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Abstract
In this paper we consider a second order mock theta function, recently
given by Hikami. We define a generalized function and show itis a F, -
function and give its integral representation and multibasic expansion. We
also show that this mock theta function can be obtained by performing a left
half-shift transformation on a certain theta series.
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1. Introduction
Recently Hikami [3] introduced the g-series D [q].

Pl = Z((qqqq))i where =

in connection with the quantum invariant of 3-manifold. Hikami [3] in his short note
has shown the function 9 [q] is a mock theta function and has called it of order two.
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He has given a transformation formula for 9 _[q], using the method of Watson [9].
Using the transformation formula [1]

Z(a 10°)0(B)an /n _(B).(z:q"),, Z(V/ﬂ) 2 (2:0°), 5"

5D, D 0. @), E (@, (),
D.[q] can be written as
D,[q] = Z(q a%)2q”". (1)

( q )oo n=0
Considering the importance of this second order mock theta function, we have studied
the other properties of D [q].

Mock theta functions are mysterious functions and not much is known about them.
Ramanujan in his last letter to Hardy gave a list of 17 functions F(q) and called them
mock theta functions. He called them mock theta functions as they were not theta
functions. He stated that as q radially approaches any point ¢2#" (r rational) there is a
theta function @ (q), such that F(q) -6, (q) = O(1). Moreover there is no single theta
function which works for all r i.e. for every theta function g(q), there is some root of
unity r for which F(q) —@(q) is unbounded as g — e radially.

In Entry 12.45 of Andrews and Berndt [1], D [q] has been written in the form of the
Lerche’s sum. We write D _[q] as a double summation series.

In section 4 we give a mild generalization of this mock theta function and show this

generalized function belongs to the family of F_ -functions.

In sections 5 and 6 we give an integral representation and a bibasic expansion,
respectively, for this generalized function.

Lastly, by performing a half left-shift transformation on a theta series, we get this
mock theta function.

2. Notation

We shall use the following usual basic hypergeometric notations:
For |g*] <1,
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(@) ,=@-a)t-ag®)---(1-aq*™P), n>1,

(29), =1,

CH =f[(1—aqkj),

j=0

(a;9), =(a),.

3. Double Series Expansion

4n?+4n

e (1_ q2n+l)

) 2n+1 n
Theorem 1. (a%,09°)% 2,[q] =D, a @+q7") [1+ y (_1)jq—(3j2+j)]. )
For giving the double series representation we shall use the Bailey pair method.

Bailey’s Lemma
If {a,} and {B,} form a Bailey pair relative to a, then

w(pl)n(pz)n(:zj a, (aq){pq] :
= = P1)n(pP2) noc
> 2 ”Z()( (q]ﬂ 3)

ERGEN

1772

Proof .Making q — q° and letting p, = p, =q and a=q? in (3), we have
q°"(9;9%); (qq)(q q) 2n
a, q*"(9;0%): B, - 4)
Z (@*a%): (@*a%)2 Zo

In the Bailey pair given in [2, (2.13) and (2.14), p 73], making q — q° and taking
a =0 and putting in (4), we have

27
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(q“:qz)m(qz;qz)wi 9*"(q;9°);
(qs;qz)i < (9°b;9%),(a%c;q?),
_Zq "(0:9%)n o (be)" 0-a"*?) (@ 0;0%)n (6% /:6%),
(@*a%): 1-a?)(a%b;9%), (a%c;9%),

-)’'@-9*)(@*9?) . 0:0%);(c;q%),
' I (be) (a%9%),(a? /b;9%), (a% /c; ),

Letting b,c — o in (5) we get, after simple calculation,

()

4n?+4n

(@16)2 2, [q) =3 %;g)“)[1+j(_1)jq_<a,-2+,->]_ ©)
n=0 j=—n

4. Generalized Function
We give mild generalization of D [q]. We define

— 2 yN(a+1)
2, (20) = ()mg( )n(0 420"

For z=0 and a =1, this generalized function reduces to mock theta function 9_[q].

F,-Function

Truesdell [8] calls the functions which satisfy the F- equation
iF(z,oz) =F(z,a+1)
0z

F -function.

The g-analogue of Truesdell’s definition: the functions which satisfy the q-

difference equation
Dq’Z F(Z,a) = F(Z,a+1)

where
2Dy, F(z,a) =F(z,a) - F(2q9,a)
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are called F_-functions. We now show 9, («,z) isa F,-function.

2Dq: 9D, (z,@)= D, (2,) - D, (20,)

[() > (@), (@) - T ) Z( @) ]

o N=0

(qq)2

1

- _i(z)n(q;qZ)ﬁq“‘“”—i(z)nm;qZ)ﬁq““*Da—zq”)]

_ 1 2 n(a+2)
ol ICKRE

=29, (z,a+]), (7)

which shows D (z,a) isa F,-function.

5. Integral Representation

(1—Q)_1 h z-1 .

The theorem is an integral representation for the generalized function.
Thomae [4, p. 19] and Jackson [4, p.19] defined the g-integral as

Theorem 2. 2_(q,a) =

[1Odt=a-aX f@)a.

