, 1968). Let X be a complex linear space and (-,-) a
hermitian functional on X.

1. The functional (-,-) is semi-definite on X if and only if there exists at
least one vector e € X with (e, e) # 0 such that

[Re (e,))* < (e,€) (1,9) (1.9)
forally € X;

2. There is no nonzero Hermitian functional (-,-) such that the inequality

[Re (e,y)]> > (e.e) (y,y), (e,e) #0, (1.10)

holds for all y € X and for an e € X.

Proof. We follow the proof in [?].
Let 0 and 7 be real numbers and * € X a given vector. For y :=
(o0 +iT)e+ = we get

[Re (e,y)]" = (e.€) (y,y) = —7°(e.e)” — (e, ) (x,2) . (1.11)

If (+,-) is semi-definite on X, then (??) implies (?7).

Conversely, if (??) holds for all y € X and for at least one e € X then (-, -)
is semi-definite on X (¢, But (??) and (??) for 7 = 0 lead to — (e, ¢) (z,2) < 0
from which it follows that (e, e) and (x, z) are of the same sign so that (-, ) is
semi-definite on X.

Suppose that (-, ) # 0 and that (??) holds. We can assume that (e, e) < 0.
Then (??) implies that (-,-) is positive semi-definite on X©. On the other
hand, if 7 is such that

™ > -

then (??) leads to [Re (e,y)]” < (e, €) (y,y), contradicting (?7?).

Hence, if a Hermitian functional (-,-) is not semi-definite and if — (e, e) #
0, then the function y — [Re (e,y)]* — (e,e) (y,y) takes both positive and
negative values.

The theorem is completely proved.
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1.2 Schwarz’s Inequality for the Complexification of a
Real Space
Let X be a real linear space. The complexification Xc of X is defined as a

complex linear space X x X of all ordered pairs {x,y} (x,y € X) endowed
with the operations:

{z.y} +{z" v} ={z+ 2"y +y},
(o0 +it) -{z,y} :={ox — Ty, 00 + TY},
where z,y,2',y' € X and 0,7 € R (see for instance [?]).

If = = {z,y}, then we can define the conjugate vector z of z by z :=
{z, —y} . Similarly, with the scalar case, we denote

Rez = {x,0} and Imz:={0,y}.

Formally, we can write 2 = x+1y = Rez+1Imz and z = x —iy = Rez —i1Imz.

Now, let (,-) be a Hermitian functional on X. We may define on the
complexification X¢ of X, the complezification of (-,-), denoted by (-,-) and
defined by:

(z + iy, 2" + iy ) = (x,2") + (v,9) +il(y, 2") — (z,9)],

for x,y, o',y € X.
The following result may be stated [?]:

Theorem 3 (Kurepa, 1968). Let X, X¢, (-,-) and (-,-)c be as above. An
inequality of type (77) and (??) holds for the functional (-, )¢ in the space X¢
if and only if the same type of inequality holds for the functional (-,-) in the
space X.

Proof. We follow the proof in [?].
Firstly, observe that (-, -) is semi-definite if and only if (-, -) is semi-definite.
Now, suppose that e € X is such that

(e, 9)|* > (e,e) (y,y), (e,€) <O
for all y € X. Then for z,y € X we have
’(6,1‘ + Zy)(c|2 = [(6, x)]Q + [(6, y)]2

> (e,e)[(z,2) + (y,v)]
= (e,€) (v + iy, v + iy)e -
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Hence, if for the functional (+,-) on X an inequality of type (??) holds, then the
same type of inequality holds in X¢ for the corresponding functional (-, -). .
Conversely, suppose that e, f € X are such that

(e +if,x+ iy)c|2 > (e+if,e+if)e (x4 iy, z+iy)c (1.12)

holds for all z,y € X and that

(e+if,e+if)e=(e,e)+ (f, f) <O. (1.13)

If e = af with a real number a, then (?7?) implies that (f, f) < 0 and (??)
for y = 0 leads to

()] = (f, ) (@),

for all z € X. Hence, in this case, we have an inequality of type (??) for the
functional (-,-) in X.

Suppose that e and g are linearly independent and by Y = L (e, f) let us
denote the subspace of X consisting of all linear combinations of e and f. On
Y we define a hermitian functional D by setting D (z,y) = (z,y) for z,y € Y.
Let D¢ be the complexification of D. Then (??) implies:

|Dc (e +if,x+iy)]> > Dc(e+if,e+if) Dc(x+ iy, +iy), z,yeX
(1.14)
and (?7) implies
D (e;e)+ D (f, f) <O. (1.15)

Further, consider in Y a base consisting of the two vectors {uj, us} on which
D is diagonal, i.e., D satisfies

D (z,y) = Mx1y1 + Xatays,

where
T =T1U1 + TaUz, Y = YU + YUz,

and
/\1 :D(ul,ul), )\QZD(U,Q,UQ).

Since for the functional D we have the relations (??) and (?7), we conclude
that D is not a semi-definite functional on Y. Hence A1 - Ay < 0, so we can take
A1 < 0 and Ay > 0.
Set
Xt i={x|(z,e) = (2, f) =0, z€ X}.
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Obviously, (x,e) = (z, f) = 0 if and only if (zqu1) = (zouq) = 0.
Now, if y € X, then the vector

ri=y— (. ) uy — (v, u2) U (1.16)

(u1,ur) (g, up)

belongs to X*. From this it follows that

X=L(e /)P X
Now, replacing in (??) the vector x + iy with z € Xt we get from (?7?) that

[(e,e) + (f, )] (2,2) <0,

which, together with (??) leads to (z,z) > 0. Therefore the functional (-,-) is
positive semi-definite on X 7.
Now, since any y € X is of the form (??), hence for y € X ™) we get

[(yv UQ)F

(4.9) = () + HE2

which is a nonnegative number. Thus, (-,-) is positive semi-definite on the
space X ) Since (uy,u1) < 0 we have [(u1,9)]> > (u1, u1) (y,y) for any y € X
and the theorem is completely proved.

