A Survey on Inequalities for Hermitian Forms^{*}

Sever S. Dragomir[†]

School of Computer Science Mathematics Victoria University, PO Box 14428 Melbourne City MC 8001 Victoria, Australia

Invited Paper, Received on March 6, 2006.

Abstract

Classical and recent inequalities for Hermitian forms on real or complex linear spaces are surveyed.

1. General Properties

1.1 Schwarz's Inequality

Let \mathbb{K} be the field of real or complex numbers, i.e., $\mathbb{K} = \mathbb{R}$ or \mathbb{C} and X be a linear space over \mathbb{K} .

Definition 1. A functional $(\cdot, \cdot) : X \times X \to \mathbb{K}$ is said to be a Hermitian form on X if

(H1) (ax + by, z) = a(x, z) + b(y, z) for $a, b \in \mathbb{K}$ and $x, y, z \in X$;

(H2) $(x, y) = \overline{(y, x)}$ for all $x, y \in X$.

^{*2000} Mathematics Subject Classification. 46C05, 26D15.

[†]E-mail: Sever.Dragomir@vu.edu.au

URL:http://rgmia.vu.edu.au/dragomir

The functional (\cdot, \cdot) is said to be *positive semi-definite* on a subspace Y of X if

(H3) $(y, y) \ge 0$ for every $y \in Y$,

and *positive definite* on Y if it is positive semi-definite on Y and

(H4) $(y, y) = 0, y \in Y$ implies y = 0.

The functional (\cdot, \cdot) is said to be *definite* on Y provided that either (\cdot, \cdot) or $-(\cdot, \cdot)$ is positive semi-definite on Y.

When a Hermitian functional (\cdot, \cdot) is positive-definite on the whole space X, then, as usual, we will call it an *inner product* on X and will denote it by $\langle \cdot, \cdot \rangle$.

We use the following notations related to a given Hermitian form (\cdot, \cdot) on X :

$$X_0 := \{ x \in X | (x, x) = 0 \},\$$

$$K := \{ x \in X | (x, x) < 0 \}$$

and, for a given $z \in X$,

 $X^{(z)}:=\left\{ x\in X|\left(x,z\right) =0\right\} \quad \text{and}\quad L\left(z\right) :=\left\{ az|a\in \mathbb{K}\right\} .$

The following fundamental facts concerning Hermitian forms hold [?]:

Theorem 1 (Kurepa, 1968). Let X and (\cdot, \cdot) be as above.

1. If $e \in X$ is such that $(e, e) \neq 0$, then we have the decomposition

$$X = L(e) \bigoplus X^{(e)}, \tag{1.1}$$

where \bigoplus denotes the direct sum of the linear subspaces $X^{(e)}$ and L(e);

- 2. If the functional (\cdot, \cdot) is positive semi-definite on $X^{(e)}$ for at least one $e \in K$, then (\cdot, \cdot) is positive semi-definite on $X^{(f)}$ for each $f \in K$;
- 3. The functional (\cdot, \cdot) is positive semi-definite on $X^{(e)}$ with $e \in K$ if and only if the inequality

$$|(x,y)|^2 \ge (x,x)(y,y)$$
 (1.2)

holds for all $x \in K$ and all $y \in X$;

4. The functional (\cdot, \cdot) is semi-definite on X if and only if the Schwarz's inequality

$$|(x,y)|^{2} \le (x,x) (y,y)$$
(1.3)

holds for all $x, y \in X$;

5. The case of equality holds in (??) for $x, y \in X$ and in (??), for $x \in K$, $y \in X$, respectively; if and only if there exists a scalar $a \in \mathbb{K}$ such that

$$y - ax \in X_0^{(x)} := X_0 \cap X^{(x)}.$$

Proof. We follow the argument in [?].

If $(e, e) \neq 0$, then the element

$$x := y - \frac{(y, e)}{(e, e)}e$$

has the property that (x, e) = 0, i.e., $x \in X^{(e)}$. This proves that X is a sum of the subspaces L(e) and $X^{(s)}$. The fact that the sum is direct is obvious.

Suppose that $(e, e) \neq 0$ and that (\cdot, \cdot) is positive semi-definite on X. Then for each $y \in X$ we have y = ae + z with $a \in \mathbb{K}$ and $z \in X^{(e)}$, from where we get

$$|(e,y)|^{2} - (e,e)(y,y) = -(e,e)(z,z).$$
(1.4)

From (??) we get the inequality (??), with x = e, in the case that (e, e) > 0and (??) in the case that (e, e) < 0. In addition to this, from (??) we observe that the case of equality holds in (??) or in (??) if and only if (z, z) = 0, i.e., if and only if $y - ae \in X_0^{(e)}$.

Conversely, if (??) holds for all $x, y \in X$, then (x, x) has the same sign over the whole of X, i.e., (\cdot, \cdot) is semi-definite on X. In the same manner, from (??), for $y \in X^{(e)}$, we get $(e, e) \cdot (y, y) \leq 0$, which implies $(y, y) \geq 0$, i.e., (\cdot, \cdot) is positive semi-definite on $X^{(e)}$.

Now, suppose that (\cdot, \cdot) is positive semi-definite on $X^{(e)}$ for at least one $e \in K$. Let us prove that (\cdot, \cdot) is positive semi-definite on $X^{(f)}$ for each $f \in K$.

For a given $f \in K$, consider the vector

$$e' := e - \frac{(e, f)}{(f, f)} f.$$
 (1.5)

Now,

$$(e', e') = (e', e) = \frac{(e, e)(f, f) - |(e, f)|^2}{(f, f)}, \quad (e', f) = 0$$

and together with

$$|(e,y)|^2 \ge (e,e)(y,y)$$
 for any $y \in X$

imply $(e', e') \ge 0$.

There are two cases to be considered: (e', e') > 0 and (e', e') = 0. If (e', e') > 0, then for any $x \in X^{(f)}$, the vector

$$x' := x - ae'$$
 with $a = \frac{(x, e')}{(e', e')}$

satisfies the conditions

$$(x', e) = 0$$
 and $(x', f) = 0$

which implies

$$x' \in X^{(e)}$$
 and $(x, x) = |a|^2 (e', e') + (x', x') \ge 0.$

Therefore (\cdot, \cdot) is a positive semi-definite functional on $X^{(f)}$.

From the parallelogram identity:

$$(x+y, x+y) + (x-y, x-y) = 2 [(x, x) + (y, y)], \quad x, y \in X$$
(1.6)

we conclude that the set $X_0^{(e)} = X_0 \cap X^{(e)}$ is a linear subspace of X. Since

$$(x,y) = \frac{1}{4} \left[(x+y, x+y) + (x-y, x-y) \right], \quad x,y \in X$$
(1.7)

in the case of real spaces, and

$$(x,y) = \frac{1}{4} \left[(x+y, x+y) + (x-y, x-y) \right] + \frac{i}{4} \left[(x+iy, x+iy) - (x-iy, x-iy) \right], \quad x,y \in X \quad (1.8)$$

in the case of complex spaces, hence (x, y) = 0 provided that x and y belong to $X_0^{(e)}$.

If (e', e') = 0, then (e', e) = (e', e') = 0 and then we can conclude that $e' \in X_0^{(e)}$. Also, since (e', e') = 0 implies $(e, f) \neq 0$, hence we have

$$f = b(e - e')$$
 with $b = \frac{(f, f)}{(e, f)}$

Now write

$$X^{(e)} = X_0^{(e)} \bigoplus X_+^{(e)},$$

where $X_{+}^{(e)}$ is any direct complement of $X_{0}^{(e)}$ in the space $X^{(e)}$. If $y \neq 0$, then $y \in X_{+}^{(e)}$ implies (y, y) > 0. For such a vector y, the vector

$$y' := e' - \frac{(e', y)}{(y, y)} \cdot y.$$

is in $X^{(e)}$ and therefore (y', y') > 0.

On the other hand

$$(y',y') = (e',y') = -\frac{|(e',y)|^2}{(y,y)}.$$

Hence $y \in X_+^{(e)}$ implies that (e', y) = 0, i.e.,

$$(e, y) = \frac{(e, f)}{(f, f)} (f, y),$$

which together with $y \in X^{(e)}$ leads to (f, y) = 0. Thus $y \in X^{(e)}_+$ implies $y \in X^{(f)}$.

On the other hand $x \in X_0^{(e)}$ and f = b(e - e') imply (f, x) = -b(e', x) = 0 due to the fact that $e', x \in X_0^{(e)}$.

Hence $x \in X_0^{(e)}$ implies (x, f) = 0, i.e., $x \in X^{(f)}$. From $X_0^{(e)} \subseteq X^{(f)}$ and $X_+^{(e)} \subseteq X^{(f)}$ we get $X^{(e)} \subseteq X^{(f)}$. Since $e \notin X^{(f)}$ and $X = L(e) \bigoplus X^{(e)}$, we deduce $X^{(e)} = X^{(f)}$ and then (\cdot, \cdot) is positive semidefinite on $X^{(f)}$.

The theorem is completely proved.

In the case of complex linear spaces we may state the following result as well [?]:

Theorem 2 (Kurepa, 1968). Let X be a complex linear space and (\cdot, \cdot) a hermitian functional on X.

1. The functional (\cdot, \cdot) is semi-definite on X if and only if there exists at least one vector $e \in X$ with $(e, e) \neq 0$ such that

$$[Re(e, y)]^{2} \le (e, e)(y, y), \qquad (1.9)$$

for all $y \in X$;

2. There is no nonzero Hermitian functional (\cdot, \cdot) such that the inequality

$$[Re(e,y)]^{2} \ge (e,e)(y,y), \quad (e,e) \ne 0, \tag{1.10}$$

holds for all $y \in X$ and for an $e \in X$.

Proof. We follow the proof in [?].

Let σ and τ be real numbers and $x \in X^{(e)}$ a given vector. For $y := (\sigma + i\tau) e + x$ we get

$$[Re(e,y)]^{2} - (e,e)(y,y) = -\tau^{2}(e,e)^{2} - (e,e)(x,x).$$
(1.11)

If (\cdot, \cdot) is semi-definite on X, then (??) implies (??).

Conversely, if (??) holds for all $y \in X$ and for at least one $e \in X$, then (\cdot, \cdot) is semi-definite on $X^{(e)}$. But (??) and (??) for $\tau = 0$ lead to $-(e, e)(x, x) \leq 0$ from which it follows that (e, e) and (x, x) are of the same sign so that (\cdot, \cdot) is semi-definite on X.

Suppose that $(\cdot, \cdot) \neq 0$ and that (??) holds. We can assume that (e, e) < 0. Then (??) implies that (\cdot, \cdot) is positive semi-definite on $X^{(e)}$. On the other hand, if τ is such that

$$\tau^2 > -\frac{(x,x)}{(e,e)},$$

Hence, if a Hermitian functional (\cdot, \cdot) is not semi-definite and if $-(e, e) \neq 0$, then the function $y \mapsto [Re(e, y)]^2 - (e, e)(y, y)$ takes both positive and negative values.

The theorem is completely proved.

1.2 Schwarz's Inequality for the Complexification of a Real Space

Let X be a real linear space. The *complexification* $X_{\mathbb{C}}$ of X is defined as a complex linear space $X \times X$ of all ordered pairs $\{x, y\}$ $(x, y \in X)$ endowed with the operations:

$$\{x, y\} + \{x', y'\} := \{x + x', y + y'\}, (\sigma + i\tau) \cdot \{x, y\} := \{\sigma x - \tau y, \sigma x + \tau y\},$$

where $x, y, x', y' \in X$ and $\sigma, \tau \in \mathbb{R}$ (see for instance [?]).

If $z = \{x, y\}$, then we can define the conjugate vector \overline{z} of z by $\overline{z} := \{x, -y\}$. Similarly, with the scalar case, we denote

$$Rez = \{x, 0\}$$
 and $Imz := \{0, y\}$.

Formally, we can write z = x + iy = Rez + iImz and $\overline{z} = x - iy = Rez - iImz$.

Now, let (\cdot, \cdot) be a Hermitian functional on X. We may define on the complexification $X_{\mathbb{C}}$ of X, the *complexification* of (\cdot, \cdot) , denoted by $(\cdot, \cdot)_{\mathbb{C}}$ and defined by:

$$(x + iy, x' + iy')_{\mathbb{C}} := (x, x') + (y, y') + i \left[(y, x') - (x, y') \right],$$

for $x, y, x', y' \in X$.

