On a Second Order Mock Theta Functions*

Bhaskar Srivastava
Department of Mathematics Lucknow University
Lucknow, India

Received March 21, 2006, Accepted July 26, 2006.

Abstract

In this paper we consider a second order mock theta function, recently given by Hikami. We define a generalized function and show it is a $F_{q}{ }^{-}$ function and give its integral representation and multibasic expansion. We also show that this mock theta function can be obtained by performing a left half-shift transformation on a certain theta series.

Keywords and Phrases: Mock theta functions, Basic hypergeometric series.

1. Introduction

Recently Hikami [3] introduced the q-series $\mathscr{D}_{5}[q]$,

$$
\mathscr{D}_{5}[q]=\sum_{n=0}^{\infty} \frac{(-q ; q)_{n} q^{n}}{\left(q ; q^{2}\right)_{n+1}} \text {, where } q=e^{2 \pi i \tau}
$$

in connection with the quantum invariant of 3-manifold. Hikami [3] in his short note has shown the function $\mathscr{D}_{5}[q]$ is a mock theta function and has called it of order two.
*2000 Mathematics Subject Classification. 33D15, 33D65.

He has given a transformation formula for $\mathscr{D}_{5}[q]$, using the method of Watson [9]. Using the transformation formula [1]

$$
\sum_{n=0}^{\infty} \frac{\left(\alpha ; q^{2}\right)_{n}(\beta)_{2 n}}{\left(q^{2} ; q^{2}\right)_{n}(\gamma)_{2 n}} z^{n}=\frac{(\beta)_{\infty}\left(\alpha z ; q^{2}\right)_{\infty}}{(\gamma)_{\infty}\left(z ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} \frac{(\gamma / \beta)_{n}\left(z ; q^{2}\right)_{n}}{(q)_{n}\left(\alpha z ; q^{2}\right)_{n}} \beta^{n}
$$

$\mathscr{D}_{5}[q]$ can be written as

$$
\begin{equation*}
\mathscr{D}_{5}[q]=\frac{1}{\left(q ; q^{2}\right)_{\infty}^{2}} \sum_{n=0}^{\infty}\left(q ; q^{2}\right)_{n}^{2} q^{2 n} . \tag{1}
\end{equation*}
$$

Considering the importance of this second order mock theta function, we have studied the other properties of $\mathscr{D}_{5}[q]$.

Mock theta functions are mysterious functions and not much is known about them. Ramanujan in his last letter to Hardy gave a list of 17 functions $F(q)$ and called them mock theta functions. He called them mock theta functions as they were not theta functions. He stated that as q radially approaches any point $e^{2 \pi i r}$ (r rational) there is a theta function $\theta_{r}(q)$, such that $F(q)-\theta_{r}(q)=O(1)$. Moreover there is no single theta function which works for all r i.e. for every theta function $\theta(q)$, there is some root of unity r for which $F(q)-\theta(q)$ is unbounded as $q \rightarrow e^{2 \pi i r}$ radially.
In Entry 12.45 of Andrews and Berndt [1], $\mathscr{D}_{5}[q]$ has been written in the form of the Lerche's sum. We write $\mathscr{D}_{5}[q]$ as a double summation series.

In section 4 we give a mild generalization of this mock theta function and show this generalized function belongs to the family of F_{q}-functions.

In sections 5 and 6 we give an integral representation and a bibasic expansion, respectively, for this generalized function.
Lastly, by performing a half left-shift transformation on a theta series, we get this mock theta function.

2. Notation

We shall use the following usual basic hypergeometric notations:
For $\left|q^{k}\right|<1$,

$$
\begin{aligned}
& \left(a ; q^{k}\right)_{n}=(1-a)\left(1-a q^{k}\right) \cdots\left(1-a q^{k(n-1)}\right), n \geq 1, \\
& \left(a ; q^{k}\right)_{0}=1, \\
& \left(a ; q^{k}\right)_{\infty}=\prod_{j=0}^{\infty}\left(1-a q^{k j}\right), \\
& (a ; q)_{n}=(a)_{n} .
\end{aligned}
$$

3. Double Series Expansion

Theorem 1. $\left(q^{2} ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5}[q]=\sum_{n=0}^{\infty} \frac{q^{4 n^{2}+4 n}\left(1+q^{2 n+1}\right)}{\left(1-q^{2 n+1}\right)}\left[1+\sum_{j=-n}^{n}(-1)^{j} q^{-\left(3 j^{2}+j\right)}\right]$.
For giving the double series representation we shall use the Bailey pair method.

Bailey's Lemma

If $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ form a Bailey pair relative to a, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\rho_{1}\right)_{n}\left(\rho_{2}\right)_{n}\left(\frac{a q}{\rho_{1} \rho_{2}}\right)^{n} \alpha_{n}}{\left(\frac{a q}{\rho_{1}}\right)_{n}\left(\frac{a q}{\rho_{2}}\right)_{n}}=\frac{(a q)_{\infty}\left(\frac{a q}{\rho_{1} \rho_{2}}\right)_{\infty}}{\left(\frac{a q}{\rho_{1}}\right)_{\infty}\left(\frac{a q}{\rho_{2}}\right)_{\infty}} \sum_{n=0}\left(\rho_{1}\right)_{n}\left(\rho_{2}\right)_{n}\left(\frac{a q}{\rho_{1} \rho_{2}}\right)^{n} \beta_{n} \tag{3}
\end{equation*}
$$