2. Superadditivity and Monotonicity Proper-
ties
2.1 The Convex Case of Nonnegative Hermitian Forms

Let X be a linear space over the real or complex number field K and let us
denote by H (X) the class of all positive semi-definite Hermitian forms on X,
or, for simplicity, nonnegative forms on X, i.e., the mapping (-,-) : X x X — K
belongs to H (X) if it satisfies the conditions

(i) (z,x) >0 for all z in X;

(ii)) (ax+ Py, 2) =a(x,2)+ [ (y,z) forall x;y € X and o, f € K
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(iii) (y,z) = (z,y) for all z,y € X.

If (+,-) € H(X), then the functional ||-|| = (-, -)% is a semi-norm on X and
the following equivalent versions of Schwarz’s inequality hold:

lzl* lyl® = [z, ) or Nl Iyl = |z, y)] (2.1)

for any z,y € X.
Now, let us observe that H (X)) is a convex cone in the linear space of all
mappings defined on X? with values in K, i.e.,

(e) ('7 ')1 ) ('7 ')2 €H (X) implies that ('7 ')1 + ('7 ')2 €H (X) )

(ee) >0 and (-,-) € H(X) implies that a (-,-) € H (X).

We can introduce on H (X) the following binary relation [?]:
('7 ')2 = (" ')1

if and only if |[z||, > ||z|; for all z € X.(2.2)We observe that the fol-
lowing properties hold:

(b) () = (0); forall (-,-) € H(X);
(bb> ('7 ')3 = ('7 ')2 and ('7 ')2 > ('7 ')1 implies that ('? ')3 = ('7 ')1;
(bbb) ('7 ')2 2 ('7 ')1 and ('7 ')1 2 ('7 ')2 implies that ('7 ')2 = (" ')1;

i.e., the binary relation defined by (?7) is an order relation on H (X).

While (b) and (bb) are obvious from the definition, we should remark, for
(bbb), that if (-,-), > (-,-); and (-,-); > (-,+),, then obviously ||z|, = ||z||;
for all x € X, which implies, by the following well known identity:

(@)= 7 [z +ylly = e =yl + i (le + iyl = llz = iyl;)] (2.3)

A~ =

with z,y € X and k € {1,2}, that (z,y), = (z,y), for all z,y € X.
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2.2 The Superadditivity and Monotonicity of c —Mapping

Let us consider the following mapping [?]:
o HX)x X* =Ry, o (()s2y) =zl lyll = I(z,v)l,

which is closely related to Schwarz’s inequality (77).
The following simple properties of o are obvious:

(8) ola(,)sz,y) = a0 ((,);2,9);
(ss) o ((,)iy,2) =0 (()52,0);
(sss) o ((-,-);2,y) > 0 (Schwarz’s inequality);
for any o >0, (-,-) € H(X) and 2,y € X.

The following result concerning the functional properties of o as a function
depending on the nonnegative hermitian form (-, -) has been obtained in [?]:

Theorem 4 (Dragomir-Mond, 1994). The mapping o satisfies the follow-
g statements:

(1) For every (-,-), € H(X) (i =1,2) one has the inequality
o(( )+ )aszy) 2o (Co)say) +o(()my)  (20) (2.4)
for all z,y € X, i.e., the mapping o (-;x,y) is superadditive on H (X);
(it) For every (-,-), € H(X) (i =1,2) with (-,-), > (-,+); one has
o (()g52:9) 20 ((5)2y)  (20) (2.5)
for all x,y € X, i.e., the mapping o (+;x,y) is nondecreasing on H (X).
Proof. We follow the proof in [?].

(i) By the Cauchy-Bunyakovsky-Schwarz inequality for real numbers, we

have . .
(a2 + 62)5 (02 + d2)§ > ac+bd; a,b,c,d>0.
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Therefore,

g

—~

('7 ')1 + ('7 ')2;$,y)

([l + ll1l3 ) (lylly + Hyllg)% —(z,y); + (2,9),]
= Nlzlly ylly + ll=ll5 ylly = [, )1 ] = [(2,9),]
:0((a )l,x,y)—l—o((-,-)Q,x,y),

forall (-,-), € H(X) (¢ =1,2) and ,y € X, and the statement is proved.

(ii) Suppose that (-,-), > (-,+); and define (-,-),; == (-,+)y — (-,+);. It is
obvious that (-,-),, is a nonnegative hermitian form and thus, by the
above property one has,

o (7)o i,9) 2 0 (4 ) + () 32y)
o ((daaizy) +0 () i29)

v

from where we get:

o ((asy) =0 (()iy) = 0 () imy) 20
and the proof of the theorem is completed.
Remark 1. If we consider the related mapping [?]
or ()52, y) = llell lyl] — Re (z,y),

then we can show, as above, that o (-;x,y) is superadditive and nonde-
creasing on H (X) .
Moreover, if we introduce another mapping, namely, [?]

TIH(X) x X2 =Ry, 7((50)im,y) = (el + v = e+l
which 1s connected with the triangle inequality
lz+yll <zl +llyll  forany zyeX (2.6)
then we observe that
T(()5my) = 200 (( )52, 9) (2.7)

for all (+,-) € H(X) and x,y € X, therefore o (-;x,y) is in its turn a super-
additive and nondecreasing functional on H (X).
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2.3 The Superadditivity and Monotonicity of 6 —Mapping

Now consider another mapping naturally associated to Schwarz’s inequality,
namely [?]

0:H(X)x X =Ry, 6((0);2,9) = [l|* lyll* = |(z,9)".
It is obvious that the following properties are valid:
(i) 0 ((-,-);2,y) > 0 (Schwarz’s inequality);
(i) 6 () s2y) =6(() 1 2);
(i) 0 (a (-, )s2,y) =a?0((-);z,y)
for all z,y € X, a >0 and (-,-) € H(X).
The following theorem incorporates some further properties of this func-

tional [?]:

Theorem 5 (Dragomir-Mond, 1994). With the above assumptions, we
have:

(i) If (-,-), € H(X) (i = 1,2), then
S(( )+ ()asmy) =0 () 2,9) =6 ((57)y5 2, 9)
> <det { ||$||1 H?J||1 ]) (>0); (2.8)

lzlly [yl
i.e., the mapping 6 (+;x,y) is strong superadditive on H (X) .