The following result may be stated [?]:

Theorem 3 (Kurepa, 1968). Let $X, X_{\mathbb{C}}, (\cdot, \cdot)$ and $(\cdot, \cdot)_{\mathbb{C}}$ be as above. An inequality of type (??) and (??) holds for the functional $(\cdot, \cdot)_{\mathbb{C}}$ in the space $X_{\mathbb{C}}$ if and only if the same type of inequality holds for the functional (\cdot, \cdot) in the space X.

Proof. We follow the proof in [?].

Firstly, observe that (\cdot, \cdot) is semi-definite if and only if $(\cdot, \cdot)_{\mathbb{C}}$ is semi-definite. Now, suppose that $e \in X$ is such that

$$|(e,y)|^2 \ge (e,e)(y,y), \quad (e,e) < 0$$

for all $y \in X$. Then for $x, y \in X$ we have

$$\begin{aligned} |(e, x + iy)_{\mathbb{C}}|^2 &= [(e, x)]^2 + [(e, y)]^2 \\ &\geq (e, e) \left[(x, x) + (y, y) \right] \\ &= (e, e) \left(x + iy, x + iy \right)_{\mathbb{C}}. \end{aligned}$$

Hence, if for the functional (\cdot, \cdot) on X an inequality of type (??) holds, then the same type of inequality holds in $X_{\mathbb{C}}$ for the corresponding functional $(\cdot, \cdot)_{\mathbb{C}}$.

Conversely, suppose that $e, f \in X$ are such that

$$\left| (e+if, x+iy)_{\mathbb{C}} \right|^2 \ge (e+if, e+if)_{\mathbb{C}} \left(x+iy, x+iy \right)_{\mathbb{C}}$$
(1.12)

holds for all $x, y \in X$ and that

$$(e + if, e + if)_{\mathbb{C}} = (e, e) + (f, f) < 0.$$
(1.13)

If e = af with a real number a, then (??) implies that (f, f) < 0 and (??) for y = 0 leads to

$$[(f, x)]^2 \ge (f, f)(x, x),$$

for all $x \in X$. Hence, in this case, we have an inequality of type (??) for the functional (\cdot, \cdot) in X.

Suppose that e and g are linearly independent and by Y = L(e, f) let us denote the subspace of X consisting of all linear combinations of e and f. On Y we define a hermitian functional D by setting D(x, y) = (x, y) for $x, y \in Y$. Let $D_{\mathbb{C}}$ be the complexification of D. Then (??) implies:

$$|D_{\mathbb{C}}(e+if,x+iy)|^2 \ge D_{\mathbb{C}}(e+if,e+if) D_{\mathbb{C}}(x+iy,x+iy), \quad x,y \in X$$
(1.14)

and (??) implies

$$D(e,e) + D(f,f) < 0.$$
 (1.15)

Further, consider in Y a base consisting of the two vectors $\{u_1, u_2\}$ on which D is diagonal, i.e., D satisfies

$$D(x,y) = \lambda_1 x_1 y_1 + \lambda_2 x_2 y_2,$$

where

$$x = x_1 u_1 + x_2 u_2, \quad y = y_1 u_1 + y_2 u_2,$$

and

$$\lambda_1 = D(u_1, u_1), \quad \lambda_2 = D(u_2, u_2).$$

Since for the functional D we have the relations (??) and (??), we conclude that D is not a semi-definite functional on Y. Hence $\lambda_1 \cdot \lambda_2 < 0$, so we can take $\lambda_1 < 0$ and $\lambda_2 > 0$.

Set

$$X^{+} := \{ x | (x, e) = (x, f) = 0, x \in X \}.$$

Obviously, (x, e) = (x, f) = 0 if and only if $(x_1u_1) = (x_2u_2) = 0$. Now, if $y \in X$, then the vector

$$x := y - \frac{(y, u_1)}{(u_1, u_1)} u_1 - \frac{(y, u_2)}{(u_2, u_2)} u_2$$
(1.16)

belongs to X^+ . From this it follows that

$$X = L(e, f) \bigoplus X^+.$$

Now, replacing in (??) the vector x + iy with $z \in X^+$, we get from (??) that

$$[(e, e) + (f, f)](z, z) \le 0,$$

which, together with (??) leads to $(z, z) \ge 0$. Therefore the functional (\cdot, \cdot) is positive semi-definite on X^+ .

Now, since any $y \in X$ is of the form (??), hence for $y \in X^{(u_1)}$ we get

$$(y,y) = (x,x) + \frac{[(y,u_2)]^2}{\lambda_2},$$

which is a nonnegative number. Thus, (\cdot, \cdot) is positive semi-definite on the space $X^{(u_1)}$. Since $(u_1, u_1) < 0$ we have $[(u_1, y)]^2 \ge (u_1, u_1) (y, y)$ for any $y \in X$ and the theorem is completely proved.

2. Superadditivity and Monotonicity Properties

2.1 The Convex Case of Nonnegative Hermitian Forms

Let X be a linear space over the real or complex number field \mathbb{K} and let us denote by $\mathcal{H}(X)$ the class of all positive semi-definite Hermitian forms on X, or, for simplicity, *nonnegative* forms on X, i.e., the mapping $(\cdot, \cdot) : X \times X \to \mathbb{K}$ belongs to $\mathcal{H}(X)$ if it satisfies the conditions

(i)
$$(x, x) \ge 0$$
 for all x in X;

(ii)
$$(\alpha x + \beta y, z) = \alpha (x, z) + \beta (y, z)$$
 for all $x, y \in X$ and $\alpha, \beta \in \mathbb{K}$

(iii) $(y, x) = \overline{(x, y)}$ for all $x, y \in X$.

If $(\cdot, \cdot) \in \mathcal{H}(X)$, then the functional $\|\cdot\| = (\cdot, \cdot)^{\frac{1}{2}}$ is a *semi-norm* on X and the following equivalent versions of Schwarz's inequality hold:

$$||x||^{2} ||y||^{2} \ge |(x,y)|^{2}$$
 or $||x|| ||y|| \ge |(x,y)|$ (2.1)

for any $x, y \in X$.

Now, let us observe that $\mathcal{H}(X)$ is a *convex cone* in the linear space of all mappings defined on X^2 with values in \mathbb{K} , i.e.,

(e)
$$(\cdot, \cdot)_1, (\cdot, \cdot)_2 \in \mathcal{H}(X)$$
 implies that $(\cdot, \cdot)_1 + (\cdot, \cdot)_2 \in \mathcal{H}(X)$;

(ee) $\alpha \geq 0$ and $(\cdot, \cdot) \in \mathcal{H}(X)$ implies that $\alpha(\cdot, \cdot) \in \mathcal{H}(X)$.

We can introduce on $\mathcal{H}(X)$ the following binary relation [?]:

$$(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$$

if and only if $||x||_2 \ge ||x||_1$ for all $x \in X.(2.2)$ We observe that the following properties hold:

- (b) $(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$ for all $(\cdot, \cdot) \in \mathcal{H}(X)$;
- (bb) $(\cdot, \cdot)_3 \ge (\cdot, \cdot)_2$ and $(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$ implies that $(\cdot, \cdot)_3 \ge (\cdot, \cdot)_1$;

(bbb) $(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$ and $(\cdot, \cdot)_1 \ge (\cdot, \cdot)_2$ implies that $(\cdot, \cdot)_2 = (\cdot, \cdot)_1$;

i.e., the binary relation defined by (??) is an order relation on $\mathcal{H}(X)$.

While (b) and (bb) are obvious from the definition, we should remark, for (bbb), that if $(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$ and $(\cdot, \cdot)_1 \ge (\cdot, \cdot)_2$, then obviously $||x||_2 = ||x||_1$ for all $x \in X$, which implies, by the following well known identity:

$$(x,y)_{k} := \frac{1}{4} \left[\left\| x + y \right\|_{k}^{2} - \left\| x - y \right\|_{k}^{2} + i \left(\left\| x + iy \right\|_{k}^{2} - \left\| x - iy \right\|_{k}^{2} \right) \right]$$
(2.3)

with $x, y \in X$ and $k \in \{1, 2\}$, that $(x, y)_2 = (x, y)_1$ for all $x, y \in X$.

The Superadditivity and Monotonicity of σ -Mapping 2.2

Let us consider the following mapping [?]:

$$\sigma: \mathcal{H}(X) \times X^2 \to \mathbb{R}_+, \quad \sigma\left(\left(\cdot, \cdot\right); x, y\right) := \|x\| \|y\| - |(x, y)|,$$

which is closely related to Schwarz's inequality (??).

The following simple properties of σ are obvious:

- (s) $\sigma(\alpha(\cdot, \cdot); x, y) = \alpha \sigma((\cdot, \cdot); x, y);$
- (ss) $\sigma((\cdot, \cdot); y, x) = \sigma((\cdot, \cdot); x, y);$
- (sss) $\sigma((\cdot, \cdot); x, y) \ge 0$ (Schwarz's inequality);

for any $\alpha \geq 0$, $(\cdot, \cdot) \in \mathcal{H}(X)$ and $x, y \in X$.

The following result concerning the functional properties of σ as a function depending on the nonnegative hermitian form (\cdot, \cdot) has been obtained in [?]:

Theorem 4 (Dragomir-Mond, 1994). The mapping σ satisfies the following statements:

(i) For every $(\cdot, \cdot)_i \in \mathcal{H}(X)$ (i = 1, 2) one has the inequality

$$\sigma\left((\cdot, \cdot)_1 + (\cdot, \cdot)_2; x, y\right) \ge \sigma\left((\cdot, \cdot)_1; x, y\right) + \sigma\left((\cdot, \cdot)_2; x, y\right) \qquad (\ge 0) \ (2.4)$$

for all $x, y \in X$, *i.e.*, the mapping $\sigma(\cdot; x, y)$ is superadditive on $\mathcal{H}(X)$;

(ii) For every $(\cdot, \cdot)_i \in \mathcal{H}(X)$ (i = 1, 2) with $(\cdot, \cdot)_2 \geq (\cdot, \cdot)_1$ one has

$$\sigma\left((\cdot, \cdot)_2; x, y\right) \ge \sigma\left((\cdot, \cdot)_1; x, y\right) \qquad (\ge 0) \tag{2.5}$$

for all $x, y \in X$, *i.e.*, the mapping $\sigma(\cdot; x, y)$ is nondecreasing on $\mathcal{H}(X)$.

Proof. We follow the proof in [?].

(i) By the Cauchy-Bunyakovsky-Schwarz inequality for real numbers, we have

$$(a^2 + b^2)^{\frac{1}{2}} (c^2 + d^2)^{\frac{1}{2}} \ge ac + bd; \quad a, b, c, d \ge 0.$$

Therefore,

$$\begin{split} \sigma\left((\cdot, \cdot)_{1} + (\cdot, \cdot)_{2}; x, y\right) \\ &= \left(\|x\|_{1}^{2} + \|x\|_{2}^{2}\right)^{\frac{1}{2}} \left(\|y\|_{1}^{2} + \|y\|_{2}^{2}\right)^{\frac{1}{2}} - |(x, y)_{1} + (x, y)_{2}| \\ &\geq \|x\|_{1} \|y\|_{1} + \|x\|_{2} \|y\|_{2} - |(x, y)_{1}| - |(x, y)_{2}| \\ &= \sigma\left((\cdot, \cdot)_{1}; x, y\right) + \sigma\left((\cdot, \cdot)_{2}; x, y\right), \end{split}$$

for all $(\cdot, \cdot)_i \in \mathcal{H}(X)$ (i = 1, 2) and $x, y \in X$, and the statement is proved.

(ii) Suppose that $(\cdot, \cdot)_2 \geq (\cdot, \cdot)_1$ and define $(\cdot, \cdot)_{2,1} := (\cdot, \cdot)_2 - (\cdot, \cdot)_1$. It is obvious that $(\cdot, \cdot)_{2,1}$ is a nonnegative hermitian form and thus, by the above property one has,

$$\sigma\left((\cdot, \cdot)_{2}; x, y\right) \geq \sigma\left((\cdot, \cdot)_{2,1} + (\cdot, \cdot)_{1}; x, y\right)$$
$$\geq \sigma\left((\cdot, \cdot)_{2,1}; x, y\right) + \sigma\left((\cdot, \cdot)_{1}; x, y\right)$$

from where we get:

$$\sigma\left((\cdot, \cdot)_2; x, y\right) - \sigma\left((\cdot, \cdot)_1; x, y\right) \ge \sigma\left((\cdot, \cdot)_{2,1}; x, y\right) \ge 0$$

and the proof of the theorem is completed.

Remark 1. If we consider the related mapping [?]

$$\sigma_r\left(\left(\cdot,\cdot\right);x,y\right) := \|x\| \, \|y\| - \operatorname{Re}\left(x,y\right),$$

then we can show, as above, that $\sigma(\cdot; x, y)$ is superadditive and nondecreasing on $\mathcal{H}(X)$.