Obviously the q -integration is a discrete process while Riemann integration is a
limiting process. For q-integration the only requirements are the value of the function
at the discrete set of points {qr r= 0,1,---} and the convergence of the series defining
the q-integral.
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Equations (1.10.14) and (1.11.7) [4, pp. 18-19] it is easily seen

, In the limiting
case,

1 _ @9 foagga d g
@5a). (o;0), !t (6:0). dat- ©

Proof. By definition

(@:0°)29, (z.0) = ; ) Z( ) (0:97)2"“D.

Writing q° for zand b for g*, we have

(@:9%)29, (9, a) =

(q )oo n=0
n(a+1)

Z(0;0%)2q
Z(; @"%a),
By (8)

@320, @) = > (@a)ia" (( )' [t (g0, ¢,

- oo q))_ [ o). S@aaee.  ©
But
(6:09%)2D, (0.b) = 3 (6:9°)2a"D",
SO

(@;9%)% D, (0,bt). (10)
Substituting (10) in (9), we have

2,") = St a). 2, (0,000 (11)
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which proves the theorem.

6. Bibasic expansion for D (;,q)

We shall prove the following theorem which is a bibasic expansion of the generalized
function.

Theorem 3. 2, (x,a) - i(l_ Xq ™ A1/ 9)(9;6%) 2, (X G) ., g
k=0

o [T E o e

0;0,0
The summation formula [4, p 71, (3.6.7)] is
i (L-ap*q“)(A-bp*q~)(a,b; p), (c.a/bc;a), "

o (1-a)(l-b)(a.aq/b;q), (ap/c,bep; p),
Multiplying both sides by «,, and summing from 0 to « and then applying

Lemma 10 [7, p.57], we have
i(1—apqu)(1—bpkq‘k)(a,b: p), (c.a/bc;q), q" ia k
< (-a)d-b)(g,aq/b;q), (ap/c,bep; p), =
& (ap,bp; p).,(cq,aq/bc;q),

_ . (12)
= (ap/c,bep; p),,(g,aq/b;q),,

3

Proof. Making g — q* and taking a=0,p=q, b==, ¢ :i in (12), we have
q

X
g

2 (%0),(9:9%) 2 (1-xq7* W/ q;9%) g% &
. > o, = Amik - (13)
%(x/q;q)m(qz;qz)m kz;) @—x/a)(a%a%)y mz;) “

Take a, =(9;9°),(a%;9%),(x/q;0),q™“" in (13),

(X)..(4:9%)> @s(x,a)zi(l—xq‘k‘l)(l—ll (0 9%) e, (% a), . g ™
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k-1 2k+1 2k+2
Xq 1q1q 1q . 2. o+l
X 1 Y ) . 14
4 000 4.9%9 (14)

7. Relation Between Second Order Mock Theta 9Ds(q)

and the Other Second Order Mock Theta
Function B(q)

We shall give an expansion of 9 _(q) in terms of the mock theta function B(q). For
this we shall require the following identity.

iarﬂr =ﬂp+liar +ii(/8m _ﬂm+1)iar :

(15)
Proof. The proof is simple requiring a rearrangement of the series:

DTN AV R ATIR R N) 38

2 P
+(fo _ﬂS)Zar +-+(Bp _ﬁp+1)zar
r=0 r=0

=apbp+afi++apfp—Ppulag+ag+-+ayp)

p p
= zarﬂr _ﬂp+lzar :
r=0 r=0

The technique is that we choose ¢, g, such that «_ is a mock theta function and
a, B, is another mock theta function.

Relation between 9 (q) and B(q)

Take o, =q'(-0;9°), /(a°;0%), and B, =q"(-0;9°),(a*;q*), and put in (15), to
get



Bhaskar Srivastava 33

L . . 2. q"(—g;q°)
(-9:0%), 0" = " (-0;9%) ,.. (% 0%) D — 5"

+ Zi)[fil"‘(—q;qz)m(ff:qz)m — 9™ (=0;0%),1 (007t | -

Hence
. 242 _ q° 2p43\ (2. 4 S qr(_q;qz)r
(-a;q )w@s,p(_q)_m(l_q "*)@%q %u%(@ém
p+1 0
+ [1—1q—q(1— qz””)(qz;q“)pﬂ}z B, (q), (16)
- m=0

where B(q) is a second order mock theta function [6] and Ds, (-g) and B, (q) are

partial mock theta function. We take the partial sum from 0 to r and write by inserting
suffix r to denote the partial sum.

8. Half-Shift Transformation On 9 (q)

Gordon and Mclntosh [5] gave a method of constructing mock theta functions by

performing left-shift transformation on certain g-series. Here we show this mock theta
function D (q) is obtained by using this method.

Take the series )" (g% 0%)70°".
n=0

We shall write the series
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2n

Z(q 99207 = (¢ i(qm 7 Za (say),

n=0

where a, is defined for all real n. We make a left half-shift and sum n over

the positive half-integers % % g -, instead of the non-negative integers. Define
b,=a .,
So
© B S 2n-1
b,=2a._ =(Q%a°); a (@9 5 (g .97
Z; Z(; 2 g(q“q) (qq)wnZ;
1(9%0%), < 2..2n
=— (CHOHY
q (9:9%). Z::?

1 2.2
=—(9%;9°),9D ,
q(q a)..D4(q)

Hence if we apply left half-shift transformation on the series

Z(q2 a*)hg”",

)oonO

2 2

we have the mock theta function 9 (q).
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