(1) If (-,), e H(X) (1 =1,2), with (-,-)y > (-,-);, then

6(()g5m,y) =0 ((5)y 52, y)

lzll, Iyl i
de 1 1 ; .
Z( t[(uxuz—uxH?)Q (Hyni—uyuiVD (2005 (29)

i.e., the mapping 6 (+;x,y) is strong nondecreasing on H (X) .
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Proof. (i) For all (-,-), € H(X) (i =1,2) and z,y € X we have

6 ()1 +()gs2y) (2.10)
2 2 2 2 2

= (llzlly = l=17) (ylls = lylly) = (@), + (2,9,
2 2 2 2 2 2 2 2

> llly [yl + iy lylly + [l lyllz + iz [yl

— (I(z, y)y] + (2, ), 1)
=0(()g52,9) +0((5 )52, )
2l il + 2l 19117 — 212, 1), (2,9),] -

By Schwarz’s inequality we have

|(@,9) (2, y)i L < Ml [yl [l Tyl (2.11)
therefore, by (??) and (77), we can state that
0 ((7 ')1 + ('7 ')2 ) xay) -0 ((7 '>1 3 Ly y) -0 ((7 .>2 7 Ly y)

2 2 2 2
> |zl llylly + 15 Twlly = 2zl [yl ]l [yl
2
= (=l llylly = ll=ll5 Tl

and the inequality (?7?) is proved.

(ii) Suppose that (<), > (+,-); and, as in Theorem ?7, define (-,-),, =

(,)o—(+); - Then (-, -),, is a nonnegative hermitian form and by (i) we have
5 (i) = (6N 2) = 8 (5o + ()i wy) =0 (o) 5,w)
ol ol TN
26<~,~ ;x,)—i—(det[ 1 1 ])
(i oy Mol
2
s (aa I 0 ]Y
||‘T||271 ||y||2,1
Since [|2[],, = (||z|]§ - ||2Hf)5 for z € X, hence the inequality (??) is proved.

Remark 2. If we consider the functional 5, ((-,-) ;x,y) := ||z||* ||~ [Re (z,)]?,
then we can state similar properties for it. We omit the details.
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2.4 Superadditivity and Monotonicity of /—Mapping
Consider the functional 3 : H (X) x X? — R [?] defined by

B m) = (lel* 1wl = @ )[2)? (2.12)

It is obvious that G ((-,-);z,y) = [d((+,") ;x,y)]% and thus it is monotonic
nondecreasing on H (X)) . Before we prove that 3 (-;z,y) is also superadditive,
which apparently does not follow from the properties of § pointed out in the
subsection above, we need the following simple lemma:

Lemma 1. If (-,-) is a nonnegative Hermitian form on X, z,y € X and
lyll # 0, then

> el llyll® = I(z,9)*
inf ||z — \y||” = 5 : (2.13)
AeK Iyl

Proof. Observe that
lz — MylI” = [|=]|* — 2Re [A (z, )] + [AP* [lyl®
and, for ||y # 0,

2 2 2 2 2
) 11yl = |, )" + | llyll” = (2, 9)]
y[|?

and since Re [5\ (, y)} = Re [5\ (, y)} = Re [/\(:v, y)] , we deduce the equality

= Jlall” = 2Re |z, y)| + ).

2 2 2 2 2
— , + — (o,
e e 2 2 e 200 Y

2
[yl

for any =,y € X with ||y|| # 0.
Taking the infimum over A € K in (??), we deduce the desired result (?7).
For the subclass JP (X), of all inner products defined on X, of H (X)
and y # 0, we may define

Pl ~ 1 w) P
Iyl?
_5((,)a,)
IWIF

The following result may be stated (see also [?]):

Y((59)52,y)
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Theorem 6 (Dragomir-Mond, 1996). The functional v (-;z,y) is superad-
ditive and monotonic nondecreasing on JP (X) for any x,y € X with y # 0.

Proof. Let (-,-),,(-,"), € JP(X). Then

TG+ Co)gswy) (2.15)
(13 + llellz) (ylls + lylls) = 1, y), + (@)l
IyII7 11y
. 2 2
= inf [[lz = Aylly + llz = Myl5]

and for the last equality we have used Lemma 77.
Also,

2 2 2
_ L2l yll = (2, y)il
- 2
Iy1l;
= inf ||l — Ayl i =1,2.
mfflz —Ayll;,  i=1

Y((5)i5,9) (2.16)

Utilising the infimum property that

inf (f (A) +9(A) = mf f(A) + inf g (A),

AeK ek

we can write that
. 2 2 . 2 . 2
— — > — —
;\Ielﬂfg [||x /\y||1 + ||z /\?JHQ] = }\2]12”55 )\y||1 +)1\2Hf<||95 /\?JH27

which proves the superadditivity of v (:; z,y) .
The monotonicity follows by the superadditivity property and the theorem
is completely proved.

Corollary 1. If (-,-), € JP(X) with (-,-), > (-,-); and z,y € X are such
that x,y # 0, then:

6 (()957,9) ZmaX{w w}ﬂ(w)l;x,y) (2.17)

2 2
lylly NIy

(Z0((s)157,9))
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or equivalently, [?]
(s )ai2y) =0 (C ) 52,y)
2 2 2 2
- {Hylb ol [l qul} S ny). (218

2 2
Iyl 1l

The following strong superadditivity property of 0 (-; x,y) that is different
from the one in Subsection ?7? holds [?]:

Corollary 2 (Dragomir-Mond, 1996). If (-,-), € JP(X) and z,y € X
with x,y # 0, then

S(( )+ ()asmy) =0 ((5)2,9) =6 ((50)g5 7, 9)

> max{<%)25<<-,->l 2y)+ (%)Qﬂc,»g;x,y);

(”I”Z)Qé<<~,->1;x,y>+(”“””1)25«-,')2;%11)} >0). (219)

[E41R ]l

Proof. Utilising the identities (??) and (??) and taking into account that
v (+;x,y) is superadditive, we can state that

6 ((); + (g5 2,y) (2.20)

Iyl + Iyl lyll? -+ [yl
> LR () s y) + 26 (-
lyll7 yll5

=0((-,)52,y) +6((, )y 2,9)

(k) scconsmn+ (fih) smo

7')2;xay)

and a similar inequality with z instead of y. These show that the desired
inequality (?7) holds true.