Moreover, if we introduce another mapping, namely, [?]

$$\tau : \mathcal{H}(X) \times X^2 \to \mathbb{R}_+, \quad \tau ((\cdot, \cdot); x, y) := (||x|| + ||y||)^2 - ||x + y||^2,$$

which is connected with the triangle inequality

$$||x+y|| \le ||x|| + ||y||$$
 for any $x, y \in X$ (2.6)

then we observe that

$$\tau\left(\left(\cdot,\cdot\right);x,y\right) = 2\sigma_r\left(\left(\cdot,\cdot\right);x,y\right) \tag{2.7}$$

for all $(\cdot, \cdot) \in \mathcal{H}(X)$ and $x, y \in X$, therefore $\sigma(\cdot; x, y)$ is in its turn a **super-additive** and **nondecreasing** functional on $\mathcal{H}(X)$.

2.3 The Superadditivity and Monotonicity of δ -Mapping

Now consider another mapping naturally associated to Schwarz's inequality, namely [?]

$$\delta : \mathcal{H}(X) \times X^2 \to \mathbb{R}_+, \quad \delta((\cdot, \cdot); x, y) := \|x\|^2 \|y\|^2 - |(x, y)|^2.$$

It is obvious that the following properties are valid:

- (i) $\delta((\cdot, \cdot); x, y) \ge 0$ (Schwarz's inequality);
- (ii) $\delta((\cdot, \cdot); x, y) = \delta((\cdot, \cdot); y, x);$
- (iii) $\delta(\alpha(\cdot, \cdot); x, y) = \alpha^2 \delta((\cdot, \cdot); x, y)$

for all $x, y \in X$, $\alpha \ge 0$ and $(\cdot, \cdot) \in \mathcal{H}(X)$.

The following theorem incorporates some further properties of this functional [?]:

Theorem 5 (Dragomir-Mond, 1994). With the above assumptions, we have:

(i) If $(\cdot, \cdot)_i \in \mathcal{H}(X)$ (i = 1, 2), then

$$\delta\left((\cdot, \cdot)_{1} + (\cdot, \cdot)_{2}; x, y\right) - \delta\left((\cdot, \cdot)_{1}; x, y\right) - \delta\left((\cdot, \cdot)_{2}; x, y\right)$$

$$\geq \left(\det \begin{bmatrix} \|x\|_{1} & \|y\|_{1} \\ \|x\|_{2} & \|y\|_{2} \end{bmatrix}\right)^{2} \quad (\geq 0); \quad (2.8)$$

i.e., the mapping $\delta(\cdot; x, y)$ is strong superadditive on $\mathcal{H}(X)$.

(ii) If
$$(\cdot, \cdot)_i \in \mathcal{H}(X)$$
 $(i = 1, 2)$, with $(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$, then

$$\delta\left((\cdot, \cdot)_{2}; x, y\right) - \delta\left((\cdot, \cdot)_{1}; x, y\right)$$

$$\geq \left(\det \left[\begin{array}{cc} \|x\|_{1} & \|y\|_{1} \\ \left(\|x\|_{2}^{2} - \|x\|_{1}^{2}\right)^{\frac{1}{2}} & \left(\|y\|_{2}^{2} - \|y\|_{1}^{2}\right)^{\frac{1}{2}} \end{array}\right]\right)^{2} \quad (\geq 0); \quad (2.9)$$

i.e., the mapping $\delta(\cdot; x, y)$ is strong nondecreasing on $\mathcal{H}(X)$.

Proof. (i) For all $(\cdot, \cdot)_i \in \mathcal{H}(X)$ (i = 1, 2) and $x, y \in X$ we have

$$\begin{split} \delta\left((\cdot, \cdot)_{1} + (\cdot, \cdot)_{2}; x, y\right) &(2.10) \\ &= \left(\|x\|_{2}^{2} - \|x\|_{1}^{2}\right) \left(\|y\|_{2}^{2} - \|y\|_{1}^{2}\right) - |(x, y)_{2} + (x, y)_{1}|^{2} \\ &\geq \|x\|_{2}^{2} \|y\|_{2}^{2} + \|x\|_{1}^{2} \|y\|_{1}^{2} + \|x\|_{1}^{2} \|y\|_{2}^{2} + \|x\|_{2}^{2} \|y\|_{1}^{2} \\ &- \left(|(x, y)_{2}| + |(x, y)_{1}|\right)^{2} \\ &= \delta\left((\cdot, \cdot)_{2}; x, y\right) + \delta\left((\cdot, \cdot)_{1}; x, y\right) \\ &+ \|x\|_{1}^{2} \|y\|_{2}^{2} + \|x\|_{2}^{2} \|y\|_{1}^{2} - 2\left|(x, y)_{2}(x, y)_{1}\right|. \end{split}$$

By Schwarz's inequality we have

$$|(x,y)_{2}(x,y)_{1}| \leq ||x||_{1} ||y||_{1} ||x||_{2} ||y||_{2}, \qquad (2.11)$$

therefore, by (??) and (??), we can state that

$$\begin{split} &\delta\left((\cdot, \cdot)_{1} + (\cdot, \cdot)_{2} ; x, y\right) - \delta\left((\cdot, \cdot)_{1} ; x, y\right) - \delta\left((\cdot, \cdot)_{2} ; x, y\right) \\ &\geq \|x\|_{1}^{2} \|y\|_{2}^{2} + \|x\|_{2}^{2} \|y\|_{1}^{2} - 2 \|x\|_{1} \|y\|_{1} \|x\|_{2} \|y\|_{2} \\ &= \left(\|x\|_{1} \|y\|_{2} - \|x\|_{2} \|y\|_{1}\right)^{2} \end{split}$$

and the inequality (??) is proved.

(ii) Suppose that $(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$ and, as in Theorem ??, define $(\cdot, \cdot)_{2,1} := (\cdot, \cdot)_2 - (\cdot, \cdot)_1$. Then $(\cdot, \cdot)_{2,1}$ is a nonnegative hermitian form and by (i) we have

$$\begin{split} \delta\left((\cdot, \cdot)_{2,1} \, ; x, y\right) &- \delta\left((\cdot, \cdot)_1 \, ; x, y\right) = \delta\left((\cdot, \cdot)_{2,1} + (\cdot, \cdot)_1 \, ; x, y\right) - \delta\left((\cdot, \cdot)_1 \, ; x, y\right) \\ &\geq \delta\left((\cdot, \cdot)_{2,1} \, ; x, y\right) + \left(\det\left[\begin{array}{cc} \|x\|_1 & \|y\|_1 \\ \|x\|_{2,1} & \|y\|_{2,1} \end{array}\right]\right)^2 \\ &\geq \left(\det\left[\begin{array}{cc} \|x\|_1 & \|y\|_1 \\ \|x\|_{2,1} & \|y\|_{2,1} \end{array}\right]\right)^2. \end{split}$$

Since $||z||_{2,1} = (||z||_2^2 - ||z||_1^2)^{\frac{1}{2}}$ for $z \in X$, hence the inequality (??) is proved.

Remark 2. If we consider the functional $\delta_r((\cdot, \cdot); x, y) := ||x||^2 ||y||^2 - [Re(x, y)]^2$, then we can state similar properties for it. We omit the details.

14

2.4 Superadditivity and Monotonicity of β -Mapping

Consider the functional $\beta : \mathcal{H}(X) \times X^2 \to \mathbb{R}$ [?] defined by

$$\beta\left(\left(\cdot,\cdot\right);x,y\right) = \left(\|x\|^2 \|y\|^2 - |(x,y)|^2\right)^{\frac{1}{2}}.$$
(2.12)

It is obvious that $\beta((\cdot, \cdot); x, y) = [\delta((\cdot, \cdot); x, y)]^{\frac{1}{2}}$ and thus it is monotonic nondecreasing on $\mathcal{H}(X)$. Before we prove that $\beta(\cdot; x, y)$ is also superadditive, which apparently does not follow from the properties of δ pointed out in the subsection above, we need the following simple lemma:

Lemma 1. If (\cdot, \cdot) is a nonnegative Hermitian form on $X, x, y \in X$ and $||y|| \neq 0$, then

$$\inf_{\lambda \in \mathbb{K}} \|x - \lambda y\|^2 = \frac{\|x\|^2 \|y\|^2 - |(x, y)|^2}{\|y\|^2}.$$
(2.13)

Proof. Observe that

$$||x - \lambda y||^2 = ||x||^2 - 2Re[\lambda(x, y)] + |\lambda|^2 ||y||^2$$

and, for $||y|| \neq 0$,

$$\frac{\left\|x\right\|^{2}\left\|y\right\|^{2} - \left|(x,y)\right|^{2} + \left|\mu\right\|y\|^{2} - (x,y)\right|^{2}}{\left\|y\right\|^{2}} = \left\|x\right\|^{2} - 2Re\left[\mu\overline{(x,y)}\right] + \left|\mu\right|^{2}\left\|y\right\|^{2},$$

and since $Re\left[\overline{\lambda}(x,y)\right] = Re\left[\overline{\lambda}(x,y)\right] = Re\left[\overline{\lambda}(x,y)\right]$, we deduce the equality

$$\|x - \lambda y\|^{2} = \frac{\|x\|^{2} \|y\|^{2} - |(x, y)|^{2} + |\mu\|y\|^{2} - (x, y)|^{2}}{\|y\|^{2}}, \qquad (2.14)$$

for any $x, y \in X$ with $||y|| \neq 0$.

Taking the infimum over $\lambda \in \mathbb{K}$ in (??), we deduce the desired result (??).

For the subclass $\mathcal{JP}(X)$, of all inner products defined on X, of $\mathcal{H}(X)$ and $y \neq 0$, we may define

$$\gamma((\cdot, \cdot); x, y) = \frac{\|x\|^2 \|y\|^2 - |(x, y)|^2}{\|y\|^2} = \frac{\delta((\cdot, \cdot); x, y)}{\|y\|^2}.$$

The following result may be stated (see also [?]):

Theorem 6 (Dragomir-Mond, 1996). The functional $\gamma(\cdot; x, y)$ is superaddivide and monotonic nondecreasing on $\mathcal{JP}(X)$ for any $x, y \in X$ with $y \neq 0$.

Proof. Let $(\cdot, \cdot)_1, (\cdot, \cdot)_2 \in \mathcal{JP}(X)$. Then

$$\gamma\left((\cdot, \cdot)_{1} + (\cdot, \cdot)_{2}; x, y\right)$$

$$= \frac{\left(\|x\|_{1}^{2} + \|x\|_{2}^{2}\right) \left(\|y\|_{1}^{2} + \|y\|_{2}^{2}\right) - \left|(x, y)_{1} + (x, y)_{2}\right|^{2}}{\|y\|_{1}^{2} \|y\|_{2}^{2}}$$

$$= \inf_{\lambda \in \mathbb{K}} \left[\|x - \lambda y\|_{1}^{2} + \|x - \lambda y\|_{2}^{2}\right],$$

$$(2.15)$$

and for the last equality we have used Lemma ??.

Also,

$$\gamma\left((\cdot, \cdot)_{i}; x, y\right) = \frac{\|x\|_{i}^{2} \|y\|_{i}^{2} - |(x, y)_{i}|^{2}}{\|y\|_{i}^{2}}$$

$$= \inf_{\lambda \in \mathbb{K}} \|x - \lambda y\|_{i}^{2}, \quad i = 1, 2.$$
(2.16)

Utilising the infimum property that

$$\inf_{\lambda \in \mathbb{K}} \left(f\left(\lambda\right) + g\left(\lambda\right) \right) \ge \inf_{\lambda \in \mathbb{K}} f\left(\lambda\right) + \inf_{\lambda \in \mathbb{K}} g\left(\lambda\right),$$

we can write that

$$\inf_{\lambda \in \mathbb{K}} \left[\|x - \lambda y\|_1^2 + \|x - \lambda y\|_2^2 \right] \ge \inf_{\lambda \in \mathbb{K}} \|x - \lambda y\|_1^2 + \inf_{\lambda \in \mathbb{K}} \|x - \lambda y\|_2^2,$$

which proves the superadditivity of $\gamma(\cdot; x, y)$.

The monotonicity follows by the superadditivity property and the theorem is completely proved.