Remark 3. Obviously, all the inequalities above remain true if (-, -)
are nonnegative Hermitian forms for which we have ||z||; , ||y, # 0.

i=1,2

70

Finally, we may state and prove the superadditivity result for the mapping

B (see [7]):
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Theorem 7 (Dragomir-Mond, 1996). The mapping (8 defined in (?7) is
superadditive on H (X).

Proof. Without loss of generality, if (-,-), € H(X) and z,y € X, we may

),
assume, for instance, that ||y||, # 0, i =1,2.
If so, then

(%) 5((.7-)1;$,y)+(%> 5(( )52, y)
> 2[0(( )15 2,9) ()52 0)]2

[N

and by making use of (??7) we get:

N

b

5+ (s) 2 {0 (o))l E + 50 )i0y)]

which is exactly the superadditivity property for .

3. Applications for Inner Product Spaces

3.1 Inequalities for Orthonormal Families

Let (H;(-,-)) be an inner product space over the real or complex number field
K (K= Cor K=R). The family of vectors £ := {e;},.; (I is a finite or
infinite) is an orthonormal family of vectors if (e;, e;) = &;; for i,j € I, where
d;; is Kronecker’s delta.

The following inequality is well known in the literature as Bessel’s inequal-
ity:

Y lw e < Jlalf? (3.1)
i€F
for any I a finite part of I and x a vector in H.

If by F (I) we denote the family of all finite parts of I (including the empty
set @), then for any F' € F (1) \ {@} the functional (-, ) : H x H — K given
by

(zay)F = Z<$7€i> <ei7y> (32)
i€l

is a Hermitian form on H.
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It is obvious that if Fy, Fy € F (I)\{@} and F1NF, = &, then (-,*) oy, =
('7 ')F1 + ('7 ')Fg :
We can define the functional o : F (I) x H?> — R, by

o (Fyz,y) = |zl lylle = [z 9)pl (3.3)

where

|z = (Z |<o:,ei>|2> — [(w,2)p)2, zeH

i€l

The following proposition may be stated (see also [?]):

Proposition 1 (Dragomir-Mond, 1995). The mapping o satisfies the fol-
lowing

(Z) IfFl,FQ < f([)\{@} with FlmFQ == @, then
o (FLUFy;2,y) > o (P 0,y) + 0 (Fy2,y) (=0)

for any x,y € H, i.e., the mapping o (+;x,y) is an index set superadditive
mapping on F (I);

(ZZ) ]f@ 7£ F1 g FQ, Fl,FQ € F(I), then
o(Fyzy) 2o (Fiz,y)  (20),

i.e., the mapping o (+;x,y) is an index set monotonic mapping on F (I).

The proof is obvious by Theorem ?? and we omit the details.
We can also define the mapping o, (+;-,-) : F (I) x H> — R, by

or (Fr2,y) = |lz]p [yl p — Re (2, 9)p

which also has the properties (i) and (ii) of Proposition ?7.

Since, by Bessel’s inequality the hermitian form (-,-), < (-,-) in the sense
of Definition (??) then by Theorem 77 we may state the following refinements
of Schwarz’s inequality [?]:
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Proposition 2 (Dragomir-Mond, 1994). For any F € F(I)\{0}, we
have the inequalities

[l lyll = 1C, ) = (ZI@%@-HQ) <Z!<y,ei>\2> =D (ze) {eiy)

ieF ieF icF (3.0
and
[yl = Kz, y)|
> (erﬁ—Zux?em?) (nmﬁ—Zuy,e»F)
- <x,y>—2<x,€i> (e, )| (3.5)

and the corresponding versions on replacing |-| by Re (-), where z,y are vectors
in H.

Remark 4. Note that the inequality (?77) and its version for Re () has been
established for the first time and utilising a different argument by Dragomir
and Sdndor in 1994 (see [?, Theorem 5 and Remark 2]).

If we now define the mapping ¢ : F (I) x H> — R, by
6 (Fya,y) = ||zl Iyl — (@ y)pl
and making use of Theorem ??, we may state the following result [?].

Proposition 3 (Dragomir-Mond, 1995). The mapping 6 satisfies the fol-
lowing properties:

(i) If F, Fy € F (I) with F N\ Fy = @, then

0 (FyU Fy,y) = 0 (Fisa,y) — 6 (Fy 2, y)
> <det { ”J:”Fl HyHFl }) (>0), (3.6)

zlle, NYllg,

i.e., the mapping 6 (+;x,y) is strong superadditive as an index set map-
ping;
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(ZZ) ]f@ 7é F1 Q FQ, Fl,Fg c f(]), then

6 (Fy;m,y) — 0 (Frs2,y)

2
]l 5 1yl
> | det ! 1 ' 1 (>0), (3.7
( [ (2l = 2l7)* (lylz, = lyllz)

i.e., the mapping d (+;x,y) is strong nondecreasing as an index set map-
pIng.

On applying the same general result in Theorem ?7, (ii) for the hermitian
functionals (-,-) (F' € F(I)\{@}) and (-, -) for which, by Bessel’s inequality
we know that (-,-)r < (-,-), we may state the following result as well, which
provides refinements for the Schwarz inequality.

Proposition 4 (Dragomir-Mond, 1994). For any F € F (I)\ {9}, we
have the inequalities:

2 2 2
[l lyl1” = [z, y)]|

> Z |<$,€i>!2z [y, e)]” — Z (z,€:) (ei, y) (=0) (3.8)
and
I lyll* = 1z, v) I
> <||93||2 - Z |<$76i>|2> (Hyll2 - Z |<y,€¢>l2)
— [{z,y) — Z(%Q‘) (€i,y) (=0), (3.9

for any x,y € H.