Corollary 1. If $(\cdot, \cdot)_i \in \mathcal{JP}(X)$ with $(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$ and $x, y \in X$ are such that $x, y \neq 0$, then:

$$\delta\left(\left(\cdot,\cdot\right)_{2};x,y\right) \ge \max\left\{\frac{\|y\|_{2}^{2}}{\|y\|_{1}^{2}},\frac{\|x\|_{2}^{2}}{\|x\|_{1}^{2}}\right\}\delta\left(\left(\cdot,\cdot\right)_{1};x,y\right)$$

$$(\ge \delta\left(\left(\cdot,\cdot\right)_{1};x,y\right))$$
(2.17)

or equivalently, [?]

$$\delta\left((\cdot, \cdot)_{2}; x, y\right) - \delta\left((\cdot, \cdot)_{1}; x, y\right)$$

$$\geq \max\left\{\frac{\|y\|_{2}^{2} - \|y\|_{1}^{2}}{\|y\|_{1}^{2}}, \frac{\|x\|_{2}^{2} - \|x\|_{1}^{2}}{\|x\|_{1}^{2}}\right\} \delta\left((\cdot, \cdot)_{1}; x, y\right). \quad (2.18)$$

The following strong superadditivity property of $\delta(\cdot; x, y)$ that is different from the one in Subsection ?? holds [?]:

Corollary 2 (Dragomir-Mond, 1996). If $(\cdot, \cdot)_i \in \mathcal{JP}(X)$ and $x, y \in X$ with $x, y \neq 0$, then

$$\delta\left((\cdot, \cdot)_{1} + (\cdot, \cdot)_{2}; x, y\right) - \delta\left((\cdot, \cdot)_{1}; x, y\right) - \delta\left((\cdot, \cdot)_{2}; x, y\right)$$

$$\geq \max\left\{ \left(\frac{\|y\|_{2}}{\|y\|_{1}}\right)^{2} \delta\left((\cdot, \cdot)_{1}; x, y\right) + \left(\frac{\|y\|_{1}}{\|y\|_{2}}\right)^{2} \delta\left((\cdot, \cdot)_{2}; x, y\right); \left(\frac{\|x\|_{2}}{\|x\|_{1}}\right)^{2} \delta\left((\cdot, \cdot)_{1}; x, y\right) + \left(\frac{\|x\|_{1}}{\|x\|_{2}}\right)^{2} \delta\left((\cdot, \cdot)_{2}; x, y\right) \right\} \quad (\geq 0). \quad (2.19)$$

Proof. Utilising the identities (??) and (??) and taking into account that $\gamma(\cdot; x, y)$ is superadditive, we can state that

$$\begin{split} \delta\left((\cdot, \cdot)_{1} + (\cdot, \cdot)_{2}; x, y\right) &(2.20) \\ \geq \frac{\|y\|_{1}^{2} + \|y\|_{2}^{2}}{\|y\|_{1}^{2}} \delta\left((\cdot, \cdot)_{1}; x, y\right) + \frac{\|y\|_{1}^{2} + \|y\|_{2}^{2}}{\|y\|_{2}^{2}} \delta\left((\cdot, \cdot)_{2}; x, y\right) \\ = \delta\left((\cdot, \cdot)_{1}; x, y\right) + \delta\left((\cdot, \cdot)_{2}; x, y\right) \\ &+ \left(\frac{\|y\|_{2}}{\|y\|_{1}}\right)^{2} \delta\left((\cdot, \cdot)_{1}; x, y\right) + \left(\frac{\|y\|_{1}}{\|y\|_{2}}\right)^{2} \delta\left((\cdot, \cdot)_{2}; x, y\right) \end{split}$$

and a similar inequality with x instead of y. These show that the desired inequality (??) holds true.

Remark 3. Obviously, all the inequalities above remain true if $(\cdot, \cdot)_i$, i = 1, 2 are nonnegative Hermitian forms for which we have $||x||_i$, $||y||_i \neq 0$.

Finally, we may state and prove the superadditivity result for the mapping β (see [?]):

Theorem 7 (Dragomir-Mond, 1996). The mapping β defined in (??) is superadditive on $\mathcal{H}(X)$.

Proof. Without loss of generality, if $(\cdot, \cdot)_i \in \mathcal{H}(X)$ and $x, y \in X$, we may assume, for instance, that $||y||_i \neq 0$, i = 1, 2.

If so, then

$$\begin{pmatrix} \|y\|_{2} \\ \|y\|_{1} \end{pmatrix}^{2} \delta\left((\cdot, \cdot)_{1}; x, y\right) + \left(\frac{\|y\|_{1}}{\|y\|_{2}}\right)^{2} \delta\left((\cdot, \cdot)_{2}; x, y\right) \\ \geq 2 \left[\delta\left((\cdot, \cdot)_{1}; x, y\right) \delta\left((\cdot, \cdot)_{2}; x, y\right)\right]^{\frac{1}{2}}$$

and by making use of (??) we get:

$$\delta\left((\cdot, \cdot)_{1} + (\cdot, \cdot)_{2}; x, y\right) \geq \left\{ \left[\delta\left((\cdot, \cdot)_{1}; x, y\right)\right]^{\frac{1}{2}} + \left[\delta\left((\cdot, \cdot)_{2}; x, y\right)\right]^{\frac{1}{2}} \right\}^{2},$$

which is exactly the superadditivity property for β .

3. Applications for Inner Product Spaces

3.1 Inequalities for Orthonormal Families

Let $(H; \langle \cdot, \cdot \rangle)$ be an inner product space over the real or complex number field \mathbb{K} ($\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$). The family of vectors $E := \{e_i\}_{i \in I}$ (I is a finite or infinite) is an *orthonormal family* of vectors if $\langle e_i, e_j \rangle = \delta_{ij}$ for $i, j \in I$, where δ_{ij} is Kronecker's delta.

The following inequality is well known in the literature as Bessel's inequality:

$$\sum_{i \in F} |\langle x, e_i \rangle|^2 \le ||x||^2 \tag{3.1}$$

for any F a finite part of I and x a vector in H.

If by $\mathcal{F}(I)$ we denote the family of all finite parts of I (including the empty set \emptyset), then for any $F \in \mathcal{F}(I) \setminus \{\emptyset\}$ the functional $(\cdot, \cdot)_F : H \times H \to \mathbb{K}$ given by

$$(x,y)_F := \sum_{i \in F} \langle x, e_i \rangle \langle e_i, y \rangle$$
(3.2)

is a Hermitian form on H.

It is obvious that if $F_1, F_2 \in \mathcal{F}(I) \setminus \{\varnothing\}$ and $F_1 \cap F_2 = \varnothing$, then $(\cdot, \cdot)_{F_1 \cup F_2} = (\cdot, \cdot)_{F_1} + (\cdot, \cdot)_{F_2}$. We can define the functional $\sigma : \mathcal{F}(I) \times H^2 \to \mathbb{R}_+$ by

$$\sigma(F; x, y) := \|x\|_F \|y\|_F - |(x, y)_F|, \qquad (3.3)$$

where

$$||x||_F := \left(\sum_{i \in F} |\langle x, e_i \rangle|^2\right)^{\frac{1}{2}} = [(x, x)_F]^{\frac{1}{2}}, \qquad x \in H.$$

The following proposition may be stated (see also [?]):

Proposition 1 (Dragomir-Mond, 1995). The mapping σ satisfies the following

(i) If $F_1, F_2 \in \mathcal{F}(I) \setminus \{\emptyset\}$ with $F_1 \cap F_2 = \emptyset$, then

$$\sigma\left(F_1 \cup F_2; x, y\right) \ge \sigma\left(F_1; x, y\right) + \sigma\left(F_2; x, y\right) \qquad (\ge 0)$$

for any $x, y \in H$, i.e., the mapping $\sigma(\cdot; x, y)$ is an index set superadditive mapping on $\mathcal{F}(I)$;

(ii) If $\emptyset \neq F_1 \subseteq F_2$, $F_1, F_2 \in \mathcal{F}(I)$, then

$$\sigma(F_2; x, y) \ge \sigma(F_1; x, y) \qquad (\ge 0),$$

i.e., the mapping $\sigma(\cdot; x, y)$ is an index set monotonic mapping on $\mathcal{F}(I)$.

The proof is obvious by Theorem ?? and we omit the details. We can also define the mapping $\sigma_r(\cdot; \cdot, \cdot) : \mathcal{F}(I) \times H^2 \to \mathbb{R}_+$ by

$$\sigma_r (F; x, y) := \|x\|_F \|y\|_F - Re (x, y)_F,$$

which also has the properties (i) and (ii) of Proposition ??.

Since, by Bessel's inequality the hermitian form $(\cdot, \cdot)_F \leq \langle \cdot, \cdot \rangle$ in the sense of Definition (??) then by Theorem ?? we may state the following *refinements* of Schwarz's inequality [?]:

Proposition 2 (Dragomir-Mond, 1994). For any $F \in \mathcal{F}(I) \setminus \{0\}$, we have the inequalities

$$\|x\| \|y\| - |\langle x, y\rangle| \ge \left(\sum_{i \in F} |\langle x, e_i\rangle|^2\right)^{\frac{1}{2}} \left(\sum_{i \in F} |\langle y, e_i\rangle|^2\right)^{\frac{1}{2}} - \left|\sum_{i \in F} \langle x, e_i\rangle \langle e_i, y\rangle\right|$$
(3.4)

and

$$||x|| ||y|| - |\langle x, y \rangle|$$

$$\geq \left(||x||^2 - \sum_{i \in F} |\langle x, e_i \rangle|^2 \right)^{\frac{1}{2}} \left(||y||^2 - \sum_{i \in F} |\langle y, e_i \rangle|^2 \right)^{\frac{1}{2}} - \left| \langle x, y \rangle - \sum_{i \in F} \langle x, e_i \rangle \langle e_i, y \rangle \right| \quad (3.5)$$

and the corresponding versions on replacing $|\cdot|$ by $Re(\cdot)$, where x, y are vectors in H.

Remark 4. Note that the inequality (??) and its version for $Re(\cdot)$ has been established for the first time and utilising a different argument by Dragomir and Sándor in 1994 (see |?, Theorem 5 and Remark 2]).

If we now define the mapping $\delta : \mathcal{F}(I) \times H^2 \to \mathbb{R}_+$ by

$$\delta(F; x, y) := \|x\|_F^2 \|y\|_F^2 - |(x, y)_F|^2$$

and making use of Theorem ??, we may state the following result [?].

Proposition 3 (Dragomir-Mond, 1995). The mapping δ satisfies the following properties:

(i) If $F_1, F_2 \in \mathcal{F}(I)$ with $F_1 \cap F_2 = \emptyset$, then

$$\delta(F_1 \cup F_2; x, y) - \delta(F_1; x, y) - \delta(F_2; x, y) \\ \ge \left(\det \begin{bmatrix} \|x\|_{F_1} & \|y\|_{F_1} \\ \|x\|_{F_2} & \|y\|_{F_2} \end{bmatrix} \right)^2 \qquad (\ge 0), \quad (3.6)$$

i.e., the mapping $\delta(\cdot; x, y)$ is strong superadditive as an index set mapping;

(*ii*) If
$$\emptyset \neq F_1 \subseteq F_2$$
, $F_1, F_2 \in \mathcal{F}(I)$, then

$$\delta(F_2; x, y) - \delta(F_1; x, y)$$

$$\geq \left(\det \left[\begin{array}{cc} \|x\|_{F_1} & \|y\|_{F_1} \\ (\|x\|_{F_2}^2 - \|x\|_{F_1}^2)^{\frac{1}{2}} & (\|y\|_{F_2}^2 - \|y\|_{F_1}^2)^{\frac{1}{2}} \end{array} \right] \right)^2 \qquad (\ge 0), \quad (3.7)$$

i.e., the mapping $\delta(\cdot; x, y)$ is strong nondecreasing as an index set mapping.

On applying the same general result in Theorem ??, (ii) for the hermitian functionals $(\cdot, \cdot)_F$ $(F \in \mathcal{F}(I) \setminus \{\emptyset\})$ and $\langle \cdot, \cdot \rangle$ for which, by Bessel's inequality we know that $(\cdot, \cdot)_F \leq \langle \cdot, \cdot \rangle$, we may state the following result as well, which provides refinements for the Schwarz inequality.

Proposition 4 (Dragomir-Mond, 1994). For any $F \in \mathcal{F}(I) \setminus \{\emptyset\}$, we have the inequalities:

$$||x||^{2} ||y||^{2} - |\langle x, y \rangle|^{2}$$

$$\geq \sum_{i \in F} |\langle x, e_{i} \rangle|^{2} \sum_{i \in F} |\langle y, e_{i} \rangle|^{2} - \left| \sum_{i \in F} \langle x, e_{i} \rangle \langle e_{i}, y \rangle \right|^{2} \qquad (\geq 0) \quad (3.8)$$

and

$$\begin{aligned} \|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2} \\ \geq \left(\|x\|^{2} - \sum_{i \in F} |\langle x, e_{i} \rangle|^{2} \right) \left(\|y\|^{2} - \sum_{i \in F} |\langle y, e_{i} \rangle|^{2} \right) \\ - \left| \langle x, y \rangle - \sum_{i \in F} \langle x, e_{i} \rangle \langle e_{i}, y \rangle \right|^{2} \quad (\geq 0), \quad (3.9) \end{aligned}$$

for any $x, y \in H$.