On utilising Corollary 7?7 we may state the following different superaddi-
tivity property for the mapping 0 (+;z,y) .
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Proposition 5. If Fy, Fy € F (I)\{@} with F; N Fy = &, then

0(FLUFoya,y) — 0 (Frx,y) — 6 (Fy; x,y)

9 2
. (Hyl@) 5(F1;$7y)+(nyuﬂ) 5 (Fyiz.y)
HZU||F1 |Z/HF2

|
<”xHF2)25(F1;:c,y) + (HIHH)QMFz;m,y)} (=0) (3.10)

(1P 1l s,
for any x,y € H\ {0}.

Further, for y ¢ M~ where M = Sp{e;},.; is the linear space generated by
E = {e;},.; , we can also consider the functional vy : F (I) x H*> — R defined
by

|2

§(Fiay)  allzllylz = l(z,y
Py o L) el bl — ()
[yl % Yl %

b

where x € H and F # @.
Utilising Theorem ??, we may state the following result concerning the
properties of the functional 7 (+;z,y) with x and y as above.

Proposition 6. For any v € H and y € H\M=, the functional v (-;x,y) is
superadditive and monotonic nondecreasing as an index set mapping on F (I) .

Since (-,-) > (-,+)p for any F' € F (I), on making use of Corollary 7?7, we
may state the following refinement of Schwarz’s inequality:

Proposition 7. Let x € H and y € H\Mj, where Mp := Sp{e;},.; and
F e F(I)\{@} is given. Then

lyl” [Edls
Iz )* [yll* = [z, )|* > max :
Z'LEF (v, ei>’2 ZiEF [(, 6i>|2

< | Do Hae Y 1y el —

el el

2

S (2 (e y)

el

> e Y [y el —

el el

2

S (e (e,9)

el

. (3.11)

which is a refinement of (??) in the case that y € H\Mj.
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Finally, consider the functional 3 : F (I) x H?> — R, given by

N|=

B(Fia,y) = 6 (Fz.p)F = (lzl3 il — @0 p2)F

Utilising Theorem ?7, we may state the following.

Proposition 8. The functional 3 (+; z,y) is superadditive as an index set map-
ping on F (I) for each x,y € H.

As a dual approach, one may also consider the following form (-, -)C’ P
H x H — R given by:

(x>y)C,F = (x,y) - (xay)F = <£B,y> - Z <ZL‘,6¢> <ei7y> . (3'12)

iEF

By Bessel’s inequality, we observe that (-, ). 5 is a nonnegative hermitian form
and, obviously

Utilising the superadditivity properties from Section 7?7, one may state the
following refinement of the Schwarz inequality:

e 1yl = 1)
> (Zux,e»FZr@,em?) - [ e e
+ <||x||2 -3 |<:v,ez->12) (Hyll2 -3 |<y,ei>12)

(wy) =D (v} (eny)|  (20), (3.13)

i€l
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2 2 2
[l lyl1” = [z, v)1

>3l e Y Il = |3 (e ()
+ (||a:||2 —Z|<x,ei>|2> (||y||2 —Z|<y,e,~>|2)
e - @eyen| =0 @1
and
(ol Iyl = 1z, ) P)
> {Z@c,e»QZ@, ) = [ (@) fexy)
+ (HxH?—Zux,e»F) (HyHQ—le,eW

=

(w.y) =Y (w,e) (e y)

el

] (=0), (3.15)

for any z,y € H and F € F (I)\{2}.
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3.2 Inequalities for Gram Determinants

Let {z1,...,z,} be vectors in the inner product space (H, (-,-)) over the real
or complex number field K. Consider the gram matriz associated to the above
vectors:

(1, 21) (T1,22) - (@1, 20)
Glay,me= | b2m)
(Xp, 1) (Tp,me) -+ (Tp,Tp)

The determinant
[ (z1,...,2,) :=det G (z1,...,2,)

is called the Gram determinant associated to the system {xy,...,z,}.
If {x1,...,2,} does not contain the null vector 0, then [?]
0T (@, wa) < ol ol -zl (3.16)

The equality holds on the left (respectively right) side of (??) if and only if
{z1,...,x,} is linearly dependent (respectively orthogonal). The first inequal-
ity in (??) is known in the literature as Gram’s inequality while the second
one is known as Hadamard’s inequality.

The following result obtained in [?] may be regarded as a refinement of
Gram’s inequality:

Theorem 8 (Dragomir-Sandor, 1994). Let {z1,...,x,} be a system of
nonzero vectors in H. then for any x,y € H one has:

U(z,21,...,2,) 0 (g, 21, .., 20) > [T, x) (2,9)] (3.17)
where T (z1,...,z,) (x,y) is defined by:

<ZL’,y> <ZL’,ZL‘1> <$,l’n>
T (21,...,2,) (z,y) = det <g“j1_"y> G o
(Tn,y)

Proof. We will follow the proof from [?].
Let us consider the mapping p : H x H — K given by

p(z,y) =T (x1,...,2,) (z,y).
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Utilising the properties of determinants, we notice that

p(z,y) =T (z, 21, 20) 20,
x17...,xn)(x+y7z>
1y Ty) (2,2) + T (2, ..o 2p) (y, 2)

for any z,y, 2z € H and a € K, showing that p(-,-) is a nonnegative hermitian
from on X. Writing Schwarz’s inequality for p (-, -) we deduce the desired result

(77).

In a similar manner, if we define ¢ : H x H — K by

q (ac,y) = (x,y) H ”le2 —p(l‘,y)

= (z,9) H lill* = T (1, 20) (2,9),

then, using Hadamard’s inequality, we conclude that ¢ (-, -) is also a nonnega-
tive hermitian form. Therefore, by Schwarz’s inequality applied for ¢ (-, ), we
can state the following result as well [?].

Theorem 9 (Dragomir-Sandor, 1994). With the assumptions of Theorem
7?7, we have:

2 2 2 2
ll* T T —F(ar,xl,--wn)] [IIyH R —F(y,xl,---,xn)]
i=1 i=1

" 2
> ) [ [ lil® = T (1, ) (2,9)| , (3.18)
i=1
for each x,y € H.
Observing that, for a given set of nonzero vectors {xy,...,2,},

p(x,y)+q(z,y) = (z,9) H [EA
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for any z,y € H, then, on making use of the superadditivity properties of the
various functionals defined in Section 77, we can state the following refinements

of the Schwarz inequality in inner product spaces:

[l Iyl = [z, 9] H ]

N

|
=
&

8
&
0
S

> [C(x, 21, ., 20) T (y, 21, .., 20)]

Nl .

B n
+ [zl T ] lil® = T (2, 2)
L =1

D=

2 2
x|yl HH%H =T (y, 21, ,20)
L i=1

- <x,y>HHfC¢H2—F($1,~--,$n)(x,y) (=20), (3.19)

[l !l = K, )] H [y

U(z,z1,...,20) D (y, 21, ..., 20) — [T (@1, ..., x0) (2, y) ]

B n
+ el T all® = T (2, )
L =1

X ||?J||2 H ||Iz||2 =T (y, 21, 20)
L i=1
n 2
— [(@y) [Tl =T (@, 2) (2,9) (=0), (3.20)
i=1
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and

el Iyl = Gz, y) )2 H (el

N

> [F(x,xl,...,xn)F(y,ml,...,xn)— T (z1,...,2,) (:L’,y)ﬂ

+ { ll® T llill® = T (- ,fvn)]
i=1

X [HyH2 [Tl =T (g, ,xn)]
i=1

1
2) 2

(>0). (3.21)

(z,9) H lzll* = T (21, @) (2, )

3.3 Inequalities for Linear Operators

Let A: H — H be a linear bounded operator and
JAll := sup {||Az||, ||z < 1}

1ts norm.
If we consider the hermitian forms (-,-),, (-,-); : H — H defined by

(z,9), = (Az, Ay),  (2,9), = |A]* (z,y)

then obviously (-,-), > (-,-); in the sense of Definition (??) and utilising the
monotonicity properties of the functional considered in Section 77, we may
state the following inequalities:

AP (el gl = [z, o)1) = A | Ayll = [{(Az, Ay)] (= 0),  (3.22)

AN [l 1” I9l® = K, ) P] > 1Az ]* [ Ay|1” = [(Az, Ag)* - (= 0) (3.23)

for any x,y € H, and the corresponding versions on replacing |-| by Re(+).
The results (?7) and (??) have been obtained by Dragomir and Mond in

7).
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On using Corollary ??, we may deduce the following inequality as well:
AN Tl 1yl = [z, 9) 1]

2 2

xr

ZmaX{ =], I } (Al [ Ay)? — [(Az, Ap?] (2 0) (3:24)
Azl LAy

for any x,y € H with Az, Ay # 0; which improves (??) for x,y specified
before.
Similarly, if B : H — H is a linear operator satisfying the condition

|Bx|| > m|z|| forany z € H, (3.25)

where m > 0 is given, then the hermitian forms [z,y], := (Bx, By), [z,y], :=
m? (z,y), have the property that [,-], > [-,],. Therefore, from the mono-
tonicity results established in Section 77, we can state that

1Bz[[| Byl — (B, By)| = m* (|||l llyll — Kz, »)]] ~ (=0),  (3.26)

|Ba|* | Byll* — (B, By)[* = m* [ll[* [y]* — Kz, )] (20) (3.27)

for any z,y € H, and the corresponding results on replacing |-| by Re ().
The same Corollary 77, would give the inequality

1B|* | BylI® — [(Bz, By)|’

Zm2maX{”BxH |By] }[|r:c||2uyu?—|<x,y>|2} (3.28)

2 2
= Nyl

for z,y # 0, which is an improvement of (77).

We recall that a linear self-adjoint operator P : H — H is nonnegative if
(Px,z) > 0 for any x € H. P is called positive if (Pz,z) = 0 and positive
definite with the constant v > 0 if (Px,x) > ~|z||* for any = € H.

If AB: H — H are two linear self-adjoint operators such that A > B
(this means that A — B is nonnegative), then the corresponding hermitian
forms (z,y), = (Az,y) and (x,y)p = (Bx,y) satisfies the property that
('7 ')A > ('7 ')B :

If by P (H) we denote the cone of all linear self-adjoint and nonnegative
operators defined in the Hilbert space H, then, on utilising the results of
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Section ?7, we may state that the functionals o, 8y, By : P (H) x H* — [0, o0]
given by

00 (P;,y) i= (A, 2)? (Py,y)? — |(Pa,y)],
8o (P;a,y) = (Px,z) (Py,y) — |(Pz, )",
Bo (P;z,y) = [(Pz,z) (Py,y) — |(Pz,y)"]*,

are superadditive and monotonic decreasing on P (H) , i.e.,

Yo (P +Q;2,y) > v (P2,y) + 7 (Q; 2, %) (=0)

for any P,QQ € P(H) and x,y € H, and

Y (Piz,y) =% (Q;2,y)  (=0)

for any P,@ with P > @ >0 and z,y € H, where v € {0,0,3}.

The superadditivity and monotonicity properties of oy and dy have been
noted by Dragomir and Mond in [?].

If w € P(H) is such that I > U > 0, where [ is the identity operator, then
on using the superadditivity property of the functionals og, dyp and Gy one may
state the following refinements for the Schwarz inequality:

Iz iyl — (@ 9)| = Uz, 2) Uy, )2 — [(Uz,y)]
(I =U)a,2)2 (I =U)y,p)2 — (I =U)z,g)]  (>0), (3.29)

l2]* lyl* = e, )" = (U, 2) (Uy,y) = [(Uz,y)[*
(=) z,2) (I = V)y,y) = I = D)zy)” (20), (3.30)

and

N[

(l2lP Iyl = 1z, ) P)? = (U2, 2) Uy, ) — |{Uz, 5)P)
+ (=0 w2 (I = U)yy) — (I = U) ) )

for any x,y € H.
Note that (??) is a better result than (?7).