On utilising Corollary ?? we may state the following different superadditivity property for the mapping $\delta(\cdot; x, y)$. **Proposition 5.** If $F_1, F_2 \in \mathcal{F}(I) \setminus \{\emptyset\}$ with $F_1 \cap F_2 = \emptyset$, then

$$\delta(F_{1} \cup F_{2}; x, y) - \delta(F_{1}; x, y) - \delta(F_{2}; x, y) \\ \geq \max\left\{ \left(\frac{\|y\|_{F_{2}}}{\|y\|_{F_{1}}} \right)^{2} \delta(F_{1}; x, y) + \left(\frac{\|y\|_{F_{1}}}{\|y\|_{F_{2}}} \right)^{2} \delta(F_{2}; x, y); \\ \left(\frac{\|x\|_{F_{2}}}{\|x\|_{F_{1}}} \right)^{2} \delta(F_{1}; x, y) + \left(\frac{\|x\|_{F_{1}}}{\|x\|_{F_{2}}} \right)^{2} \delta(F_{2}; x, y) \right\} \qquad (\geq 0) \quad (3.10)$$

for any $x, y \in H \setminus \{0\}$.

Further, for $y \notin M^{\perp}$ where $M = Sp \{e_i\}_{i \in I}$ is the linear space generated by $E = \{e_i\}_{i \in I}$, we can also consider the functional $\gamma : \mathcal{F}(I) \times H^2 \to \mathbb{R}_+$ defined by

$$\gamma(F; x, y) := \frac{\delta(F; x, y)}{\|y\|_F^2} = \frac{\|x\|_F^2 \|y\|_F^2 - |(x, y)_F|^2}{\|y\|_F^2}$$

where $x \in H$ and $F \neq \emptyset$.

Utilising Theorem ??, we may state the following result concerning the properties of the functional $\gamma(\cdot; x, y)$ with x and y as above.

Proposition 6. For any $x \in H$ and $y \in H \setminus M^{\perp}$, the functional $\gamma(\cdot; x, y)$ is superadditive and monotonic nondecreasing as an index set mapping on $\mathcal{F}(I)$.

Since $\langle \cdot, \cdot \rangle \geq (\cdot, \cdot)_F$ for any $F \in \mathcal{F}(I)$, on making use of Corollary ??, we may state the following refinement of Schwarz's inequality:

Proposition 7. Let $x \in H$ and $y \in H \setminus M_F^{\perp}$, where $M_F := Sp\{e_i\}_{i \in I}$ and $F \in \mathcal{F}(I) \setminus \{\emptyset\}$ is given. Then

$$||x||^{2} ||y||^{2} - |\langle x, y \rangle|^{2} \ge \max \left\{ \frac{||y||^{2}}{\sum_{i \in F} |\langle y, e_{i} \rangle|^{2}}, \frac{||x||^{2}}{\sum_{i \in F} |\langle x, e_{i} \rangle|^{2}} \right\}$$

$$\times \left(\sum_{i \in F} |\langle x, e_{i} \rangle|^{2} \sum_{i \in F} |\langle y, e_{i} \rangle|^{2} - \left| \sum_{i \in F} \langle x, e_{i} \rangle \langle e_{i}, y \rangle\right|^{2} \right)$$

$$\left(\ge \sum_{i \in F} |\langle x, e_{i} \rangle|^{2} \sum_{i \in F} |\langle y, e_{i} \rangle|^{2} - \left| \sum_{i \in F} \langle x, e_{i} \rangle \langle e_{i}, y \rangle\right|^{2} \right), \quad (3.11)$$

which is a refinement of (??) in the case that $y \in H \setminus M_F^{\perp}$.

Finally, consider the functional $\beta : \mathcal{F}(I) \times H^2 \to \mathbb{R}_+$ given by

$$\beta(F; x, y) := \left[\delta(F; x, y)\right]^{\frac{1}{2}} = \left(\left\|x\right\|_{F}^{2} \left\|y\right\|_{F}^{2} - \left|(x, y)_{F}\right|^{2}\right)^{\frac{1}{2}}.$$

Utilising Theorem ??, we may state the following.

Proposition 8. The functional $\beta(\cdot; x, y)$ is superadditive as an index set mapping on $\mathcal{F}(I)$ for each $x, y \in H$.

As a dual approach, one may also consider the following form $(\cdot, \cdot)_{C,F}$: $H \times H \to \mathbb{R}$ given by:

$$(x,y)_{C,F} := \langle x,y \rangle - (x,y)_F = \langle x,y \rangle - \sum_{i \in F} \langle x,e_i \rangle \langle e_i,y \rangle.$$
(3.12)

By Bessel's inequality, we observe that $(\cdot, \cdot)_{C,F}$ is a nonnegative hermitian form and, obviously

$$(\cdot, \cdot)_I + (\cdot, \cdot)_{C,F} = \langle \cdot, \cdot \rangle$$
.

Utilising the superadditivity properties from Section ??, one may state the following refinement of the Schwarz inequality:

$$\begin{aligned} \|x\| \|y\| - |\langle x, y\rangle| \\ \geq \left(\sum_{i \in F} |\langle x, e_i \rangle|^2 \sum_{i \in F} |\langle y, e_i \rangle|^2 \right)^{\frac{1}{2}} - \left| \sum_{i \in F} \langle x, e_i \rangle \langle e_i, y\rangle \right| \\ + \left(\|x\|^2 - \sum_{i \in F} |\langle x, e_i \rangle|^2 \right)^{\frac{1}{2}} \left(\|y\|^2 - \sum_{i \in F} |\langle y, e_i \rangle|^2 \right)^{\frac{1}{2}} \\ - \left| \langle x, y \rangle - \sum_{i \in F} \langle x, e_i \rangle \langle e_i, y\rangle \right| \quad (\geq 0) , \quad (3.13) \end{aligned}$$

$$\begin{aligned} \|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2} \\ &\geq \sum_{i \in F} |\langle x, e_{i} \rangle|^{2} \sum_{i \in F} |\langle y, e_{i} \rangle|^{2} - \left| \sum_{i \in F} \langle x, e_{i} \rangle \langle e_{i}, y \rangle \right|^{2} \\ &+ \left(\|x\|^{2} - \sum_{i \in F} |\langle x, e_{i} \rangle|^{2} \right) \left(\|y\|^{2} - \sum_{i \in F} |\langle y, e_{i} \rangle|^{2} \right) \\ &- \left| \langle x, y \rangle - \sum_{i \in F} \langle x, e_{i} \rangle \langle e_{i}, y \rangle \right|^{2} \quad (\geq 0) \quad (3.14) \end{aligned}$$

and

$$\left(\|x\|^2 \|y\|^2 - |\langle x, y \rangle|^2 \right)^{\frac{1}{2}}$$

$$\geq \left[\sum_{i \in F} |\langle x, e_i \rangle|^2 \sum_{i \in F} |\langle y, e_i \rangle|^2 - \left| \sum_{i \in F} \langle x, e_i \rangle \langle e_i, y \rangle \right|^2 \right]^{\frac{1}{2}}$$

$$+ \left[\left(\|x\|^2 - \sum_{i \in F} |\langle x, e_i \rangle|^2 \right) \left(\|y\|^2 - \sum_{i \in F} |\langle y, e_i \rangle|^2 \right) \right]^{\frac{1}{2}}$$

$$- \left| \langle x, y \rangle - \sum_{i \in F} \langle x, e_i \rangle \langle e_i, y \rangle \right|^2 \right]^{\frac{1}{2}} \quad (\geq 0), \quad (3.15)$$

for any $x, y \in H$ and $F \in \mathcal{F}(I) \setminus \{\varnothing\}$.

3.2 Inequalities for Gram Determinants

Let $\{x_1, \ldots, x_n\}$ be vectors in the inner product space $(H, \langle \cdot, \cdot \rangle)$ over the real or complex number field \mathbb{K} . Consider the *gram matrix* associated to the above vectors:

$$G(x_1, \dots, x_n) := \begin{bmatrix} \langle x_1, x_1 \rangle & \langle x_1, x_2 \rangle & \cdots & \langle x_1, x_n \rangle \\ \langle x_2, x_1 \rangle & & \cdots & \langle x_2, x_n \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle x_n, x_1 \rangle & \langle x_n, x_2 \rangle & \cdots & \langle x_n, x_n \rangle \end{bmatrix}$$

The determinant

$$\Gamma(x_1,\ldots,x_n) := \det G(x_1,\ldots,x_n)$$

is called the Gram determinant associated to the system $\{x_1, \ldots, x_n\}$.

If $\{x_1, \ldots, x_n\}$ does not contain the null vector 0, then [?]

$$0 \le \Gamma(x_1, \dots, x_n) \le ||x_1||^2 ||x_2||^2 \cdots ||x_n||^2.$$
(3.16)

The equality holds on the left (respectively right) side of (??) if and only if $\{x_1, \ldots, x_n\}$ is linearly dependent (respectively orthogonal). The first inequality in (??) is known in the literature as *Gram's inequality* while the second one is known as *Hadamard's inequality*.

The following result obtained in [?] may be regarded as a refinement of Gram's inequality:

Theorem 8 (Dragomir-Sándor, 1994). Let $\{x_1, \ldots, x_n\}$ be a system of nonzero vectors in H. then for any $x, y \in H$ one has:

$$\Gamma(x, x_1, \dots, x_n) \Gamma(y, x_1, \dots, x_n) \ge |\Gamma(x_1, \dots, x_n)(x, y)|^2, \qquad (3.17)$$

where $\Gamma(x_1, \ldots, x_n)(x, y)$ is defined by:

$$\Gamma(x_1,\ldots,x_n)(x,y) := \det \begin{bmatrix} \langle x,y \rangle & \langle x,x_1 \rangle & \cdots & \langle x,x_n \rangle \\ \langle x_1,y \rangle & & \\ \ddots & & G(x_1,\ldots,x_n) \\ \langle x_n,y \rangle \end{bmatrix}$$

Proof. We will follow the proof from [?].

Let us consider the mapping $p: H \times H \to \mathbb{K}$ given by

$$p(x,y) = \Gamma(x_1,\ldots,x_n)(x,y)$$

Utilising the properties of determinants, we notice that

$$p(x, y) = \Gamma(x, x_1, \dots, x_n) \ge 0,$$

$$p(x + y, z) = \Gamma(x_1, \dots, x_n) (x + y, z)$$

$$= \Gamma(x_1, \dots, x_n) (x, z) + \Gamma(x_1, \dots, x_n) (y, z)$$

$$= p(x, z) + p(y, z),$$

$$p(\alpha x, y) = \alpha p(x, y),$$

$$p(y, x) = \overline{p(x, y)},$$

for any $x, y, z \in H$ and $\alpha \in \mathbb{K}$, showing that $p(\cdot, \cdot)$ is a nonnegative hermitian from on X. Writing Schwarz's inequality for $p(\cdot, \cdot)$ we deduce the desired result (??).

In a similar manner, if we define $q: H \times H \to \mathbb{K}$ by

$$q(x,y) := (x,y) \prod_{i=1}^{n} ||x_i||^2 - p(x,y)$$

= $(x,y) \prod_{i=1}^{n} ||x_i||^2 - \Gamma(x_1, \dots, x_n)(x,y),$

then, using Hadamard's inequality, we conclude that $q(\cdot, \cdot)$ is also a nonnegative hermitian form. Therefore, by Schwarz's inequality applied for $q(\cdot, \cdot)$, we can state the following result as well [?].

Theorem 9 (Dragomir-Sándor, 1994). With the assumptions of Theorem ??, we have:

$$\left[\|x\|^{2} \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma(x, x_{1}, \dots, x_{n}) \right] \left[\|y\|^{2} \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma(y, x_{1}, \dots, x_{n}) \right]$$
$$\geq \left| \langle x, y \rangle \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma(x_{1}, \dots, x_{n})(x, y) \right|^{2}, \quad (3.18)$$

for each $x, y \in H$.