D=

(>0) (3.31)
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Finally, if we assume that D € P (H) with D > ~I, where v > 0, i.e., D is
positive definite on H, then we may state the following inequalities

(Dx,3)% (Dy,y)? — [(Dz,y)| > v[llell |yl - [(=.9)]  (20), (332)
(D, x) Dy y) — (D) = 2 [l lyl* = Kz, 9)[7] (=2 0), (3.33)
for any x,y € H and
(Dz,z) (Dy,y) — |(Dz,y)|*

max (Dz,z) (Dy.y) | |yll* = [z, 9)|? 0) (3.34
- { o, }[H Bl - 1@nl] (0 (334

for any z,y € H\ {0}.
The results (??) and (?7?) have been obtained by Dragomir and Mond in
7]

Note that (??) is a better result than (?7).
The above results (?7) — (?77) also hold for Re (-) instead of |-|.

4. Applications for Sequences of Vectors in In-
ner Product Spaces

4.1 The Case of Mapping o

Let Py (N) be the family of finite parts of the natural number set N, S, (R)
the cone of nonnegative real sequences and for a given inner product space
(H; (-,-)) over the real or complex number field K, S (H) the linear space of
all sequences of vectors from H, i.e.,

S(H) := {x[x = () z; € H, i € N}.

1€N

We may define the mapping o by

%
o(p,1,x,y) = <Zpi||xi“2zpi”yi”2> -

i€l il

NZRY

Zpi <x17yz>

el

where p e S; (R), I € Py (N) and x,y € S(H).
We observe that, for a fixed p € Sy (R) and I € Py (N), the functional
<'7 '>p,I Z <'7 '>q,I '

Using Theorem 77, we may state the following result.
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Proposition 9. Let I € P;(N), x,y € S (H). Then the functionalo (-, 1,x,y)
is superadditive and monotonic nondecreasing on S; (R).

IfI,J € Py (N), with INJ = @ and if we consider, for a given p € S; (R),
we observe that

<'7 '>p,IuJ - <'7 .>p7I + <'7 '>p,J' (42)

Taking into account this property and on making use of Theorem 77, we may
state the following result.

Proposition 10. Letp € S; (R) and x,y € S (H).

(1) For any I,J € Ps(N), with I N J = &, we have
o, IUJxy) 2ol xy)+o(pJxy) (20), (43)
i.e., 0 (p,-,X,y) is superadditive as an index set mapping on Pr (N).
(ii) If @ #J C1,1,J¢€ Ps(N), then
o(pIixy)zo(p Jxy) (20), (4.4)

i.e., o (p,+,X,y) is monotonic nondecreasing as an index set mapping on

Si(R).
It is well known that the following Cauchy-Bunyakovsky-Schwarz (CBS)
type inequality for sequences of vectors in an inner product space holds true:

2

dovillall* Y pillyall® =

el el

sz‘ (i, i)

el

(4.5)

for I € Py (N), pe Sy (R) and x,y € S(H).

If p; > 0 for all i € I, then equality holds in (??) if and only if there exists
a scalar A € K such that x; = \y;, 1 € I.

Utilising the above results for the functional, we may state the following
inequalities related to the (CBS)-inequality (77).
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(1) Let o € R, mj,y; € H, 1 € {1,...,n}. Then one has the inequality:

n

Z (i, i)

i=1

n n
2 2
Dol Y lwll* ~
=1 =1
n n 2
> (Z\|xi|]2sin2aizHyiHZsinQai) -
=1 =1

=

i=1
n n 2 n
+ (Z | 4]|% cos? a Z |l l|* cos® al-) — Z (5, y;) cos® a| > 0.
i=1 i=1 i=1
(4.6)

(2) Denote S, (1) := {peS; (R)|p;<1forallie{l,...,n}}. Then for

all z;,y; € H, 1 € {1,...,n}, we have the bound:

n

1

n n 2
<Z||%HZZH%H2> RN,
i=1 i=1 i=1

1
n n 2
2 2
= SUPI) (ZPZH%H szHyzH) -
i=1 i=1

D_pilwiy)|| 2 0. (A7)

pESn(

(3) Let p; >0, x;,y; € H,i € {1,...,n}. Then we have the inequality:

2n 2n % 2n
2 2
(sz’HfUiH > pillyil ) = 1> pi i,y
i=1 i=1 i=1
n n %
> (szk Hx2k’|2zp2k Hy%Hz) -
k=1 k=1

(4.8)

szk (2K, Yor)
k=1

szk—1 (Tok—1, Y2k-1)

k=1

(=0).

1
n n 2
+ (szk—1 Hﬂfzk—lHQ Zp%—l ”?JQk—1||2> -
k=1 k=1
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(4) We have the bound:

Zpi (i, i)

1
n n 2
[E Di ||x¢||2§ pi||y¢||2] -
=1

= sup Di |sz Di HyzH Di <xlay2> > 0.
it (S| -
(4.9)
(5) The sequence S, given by
1
n n 2 n
2 2
i=1 i=1 i=1
is nondecreasing, i.e.,
Ske1> Sk, k>2 (4.10)

and we have the bound

2 23 2 2\ 3
52> mac L (ol + 1,0 (0l + 2l )’
— |pi (i, yi) + 05 (25,950 >0, (4.11)
forn > 2 and x;,y; € H, i € {1,...,n}.

Remark 5. The results in this subsection have been obtained by Dragomir
and Mond in [?] for the particular case of scalar sequences x and'y.

4.2 The Case of Mapping ¢

Under the assumptions of the above subsection, we can define the following
functional

d(p,1,x,y) Zpl ’le sz H@h” -

el i€l

where p € S. (R), I € P¢(N) and x,y € S(H).

Utilising Theorem 7?7, we may state the following results.