Observing that, for a given set of nonzero vectors $\{x_1, \ldots, x_n\}$,

$$p(x,y) + q(x,y) = (x,y) \prod_{i=1}^{n} ||x_i||^2,$$

for any $x, y \in H$, then, on making use of the superadditivity properties of the various functionals defined in Section ??, we can state the following refinements of the Schwarz inequality in inner product spaces:

$$[||x|| ||y|| - |\langle x, y \rangle|] \prod_{i=1}^{n} ||x_i||^2$$

$$\geq [\Gamma(x, x_1, \dots, x_n) \Gamma(y, x_1, \dots, x_n)]^{\frac{1}{2}} - |\Gamma(x_1, \dots, x_n)(x, y)|$$

$$+ \left[||x||^2 \prod_{i=1}^{n} ||x_i||^2 - \Gamma(x, x_1, \dots, x_n) \right]^{\frac{1}{2}}$$

$$\times \left[||y||^2 \prod_{i=1}^{n} ||x_i||^2 - \Gamma(y, x_1, \dots, x_n) \right]^{\frac{1}{2}}$$

$$- \left| \langle x, y \rangle \prod_{i=1}^{n} ||x_i||^2 - \Gamma(x_1, \dots, x_n)(x, y) \right| \quad (\geq 0), \quad (3.19)$$

$$\begin{bmatrix} \|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2} \end{bmatrix} \prod_{i=1}^{n} \|x_{i}\|^{4} \Gamma(x, x_{1}, \dots, x_{n}) \Gamma(y, x_{1}, \dots, x_{n}) - |\Gamma(x_{1}, \dots, x_{n})(x, y)|^{2} + \begin{bmatrix} \|x\|^{2} \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma(x, x_{1}, \dots, x_{n}) \end{bmatrix} \times \begin{bmatrix} \|y\|^{2} \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma(y, x_{1}, \dots, x_{n}) \end{bmatrix} - \left| \langle x, y \rangle \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma(x_{1}, \dots, x_{n})(x, y) \right|^{2} \qquad (\geq 0), \quad (3.20)$$

and

$$\begin{aligned} \left\| \|x\| \|y\| - |\langle x, y \rangle| \right\|^{\frac{1}{2}} \prod_{i=1}^{n} \|x_{i}\|^{2} \\ &\geq \left[\Gamma\left(x, x_{1}, \dots, x_{n}\right) \Gamma\left(y, x_{1}, \dots, x_{n}\right) - \left|\Gamma\left(x_{1}, \dots, x_{n}\right) (x, y)\right|^{2} \right]^{\frac{1}{2}} \\ &\quad + \left\{ \left[\|x\|^{2} \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma\left(x, x_{1}, \dots, x_{n}\right) \right] \\ &\quad \times \left[\|y\|^{2} \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma\left(y, x_{1}, \dots, x_{n}\right) \right] \\ &\quad - \left| \langle x, y \rangle \prod_{i=1}^{n} \|x_{i}\|^{2} - \Gamma\left(x_{1}, \dots, x_{n}\right) (x, y) \right|^{2} \right\}^{\frac{1}{2}} \qquad (\geq 0). \quad (3.21) \end{aligned}$$

3.3 Inequalities for Linear Operators

Let $A: H \to H$ be a linear bounded operator and

$$||A|| := \sup \{ ||Ax||, ||x|| < 1 \}$$

its norm.

If we consider the hermitian forms $(\cdot,\cdot)_2\,,\,(\cdot,\cdot)_1:H\to H$ defined by

$$(x,y)_1 := \langle Ax, Ay \rangle, \qquad (x,y)_2 := \left\|A\right\|^2 \langle x, y \rangle$$

then obviously $(\cdot, \cdot)_2 \ge (\cdot, \cdot)_1$ in the sense of Definition (??) and utilising the monotonicity properties of the functional considered in Section ??, we may state the following inequalities:

$$||A||^{2} [||x|| ||y|| - |\langle x, y \rangle|] \ge ||Ax|| ||Ay|| - |\langle Ax, Ay \rangle| \qquad (\ge 0), \qquad (3.22)$$

$$\|A\|^{4} \left[\|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2} \right] \ge \|Ax\|^{2} \|Ay\|^{2} - |\langle Ax, Ay \rangle|^{2} \qquad (\ge 0) \quad (3.23)$$

for any $x, y \in H$, and the corresponding versions on replacing $|\cdot|$ by $Re(\cdot)$.

The results (??) and (??) have been obtained by Dragomir and Mond in [?].

On using Corollary ??, we may deduce the following inequality as well:

$$\|A\|^{2} \left[\|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2} \right] \geq \max\left\{ \frac{\|x\|^{2}}{\|Ax\|^{2}}, \frac{\|y\|^{2}}{\|Ay\|^{2}} \right\} \left[\|Ax\|^{2} \|Ay\|^{2} - |\langle Ax, Ay \rangle|^{2} \right] \quad (\geq 0) \quad (3.24)$$

for any $x, y \in H$ with $Ax, Ay \neq 0$; which improves (??) for x, y specified before.

Similarly, if $B: H \to H$ is a linear operator satisfying the condition

$$||Bx|| \ge m ||x|| \quad \text{for any} \quad x \in H, \tag{3.25}$$

where m > 0 is given, then the hermitian forms $[x, y]_2 := \langle Bx, By \rangle$, $[x, y]_1 := m^2 \langle x, y \rangle$, have the property that $[\cdot, \cdot]_2 \ge [\cdot, \cdot]_1$. Therefore, from the monotonicity results established in Section ??, we can state that

$$||Bx|| ||By|| - |\langle Bx, By \rangle| \ge m^2 [||x|| ||y|| - |\langle x, y \rangle|] \qquad (\ge 0), \qquad (3.26)$$

$$||Bx||^{2} ||By||^{2} - |\langle Bx, By \rangle|^{2} \ge m^{4} \left[||x||^{2} ||y||^{2} - |\langle x, y \rangle|^{2} \right] \qquad (\ge 0) \quad (3.27)$$

for any $x, y \in H$, and the corresponding results on replacing $|\cdot|$ by $Re(\cdot)$.

The same Corollary ??, would give the inequality

$$\|Bx\|^{2} \|By\|^{2} - |\langle Bx, By \rangle|^{2} \\ \geq m^{2} \max\left\{\frac{\|Bx\|^{2}}{\|x\|^{2}}, \frac{\|By\|^{2}}{\|y\|^{2}}\right\} \left[\|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2}\right] \quad (3.28)$$

for $x, y \neq 0$, which is an improvement of (??).

We recall that a linear self-adjoint operator $P: H \to H$ is nonnegative if $\langle Px, x \rangle \geq 0$ for any $x \in H$. P is called *positive* if $\langle Px, x \rangle = 0$ and *positive* definite with the constant $\gamma > 0$ if $\langle Px, x \rangle \geq \gamma ||x||^2$ for any $x \in H$.

If $A, B : H \to H$ are two linear self-adjoint operators such that $A \ge B$ (this means that A - B is nonnegative), then the corresponding hermitian forms $(x, y)_A := \langle Ax, y \rangle$ and $(x, y)_B := \langle Bx, y \rangle$ satisfies the property that $(\cdot, \cdot)_A \ge (\cdot, \cdot)_B$.

If by $\mathcal{P}(H)$ we denote the *cone* of all linear self-adjoint and nonnegative operators defined in the Hilbert space H, then, on utilising the results of

Section ??, we may state that the functionals $\sigma_0, \delta_0, \beta_0 : \mathcal{P}(H) \times H^2 \to [0, \infty]$ given by

$$\sigma_{0}(P; x, y) := \langle Ax, x \rangle^{\frac{1}{2}} \langle Py, y \rangle^{\frac{1}{2}} - |\langle Px, y \rangle|,$$

$$\delta_{0}(P; x, y) := \langle Px, x \rangle \langle Py, y \rangle - |\langle Px, y \rangle|^{2},$$

$$\beta_{0}(P; x, y) := \left[\langle Px, x \rangle \langle Py, y \rangle - |\langle Px, y \rangle|^{2} \right]^{\frac{1}{2}},$$

are superadditive and monotonic decreasing on $\mathcal{P}(H)$, i.e.,

$$\gamma_0 \left(P + Q; x, y \right) \ge \gamma_0 \left(P; x, y \right) + \gamma_0 \left(Q; x, y \right) \qquad (\ge 0)$$

for any $P, Q \in \mathcal{P}(H)$ and $x, y \in H$, and

$$\gamma_0(P; x, y) \ge \gamma_0(Q; x, y) \qquad (\ge 0)$$

for any P, Q with $P \ge Q \ge 0$ and $x, y \in H$, where $\gamma \in \{\sigma, \delta, \beta\}$.

The superadditivity and monotonicity properties of σ_0 and δ_0 have been noted by Dragomir and Mond in [?].

If $u \in \mathcal{P}(H)$ is such that $I \geq U \geq 0$, where I is the identity operator, then on using the superadditivity property of the functionals σ_0, δ_0 and β_0 one may state the following refinements for the Schwarz inequality:

$$||x|| ||y|| - |\langle x, y \rangle| \ge \langle Ux, x \rangle^{\frac{1}{2}} \langle Uy, y \rangle^{\frac{1}{2}} - |\langle Ux, y \rangle| + \langle (I - U) x, x \rangle^{\frac{1}{2}} \langle (I - U) y, y \rangle^{\frac{1}{2}} - |\langle (I - U) x, y \rangle| \qquad (\ge 0), \quad (3.29)$$

$$||x||^{2} ||y||^{2} - |\langle x, y \rangle|^{2} \ge \langle Ux, x \rangle \langle Uy, y \rangle - |\langle Ux, y \rangle|^{2} + \langle (I - U) x, x \rangle \langle (I - U) y, y \rangle - |\langle (I - U) x, y \rangle|^{2} \qquad (\ge 0), \quad (3.30)$$

and

$$\left(\left\| x \right\|^{2} \left\| y \right\|^{2} - \left| \langle x, y \rangle \right|^{2} \right)^{\frac{1}{2}} \geq \left(\langle Ux, x \rangle \langle Uy, y \rangle - \left| \langle Ux, y \rangle \right|^{2} \right)^{\frac{1}{2}} + \left(\langle (I - U) x, x \rangle \langle (I - U) y, y \rangle - \left| \langle (I - U) x, y \rangle \right|^{2} \right)^{\frac{1}{2}} \qquad (\geq 0) \quad (3.31)$$

for any $x, y \in H$.

Note that (??) is a better result than (??).

Finally, if we assume that $D \in \mathcal{P}(H)$ with $D \ge \gamma I$, where $\gamma > 0$, i.e., D is positive definite on H, then we may state the following inequalities

$$\langle Dx, x \rangle^{\frac{1}{2}} \langle Dy, y \rangle^{\frac{1}{2}} - |\langle Dx, y \rangle| \ge \gamma \left[\|x\| \|y\| - |\langle x, y \rangle| \right] \qquad (\ge 0), \qquad (3.32)$$

 $\langle Dx, x \rangle \langle Dy, y \rangle - |\langle Dx, y \rangle|^2 \ge \gamma^2 \left[\|x\|^2 \|y\|^2 - |\langle x, y \rangle|^2 \right] \quad (\ge 0), \quad (3.33)$ for any $x, y \in H$ and

$$\langle Dx, x \rangle \langle Dy, y \rangle - |\langle Dx, y \rangle|^{2} \geq \gamma \max \left\{ \frac{\langle Dx, x \rangle}{\|x\|^{2}}, \frac{\langle Dy, y \rangle}{\|y\|^{2}} \right\} \left[\|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2} \right] \qquad (\geq 0) \quad (3.34)$$

for any $x, y \in H \setminus \{0\}$.

The results (??) and (??) have been obtained by Dragomir and Mond in [?].

Note that (??) is a better result than (??).

The above results (??) - (??) also hold for $Re(\cdot)$ instead of $|\cdot|$.

4. Applications for Sequences of Vectors in Inner Product Spaces

4.1 The Case of Mapping σ

Let $\mathcal{P}_f(\mathbb{N})$ be the family of finite parts of the natural number set \mathbb{N} , $\mathcal{S}_+(\mathbb{R})$ the cone of nonnegative real sequences and for a given inner product space $(H; \langle \cdot, \cdot \rangle)$ over the real or complex number field \mathbb{K} , $\mathcal{S}(H)$ the linear space of all sequences of vectors from H, i.e.,

$$\mathcal{S}(H) := \left\{ \mathbf{x} | \mathbf{x} = (x_i)_{i \in \mathbb{N}}, \ x_i \in H, \ i \in \mathbb{N} \right\}.$$

We may define the mapping σ by

$$\sigma\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) := \left(\sum_{i \in I} p_i \left\|x_i\right\|^2 \sum_{i \in I} p_i \left\|y_i\right\|^2\right)^{\frac{1}{2}} - \left|\sum_{i \in I} p_i \left\langle x_i, y_i \right\rangle\right|, \quad (4.1)$$

where $\mathbf{p} \in \mathcal{S}_{+}(\mathbb{R})$, $I \in \mathcal{P}_{f}(\mathbb{N})$ and $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$.

We observe that, for a fixed $\mathbf{p} \in \mathcal{S}_{+}(\mathbb{R})$ and $I \in \mathcal{P}_{f}(\mathbb{N})$, the functional $\langle \cdot, \cdot \rangle_{\mathbf{p},I} \geq \langle \cdot, \cdot \rangle_{\mathbf{q},I}$.

Using Theorem ??, we may state the following result.

Proposition 9. Let $I \in \mathcal{P}_f(\mathbb{N})$, $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$. Then the functional $\sigma(\cdot, I, \mathbf{x}, \mathbf{y})$ is superadditive and monotonic nondecreasing on $\mathcal{S}_+(\mathbb{R})$.

If $I, J \in \mathcal{P}_{f}(\mathbb{N})$, with $I \cap J = \emptyset$ and if we consider, for a given $\mathbf{p} \in \mathcal{S}_{+}(\mathbb{R})$, we observe that

$$\langle \cdot, \cdot \rangle_{\mathbf{p}, I \cup J} = \langle \cdot, \cdot \rangle_{\mathbf{p}, I} + \langle \cdot, \cdot \rangle_{\mathbf{p}, J}.$$
 (4.2)

Taking into account this property and on making use of Theorem ??, we may state the following result.

Proposition 10. Let $\mathbf{p} \in \mathcal{S}_{+}(\mathbb{R})$ and $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$.

(i) For any $I, J \in \mathcal{P}_{f}(\mathbb{N})$, with $I \cap J = \emptyset$, we have $\sigma(\mathbf{p}, I \cup J, \mathbf{x}, \mathbf{y}) \ge \sigma(\mathbf{p}, I, \mathbf{x}, \mathbf{y}) + \sigma(\mathbf{p}, J, \mathbf{x}, \mathbf{y}) \qquad (\ge 0), \qquad (4.3)$

i.e., $\sigma(\mathbf{p}, \cdot, \mathbf{x}, \mathbf{y})$ is superadditive as an index set mapping on $\mathcal{P}_{f}(\mathbb{N})$.

(ii) If $\emptyset \neq J \subseteq I, I, J \in \mathcal{P}_{f}(\mathbb{N})$, then

$$\sigma\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) \ge \sigma\left(\mathbf{p}, J, \mathbf{x}, \mathbf{y}\right) \qquad (\ge 0), \qquad (4.4)$$

i.e., σ (**p**, \cdot , **x**, **y**) *is monotonic nondecreasing as an index set mapping on* S_+ (\mathbb{R}).

It is well known that the following Cauchy-Bunyakovsky-Schwarz (CBS) type inequality for sequences of vectors in an inner product space holds true:

$$\sum_{i \in I} p_i \|x_i\|^2 \sum_{i \in I} p_i \|y_i\|^2 \ge \left| \sum_{i \in I} p_i \langle x_i, y_i \rangle \right|^2$$
(4.5)

for $I \in \mathcal{P}_{f}(\mathbb{N})$, $\mathbf{p} \in \mathcal{S}_{+}(\mathbb{R})$ and $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$.

If $p_i > 0$ for all $i \in I$, then equality holds in (??) if and only if there exists a scalar $\lambda \in \mathbb{K}$ such that $x_i = \lambda y_i, i \in I$.

Utilising the above results for the functional, we may state the following inequalities related to the (CBS)-inequality (??).

(1) Let $\alpha_i \in \mathbb{R}, x_i, y_i \in H, i \in \{1, \dots, n\}$. Then one has the inequality:

$$\sum_{i=1}^{n} \|x_i\|^2 \sum_{i=1}^{n} \|y_i\|^2 - \left|\sum_{i=1}^{n} \langle x_i, y_i \rangle\right|$$

$$\geq \left(\sum_{i=1}^{n} \|x_i\|^2 \sin^2 \alpha_i \sum_{i=1}^{n} \|y_i\|^2 \sin^2 \alpha_i\right)^{\frac{1}{2}} - \left|\sum_{i=1}^{n} \langle x_i, y_i \rangle \sin^2 \alpha_i\right|$$

$$+ \left(\sum_{i=1}^{n} \|x_i\|^2 \cos^2 \alpha_i \sum_{i=1}^{n} \|y_i\|^2 \cos^2 \alpha_i\right)^{\frac{1}{2}} - \left|\sum_{i=1}^{n} \langle x_i, y_i \rangle \cos^2 \alpha_i\right| \geq 0.$$
(4.6)

(2) Denote $S_n(\mathbf{1}) := \{ \mathbf{p} \in \mathcal{S}_+(\mathbb{R}) | p_i \leq 1 \text{ for all } i \in \{1, \ldots, n\} \}$. Then for all $x_i, y_i \in H, i \in \{1, \ldots, n\}$, we have the bound:

$$\left(\sum_{i=1}^{n} \|x_i\|^2 \sum_{i=1}^{n} \|y_i\|^2\right)^{\frac{1}{2}} - \left|\sum_{i=1}^{n} \langle x_i, y_i \rangle\right|$$
$$= \sup_{\mathbf{p} \in S_n(\mathbf{1})} \left[\left(\sum_{i=1}^{n} p_i \|x_i\|^2 \sum_{i=1}^{n} p_i \|y_i\|^2\right)^{\frac{1}{2}} - \left|\sum_{i=1}^{n} p_i \langle x_i, y_i \rangle\right| \right] \ge 0. \quad (4.7)$$

(3) Let $p_i \ge 0, x_i, y_i \in H, i \in \{1, \ldots, n\}$. Then we have the inequality:

$$\left(\sum_{i=1}^{2n} p_i \|x_i\|^2 \sum_{i=1}^{2n} p_i \|y_i\|^2\right)^{\frac{1}{2}} - \left|\sum_{i=1}^{2n} p_i \langle x_i, y_i \rangle\right|$$
$$\geq \left(\sum_{k=1}^{n} p_{2k} \|x_{2k}\|^2 \sum_{k=1}^{n} p_{2k} \|y_{2k}\|^2\right)^{\frac{1}{2}} - \left|\sum_{k=1}^{n} p_{2k} \langle x_{2k}, y_{2k} \rangle\right| \quad (4.8)$$

$$+\left(\sum_{k=1}^{n} p_{2k-1} \|x_{2k-1}\|^{2} \sum_{k=1}^{n} p_{2k-1} \|y_{2k-1}\|^{2}\right)^{\frac{1}{2}} - \left|\sum_{k=1}^{n} p_{2k-1} \langle x_{2k-1}, y_{2k-1} \rangle\right| \qquad (\geq 0).$$

(4) We have the bound:

$$\left[\sum_{i=1}^{n} p_{i} \|x_{i}\|^{2} \sum_{i=1}^{n} p_{i} \|y_{i}\|^{2}\right]^{\frac{1}{2}} - \left|\sum_{i=1}^{n} p_{i} \langle x_{i}, y_{i} \rangle\right| \\
= \sup_{\emptyset \neq I \subseteq \{1, \dots, n\}} \left(\left[\sum_{i \in I} p_{i} \|x_{i}\|^{2} \sum_{i \in I} p_{i} \|y_{i}\|^{2}\right]^{\frac{1}{2}} - \left|\sum_{i \in I} p_{i} \langle x_{i}, y_{i} \rangle\right| \right) \ge 0.$$
(4.9)

(5) The sequence S_n given by

$$S_n := \left(\sum_{i=1}^n p_i \|x_i\|^2 \sum_{i=1}^n p_i \|y_i\|^2\right)^{\frac{1}{2}} - \left|\sum_{i=1}^n p_i \langle x_i, y_i \rangle\right|$$

is nondecreasing, i.e.,

$$S_{k+1} \ge S_k, \quad k \ge 2 \tag{4.10}$$

and we have the bound

$$S_{n} \geq \max_{1 \leq i < j \leq n} \left\{ \left(p_{i} \|x_{i}\|^{2} + p_{j} \|x_{j}\|^{2} \right)^{\frac{1}{2}} \left(p_{i} \|y_{i}\|^{2} + p_{j} \|y_{j}\|^{2} \right)^{\frac{1}{2}} - \left| p_{i} \langle x_{i}, y_{i} \rangle + p_{j} \langle x_{j}, y_{j} \rangle \right| \right\} \geq 0, \quad (4.11)$$

for $n \ge 2$ and $x_i, y_i \in H, i \in \{1, ..., n\}$.

Remark 5. The results in this subsection have been obtained by Dragomir and Mond in [?] for the particular case of scalar sequences \mathbf{x} and \mathbf{y} .

4.2 The Case of Mapping δ

Under the assumptions of the above subsection, we can define the following functional

$$\delta(\mathbf{p}, I, \mathbf{x}, \mathbf{y}) := \sum_{i \in I} p_i ||x_i||^2 \sum_{i \in I} p_i ||y_i||^2 - \left| \sum_{i \in I} p_i \langle x_i, y_i \rangle \right|^2,$$

where $\mathbf{p} \in \mathcal{S}_{+}(\mathbb{R}), I \in \mathcal{P}_{f}(\mathbb{N}) \text{ and } \mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$.

Utilising Theorem ??, we may state the following results.

Proposition 11. We have

(i) For any $\mathbf{p}, \mathbf{q} \in \mathcal{S}_{+}(\mathbb{R}), I \in \mathcal{P}_{f}(\mathbb{N}) \text{ and } \mathbf{x}, \mathbf{y} \in \mathcal{S}(H) \text{ we have }$

$$\delta\left(\mathbf{p}+\mathbf{q}, I, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{q}, I, \mathbf{x}, \mathbf{y}\right)$$

$$\geq \left(\det \left[\left(\sum_{i \in I} p_i \|x_i\|^2 \right)^{\frac{1}{2}} \left(\sum_{i \in I} p_i \|y_i\|^2 \right)^{\frac{1}{2}} \right] \right)^2 \ge 0. \quad (4.12)$$

$$\left(\sum_{i \in I} q_i \|x_i\|^2 \right)^{\frac{1}{2}} \left(\sum_{i \in I} q_i \|y_i\|^2 \right)^{\frac{1}{2}} \right] \right)^2$$

(ii) If $\mathbf{p} \geq \mathbf{q} \geq \mathbf{0}$, then

$$\delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{q}, I, \mathbf{x}, \mathbf{y}\right)$$

$$\geq \left(\det \begin{bmatrix} \left(\sum_{i \in I} p_i \|x_i\|^2\right)^{\frac{1}{2}} & \left(\sum_{i \in I} p_i \|y_i\|^2\right)^{\frac{1}{2}} \\ \left(\sum_{i \in I} (p_i - q_i) \|x_i\|^2\right)^{\frac{1}{2}} & \left(\sum_{i \in I} (p_i - q_i) \|y_i\|^2\right)^{\frac{1}{2}} \end{bmatrix} \right)^2 \geq 0.$$

$$(4.13)$$

Proposition 12. We have

(i) For any $I, J \in \mathcal{P}_{f}(\mathbb{N})$, with $I \cap J = \emptyset$ and $\mathbf{p} \in \mathcal{S}_{+}(\mathbb{R})$, $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$, we have

$$\delta\left(\mathbf{p}, I \cup J, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{p}, J, \mathbf{x}, \mathbf{y}\right)$$
$$\geq \left(\det\left[\left(\sum_{i \in I} p_i \left\|x_i\right\|^2\right)^{\frac{1}{2}} \left(\sum_{i \in I} p_i \left\|y_i\right\|^2\right)^{\frac{1}{2}} \left(\sum_{i \in J} p_i \left\|y_i\right\|^2\right)^{\frac{1}{2}}\right]\right)^2 \ge 0. \quad (4.14)$$

(ii) If $\emptyset \neq J \subseteq I$, $I \neq J$, $I, J \in \mathcal{P}_{f}(\mathbb{N})$, then we have

$$\delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{p}, J, \mathbf{x}, \mathbf{y}\right)$$

$$\geq \left(\det \left[\left(\sum_{i \in I} p_i \left\| x_i \right\|^2 \right)^{\frac{1}{2}} \quad \left(\sum_{i \in I} p_i \left\| y_i \right\|^2 \right)^{\frac{1}{2}} \\ \left(\sum_{i \in I \setminus J} p_i \left\| x_i \right\|^2 \right)^{\frac{1}{2}} \quad \left(\sum_{i \in I \setminus J} p_i \left\| y_i \right\|^2 \right)^{\frac{1}{2}} \right] \right)^2 \geq 0. \quad (4.15)$$

The following particular instances that provide refinements for the (CBS)-inequality may be stated as well:

$$\sum_{i \in I} ||x_i||^2 \sum_{i \in I} ||y_i||^2 - \left| \sum_{i \in I} \langle x_i, y_i \rangle \right|^2$$

$$\geq \sum_{i \in I} ||x_i||^2 \sin^2 \alpha_i \sum_{i \in I} ||y_i||^2 \sin^2 \alpha_i - \left| \sum_{i \in I} \langle x_i, y_i \rangle \sin^2 \alpha_i \right|^2$$

$$+ \sum_{i \in I} ||x_i||^2 \cos^2 \alpha_i \sum_{i \in I} ||y_i||^2 \cos^2 \alpha_i - \left| \sum_{i \in I} \langle x_i, y_i \rangle \cos^2 \alpha_i \right|^2$$

$$\geq \left(\det \left[\left(\sum_{i \in I} ||x_i||^2 \sin^2 \alpha_i \right)^{\frac{1}{2}} \left(\sum_{i \in I} ||y_i||^2 \sin^2 \alpha_i \right)^{\frac{1}{2}} \\ \left(\sum_{i \in I} ||x_i||^2 \cos^2 \alpha_i \right)^{\frac{1}{2}} \left(\sum_{i \in I} ||y_i||^2 \cos^2 \alpha_i \right)^{\frac{1}{2}} \right] \right)^2 \ge 0,$$
(4.16)

where $x_i, y_i \in H$, $\alpha_i \in \mathbb{R}$, $i \in I$ and $I \in \mathcal{P}_f(\mathbb{N})$.