)

> i (@i yn)

el
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Proposition 11. We have

(i) For any p,q € S; (R), I € Pf(N) and x,y € S (H) we have

5(p+q,],x,y>_6(p,],X,Y)_5(q,],X,Y)

1
2

1
(zpi Hxin?) (zpi ||yiu2)
> | det | V! e ) >0. (4.12)

2 2 2
(z @ .| ) (z @ il
el el

1
2

(i) If p>q >0, then

5<p717X7y) - 5(q7[7X7y)
1 1 2
(Solle?) (Sl
> det el i el B Z 0.
(z i — ) nwiw) (z (i — ) uyz-rr?)
=y el
(4.13)

Proposition 12. We have

(1) For any I,J € Py (N), with INJ =& andp € S+ (R), x,y € S(H),

we have
5<p7IU vauy) - 6(paluxay) _5<p7 vauy)
2 : 2 : i
(Sllet®)” (Solwr?)
> | det | M€ el >0. (4.14)

1 1
2\ 2 2\ 2
(zpz- ] ) (zpi Il )
icJ ieJ
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(i) If @+ JC I, 1+#J, 1,J€Ps(N), then we have

6(p,],X,Y)—5(p,J,X,Y)

1 1
22 2\ 2
(zpiuxiu ) (zpz- il )
i€l L =y

1 1 > 0. (4.15)
( > pi||xill2> < > i |\in|2>
i€I\J eI\J

2

> | det

The following particular instances that provide refinements for the (CBS)-
inequality may be stated as well:

2
DNl Y Myl = D (o i) (4.16)
iel iel il
2
> Z ]| sin? oy Z ;|| sin® a; — Z (s, y;) sin? a
i€l il i€l
2
Y il eos? a3l eos® a — |3 (o, i) cos? e
iel iel iel

1

1 2
2 3
(Sladtsitan ) (Sl st
> det el ) i€l >0

- — Y

2 2
(zuxiu%osm) (zuyiu%os?az-)

i€l iel

where z;,v; € H, a; € R, i € I and I € Ps(N).
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Suppose that p; > 0, x;,y; € H, i € {1,...,2n}. Then
2n 2n 2n
sz' ||5151||2 Zpi ||?/z||2 - Zpi (i, yi)
i=1 i=1 i=1
n n
> szk [k ZPQk ol I* —
k=1 k=1

n n
+ ZP%A ||372k71H2 ZP%A ||y2k71||2 —
k=1 k=1

: ) >
( - ||x2k||2) (z P Hy%n?)
> | det k=1 . k=1 ) >0
n 2 n
(Z D2k—1 H~’U2k1H2) (E D2k—1 Hy2k1H2)
k=1 k=1

Remark 6. The above results (77) — (?7) have been obtained for the case
where x and 'y are real or complex numbers by Dragomir and Mond [?].

(4.17)

2

ZP% (oK, Yor)
k=1

2

Zp%q (Tok—1, Yor—1)
k=1

2

Further, if we use Corollaries 7?7 and 7?7, then we can state the following
propositions as well.

Proposition 13. We have
(1) For any p,q € S1 (R), I € Py (N) and x,y € S(H)\ {0} we have

5(p+q7[7X=Y>_(5(1)7],?(7}’)_5((1:]7)(;)’)

2 2
Z max Zie]pz ||‘r7«|| 5 (q7 I,X,y) + Zié[ qi Hle 5 (p’ I,X, y) ’
2 2
Zie[ qi ||| Zie[pi (EA
S e pi llyill? S ier @ il
mé(cblaxa y) + mfs(p, I,x,y) ¢ >0. (4.18)
el 1t [1J? icl i |l

(i) Ifp>q>0and I € P;(N), x,y € S(H)\ {0}, then:

5<p717X7y) _5(q7[7X7y)

2 2
- max {zigm @) 2 Tier (pi = a0 lu
Yierpilail ierpi il

}(5(p,[,x,y) > 0.
(4.19)
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Proposition 14. We have

(i) For any I,J € Ps(N), with INJ = @ and p € S;(R), x,y €
S (H)\ {0}, we have

6<p7]UJ7X7y)_5(p7]7X7y) _5(p7‘]7X7Y)

2 2
ZmaX{Mé(p7J7X7y>+Mé(p7I>X7Y)7

Zjejpj ||‘7:J||2 Zz’g[pi ”l’zHQ
2
>ier i llyill” > e il
E1—25 <p7 Ja X, y) + JGJ—]JQ(S (p7 -[7X7y) > 0. (42())
> e P lly;ll > icr Pilluill

(i) If @ #J CI,1I#J I,J e Pr(N)andp € S4 (R)\{0}, x,y €
S (H)\{0}, then

5(p7]7X7Y) _5(p7 J7X7Y)
2 2
> keng Pellzell™ 2 pen s e llynll
> max 5 5
> icr Di |zl > ier Di llyill

}(5 (p, J,x,y) > 0. (4.21)

Remark 7. The results in Proposition 7?7 have been obtained by Dragomir
and Mond in [?] for the case of scalar sequences x and'y.

4.3 The Case of Mapping (

With the assumptions in the first subsections, we can define the following
functional

N

B(p,1,x,y) =[6(p,1,x,y)]

= 1> pillwl®>pillwall* -

i€l el

1
2] 2

sz' (i, i)

el

where p € S;. (R), I € Py (N) and x,y € S(H).
Utilising Theorem ?7?, we can state the following results:

Proposition 15. We have
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(i) The functional 5 (-,1,x,y) is superadditive on S; (R) for any I € Py (N)
and x,y € S(H).

(11) The functional 3 (p,-,X,y) is superadditive as an index set mapping on

P¢(N) and x,y € S(H).

As simple consequences of the above proposition, we may state the follow-
ing refinements of the (CBS)-inequality.

(a) If x,y € S(H) and a; € RA, i € I with I € P;(N)\ {0}, then

1
2\ 2

Dol Dl = D i)

iel iel iel
1
2\ 2
> Z ||| sin? av; Z ;|| sin? a;; — Z (3, ;) sin? a
iel iel iel
1
2\ 2
+ Z ||xz|\2 cos” a; Z ||?J1H2 cos” a; — Z (i, ys) cos” a; > 0.
iel i€l i€l
(4.22)
(b) If wj,y; € H, p; >0,i € {1,...,2n}, then
1
2n 2n 2n 2\ 2
S pillwll®> il = D i (i i)
i=1 i=1 i=1
1
n n n 2 2
> szk [ Zp% lyol* — ZP% (2K, Yor)
k=1 k=1 k=1
n n
+ (Zp2k—1 [ Zp%—l 21|
k=1 k=1
1
n 2\ 2
- Zp2k—1 (Tar—1, Yor—1) (=0). (4.23)
k=1
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Remark 8. Part (i) of Proposition 7?7 and the inequality (?77) have been
obtained by Dragomir and Mond in [?] for the case of scalar sequences x and

y.
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