Suppose that $p_i \ge 0, x_i, y_i \in H, i \in \{1, \dots, 2n\}$. Then

$$\sum_{i=1}^{2n} p_i \|x_i\|^2 \sum_{i=1}^{2n} p_i \|y_i\|^2 - \left|\sum_{i=1}^{2n} p_i \langle x_i, y_i \rangle\right|^2$$

$$\geq \sum_{k=1}^{n} p_{2k} \|x_{2k}\|^2 \sum_{k=1}^{n} p_{2k} \|y_{2k}\|^2 - \left|\sum_{k=1}^{n} p_{2k} \langle x_{2k}, y_{2k} \rangle\right|^2$$

$$+ \sum_{k=1}^{n} p_{2k-1} \|x_{2k-1}\|^2 \sum_{k=1}^{n} p_{2k-1} \|y_{2k-1}\|^2 - \left|\sum_{k=1}^{n} p_{2k-1} \langle x_{2k-1}, y_{2k-1} \rangle\right|^2$$

$$\geq \left(\det \left[\left(\sum_{k=1}^{n} p_{2k} \|x_{2k}\|^2 \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} p_{2k-1} \|y_{2k-1}\|^2 \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} p_{2k-1} \|y_{2k-1}\|^2 \right)^{\frac{1}{2}} \right] \right)^2 \ge 0.$$

$$(4.17)$$

Remark 6. The above results (??) - (??) have been obtained for the case where **x** and **y** are real or complex numbers by Dragomir and Mond [?].

Further, if we use Corollaries ?? and ??, then we can state the following propositions as well.

Proposition 13. We have

(i) For any $\mathbf{p}, \mathbf{q} \in \mathcal{S}_{+}(\mathbb{R}), I \in \mathcal{P}_{f}(\mathbb{N}) \text{ and } \mathbf{x}, \mathbf{y} \in \mathcal{S}(H) \setminus \{0\} \text{ we have}$ $\delta(\mathbf{p} + \mathbf{q}, I, \mathbf{x}, \mathbf{y}) - \delta(\mathbf{p}, I, \mathbf{x}, \mathbf{y}) - \delta(\mathbf{q}, I, \mathbf{x}, \mathbf{y})$ $\geq \max\left\{\frac{\sum_{i \in I} p_{i} ||x_{i}||^{2}}{\sum_{i \in I} q_{i} ||x_{i}||^{2}} \delta(\mathbf{q}, I, \mathbf{x}, \mathbf{y}) + \frac{\sum_{i \in I} q_{i} ||x_{i}||^{2}}{\sum_{i \in I} p_{i} ||x_{i}||^{2}} \delta(\mathbf{p}, I, \mathbf{x}, \mathbf{y}), \frac{\sum_{i \in I} p_{i} ||y_{i}||^{2}}{\sum_{i \in I} q_{i} ||y_{i}||^{2}} \delta(\mathbf{q}, I, \mathbf{x}, \mathbf{y}) + \frac{\sum_{i \in I} q_{i} ||y_{i}||^{2}}{\sum_{i \in I} p_{i} ||y_{i}||^{2}} \delta(\mathbf{p}, I, \mathbf{x}, \mathbf{y})\right\} \geq 0. \quad (4.18)$

(*ii*) If $\mathbf{p} \geq \mathbf{q} \geq \mathbf{0}$ and $I \in \mathcal{P}_f(\mathbb{N})$, $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H) \setminus \{0\}$, then:

$$\delta(\mathbf{p}, I, \mathbf{x}, \mathbf{y}) - \delta(\mathbf{q}, I, \mathbf{x}, \mathbf{y}) \\ \geq \max\left\{\frac{\sum_{i \in I} (p_i - q_i) \|x_i\|^2}{\sum_{i \in I} p_i \|x_i\|^2}, \frac{\sum_{i \in I} (p_i - q_i) \|y_i\|^2}{\sum_{i \in I} p_i \|y_i\|^2}\right\} \delta(\mathbf{p}, I, \mathbf{x}, \mathbf{y}) \geq 0.$$
(4.19)

Proposition 14. We have

(i) For any $I, J \in \mathcal{P}_f(\mathbb{N})$, with $I \cap J = \emptyset$ and $\mathbf{p} \in \mathcal{S}_+(\mathbb{R})$, $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H) \setminus \{0\}$, we have

$$\delta\left(\mathbf{p}, I \cup J, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{p}, J, \mathbf{x}, \mathbf{y}\right)$$

$$\geq \max\left\{\frac{\sum_{i \in I} p_i \left\|x_i\right\|^2}{\sum_{j \in J} p_j \left\|x_j\right\|^2} \delta\left(\mathbf{p}, J, \mathbf{x}, \mathbf{y}\right) + \frac{\sum_{j \in J} p_j \left\|x_j\right\|^2}{\sum_{i \in I} p_i \left\|y_i\right\|^2} \delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right), \frac{\sum_{i \in I} p_i \left\|y_i\right\|^2}{\sum_{j \in J} p_j \left\|y_j\right\|^2} \delta\left(\mathbf{p}, J, \mathbf{x}, \mathbf{y}\right) + \frac{\sum_{i \in I} p_i \left\|y_i\right\|^2}{\sum_{i \in I} p_i \left\|y_i\right\|^2} \delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right)\right\} \geq 0. \quad (4.20)$$

(*ii*) If $\emptyset \neq J \subseteq I$, $I \neq J$, $I, J \in \mathcal{P}_f(\mathbb{N})$ and $\mathbf{p} \in \mathcal{S}_+(\mathbb{R}) \setminus \{0\}$, $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H) \setminus \{0\}$, then

$$\delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) - \delta\left(\mathbf{p}, J, \mathbf{x}, \mathbf{y}\right)$$

$$\geq \max\left\{\frac{\sum_{k \in I \setminus J} p_k \left\|x_k\right\|^2}{\sum_{i \in I} p_i \left\|x_i\right\|^2}, \frac{\sum_{k \in I \setminus J} p_k \left\|y_k\right\|^2}{\sum_{i \in I} p_i \left\|y_i\right\|^2}\right\} \delta\left(\mathbf{p}, J, \mathbf{x}, \mathbf{y}\right) \ge 0. \quad (4.21)$$

Remark 7. The results in Proposition ?? have been obtained by Dragomir and Mond in [?] for the case of scalar sequences \mathbf{x} and \mathbf{y} .

4.3 The Case of Mapping β

With the assumptions in the first subsections, we can define the following functional

$$\beta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right) := \left[\delta\left(\mathbf{p}, I, \mathbf{x}, \mathbf{y}\right)\right]^{\frac{1}{2}}$$
$$= \left[\sum_{i \in I} p_i \left\|x_i\right\|^2 \sum_{i \in I} p_i \left\|y_i\right\|^2 - \left|\sum_{i \in I} p_i \left\langle x_i, y_i \right\rangle\right|^2\right]^{\frac{1}{2}},$$

where $\mathbf{p} \in \mathcal{S}_{+}(\mathbb{R}), I \in \mathcal{P}_{f}(\mathbb{N}) \text{ and } \mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$.

Utilising Theorem ??, we can state the following results:

Proposition 15. We have

- (i) The functional $\beta(\cdot, I, \mathbf{x}, \mathbf{y})$ is superadditive on $\mathcal{S}_{+}(\mathbb{R})$ for any $I \in \mathcal{P}_{f}(\mathbb{N})$ and $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$.
- (ii) The functional $\beta(\mathbf{p}, \cdot, \mathbf{x}, \mathbf{y})$ is superadditive as an index set mapping on $\mathcal{P}_{f}(\mathbb{N})$ and $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$.

As simple consequences of the above proposition, we may state the following refinements of the (CBS)-inequality.

(a) If $\mathbf{x}, \mathbf{y} \in \mathcal{S}(H)$ and $\alpha_i \in \mathbb{RA}, i \in I$ with $I \in \mathcal{P}_f(\mathbb{N}) \setminus \{0\}$, then

$$\left(\sum_{i\in I} \|x_i\|^2 \sum_{i\in I} \|y_i\|^2 - \left|\sum_{i\in I} \langle x_i, y_i \rangle\right|^2\right)^{\frac{1}{2}} \\
\geq \left(\sum_{i\in I} \|x_i\|^2 \sin^2 \alpha_i \sum_{i\in I} \|y_i\|^2 \sin^2 \alpha_i - \left|\sum_{i\in I} \langle x_i, y_i \rangle \sin^2 \alpha_i\right|^2\right)^{\frac{1}{2}} \\
+ \left(\sum_{i\in I} \|x_i\|^2 \cos^2 \alpha_i \sum_{i\in I} \|y_i\|^2 \cos^2 \alpha_i - \left|\sum_{i\in I} \langle x_i, y_i \rangle \cos^2 \alpha_i\right|^2\right)^{\frac{1}{2}} \ge 0. \tag{4.22}$$

(b) If $x_i, y_i \in H, p_i > 0, i \in \{1, \dots, 2n\}$, then

$$\left(\sum_{i=1}^{2n} p_i \|x_i\|^2 \sum_{i=1}^{2n} p_i \|y_i\|^2 - \left|\sum_{i=1}^{2n} p_i \langle x_i, y_i \rangle\right|^2\right)^{\frac{1}{2}}$$

$$\geq \left(\sum_{k=1}^{n} p_{2k} \|x_{2k}\|^2 \sum_{k=1}^{n} p_{2k} \|y_{2k}\|^2 - \left|\sum_{k=1}^{n} p_{2k} \langle x_{2k}, y_{2k} \rangle\right|^2\right)^{\frac{1}{2}}$$

$$+ \left(\sum_{k=1}^{n} p_{2k-1} \|x_{2k-1}\|^2 \sum_{k=1}^{n} p_{2k-1} \|y_{2k-1}\|^2$$

$$- \left|\sum_{k=1}^{n} p_{2k-1} \langle x_{2k-1}, y_{2k-1} \rangle\right|^2\right)^{\frac{1}{2}} \quad (\geq 0). \quad (4.23)$$

Remark 8. Part (i) of Proposition ?? and the inequality (??) have been obtained by Dragomir and Mond in [?] for the case of scalar sequences \mathbf{x} and \mathbf{y} .

References

- S. Kurepa, Note on inequalities associated with Hermitian functionals, Glasnik Matematčki, 3(23) (1968), 196-205.
- [2] S. Kurepa, On the Buniakowsky-Cauchy-Schwarz inequality, Glasnik Matematčki, 1(21) (1966), 146-158.
- [3] S. S. Dragomir and B. Mond, On the superadditivity and monotonicity of Schwarz's inequality in inner product spaces, *Contributions, Macedonian Acad. of Sci and Arts*, 15(2) (1994), 5-22.
- [4] S. S. Dragomir and B. Mond, Some inequalities for Fourier coefficients in inner product spaces, *Periodica Math. Hungarica*, **32**(3) (1995), 167-172.
- [5] S. S. Dragomir and J. sándor, On Bessel's and Gram's inequalities in prehilbertian spaces, *Periodica Math. Hungarica*, 29(3) (1994), 197-205.
- [6] F. Deutsch, Best Approximation in Inner Product Spaces, CMS Books in Mathematics, Springer Verlag, New York, Berlin, Heidelberg, 2001.