Proof .Making $q \rightarrow q^{2}$ and letting $\rho_{1}=\rho_{2}=q$ and $a=q^{2}$ in (3), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{2 n}\left(q ; q^{2}\right)_{n}^{2}}{\left(q^{3} ; q^{2}\right)_{n}^{2}} \alpha_{n}=\frac{\left(q^{4} ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q^{3} ; q^{2}\right)_{\infty}^{2}} \sum_{n=0}^{\infty} q^{2 n}\left(q ; q^{2}\right)_{n}^{2} \beta_{n} . \tag{4}
\end{equation*}
$$

In the Bailey pair given in [2, (2.13) and (2.14), p 73], making $q \rightarrow q^{2}$ and taking $a=q^{2}$ and putting in (4), we have

$$
\begin{align*}
& \frac{\left(q^{4} ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q^{3} ; q^{2}\right)_{\infty}^{2}} \sum_{n=0}^{\infty} \frac{q^{2 n}\left(q ; q^{2}\right)_{n}^{2}}{\left(q^{2} b ; q^{2}\right)_{n}\left(q^{2} c ; q^{2}\right)_{n}} \\
= & \sum_{n=0}^{\infty} \frac{q^{2 n}\left(q ; q^{2}\right)_{n}^{2}}{\left(q^{3} ; q^{2}\right)_{n}^{2}} \frac{q^{2 n^{2}}(b c)^{n}\left(1-q^{4 n+2}\right)\left(q^{2} / b ; q^{2}\right)_{n}\left(q^{2} / c ; q^{2}\right)_{n}}{\left(1-q^{2}\right)\left(q^{2} b ; q^{2}\right)_{n}\left(q^{2} c ; q^{2}\right)_{n}} \\
\times & \times \sum_{j=0}^{n} \frac{(-1)^{j}\left(1-q^{4 j}\right)\left(q^{2} ; q^{2}\right)_{j-1}\left(b ; q^{2}\right)_{j}\left(c ; q^{2}\right)_{j}}{q^{j^{2}-j}(b c)^{j}\left(q^{2} ; q^{2}\right)_{j}\left(q^{2} / b ; q^{2}\right)_{j}\left(q^{2} / c ; q^{2}\right)_{j}} . \tag{5}
\end{align*}
$$

Letting $b, c \rightarrow \infty$ in (5) we get, after simple calculation,

$$
\begin{equation*}
\left(q^{2} ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5}[q]=\sum_{n=0}^{\infty} \frac{q^{4 n^{2}+4 n}\left(1+q^{2 n+1}\right)}{\left(1-q^{2 n+1}\right)}\left[1+\sum_{j=-n}^{n}(-1)^{j} q^{-\left(3 j^{2}+j\right)}\right] \tag{6}
\end{equation*}
$$

4. Generalized Function

We give mild generalization of $\mathscr{D}_{5}[q]$. We define

$$
\mathscr{D}_{5}(z, \alpha):=\frac{1}{\left(q ; q^{2}\right)_{\infty}(z)_{\infty}} \sum_{n=0}^{\infty}(z)_{n}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)} .
$$

For $z=0$ and $\alpha=1$, this generalized function reduces to mock theta function $\mathscr{D}_{5}[q]$.

F_{q}-Function

Truesdell [8] calls the functions which satisfy the F- equation

$$
\frac{\partial}{\partial z} F(z, \alpha)=F(z, \alpha+1)
$$

F-function.
The q-analogue of Truesdell's definition: the functions which satisfy the q difference equation

$$
D_{q, z} F(z, \alpha)=F(z, \alpha+1)
$$

where

$$
z D_{q, z} F(z, \alpha)=F(z, \alpha)-F(z q, \alpha)
$$

are called F_{q}-functions. We now show $\mathscr{D}_{5}(\alpha, z)$ is a F_{q}-function.

$$
\begin{align*}
z D_{q, z} \mathscr{D}_{5}(z, \alpha) & =\mathscr{D}_{5}(z, \alpha)-\mathscr{D}_{5}(z q, \alpha) \\
& =\frac{1}{\left(q ; q^{2}\right)_{\infty}^{2}}\left[\frac{1}{(z)_{\infty}} \sum_{n=0}^{\infty}(z)_{n}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)}-\frac{1}{(z q)_{\infty}} \sum_{n=0}^{\infty}(z q)_{n}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)}\right] \\
& =\frac{1}{\left(q ; q^{2}\right)_{\infty}^{2}(z)_{\infty}}\left[\sum_{n=0}^{\infty}(z)_{n}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)}-\sum_{n=0}^{\infty}(z)_{n}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)}\left(1-z q^{n}\right)\right] \\
& =\frac{1}{\left(q ; q^{2}\right)_{\infty}^{2}(z)_{\infty}}\left[z \sum_{n=0}^{\infty}(z)_{n}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+2)}\right] \\
& =z \mathscr{D}_{5}(z, \alpha+1) \tag{7}
\end{align*}
$$

which shows $\mathscr{D}_{5}(z, \alpha)$ is a F_{q}-function.

5. Integral Representation

Theorem 2. $\mathscr{D}_{5}\left(q^{z}, \alpha\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{1} t^{z-1}(t q ; q)_{\infty} \mathscr{D}_{5}(0, b t) d_{q} t$.
The theorem is an integral representation for the generalized function.
Thomae [4, p. 19] and Jackson [4, p.19] defined the q-integral as

$$
\int_{0}^{1} f(t) \mathrm{d}_{q} t=(1-q) \sum_{n=0}^{\infty} f\left(q^{n}\right) q^{n} .
$$

Obviously the q-integration is a discrete process while Riemann integration is a limiting process. For q-integration the only requirements are the value of the function at the discrete set of points $\left\{q^{r}: r=0,1, \cdots\right\}$ and the convergence of the series defining the q-integral.

Equations (1.10.14) and (1.11.7) [4, pp. 18-19] it is easily seen , in the limiting case,

$$
\begin{equation*}
\frac{1}{\left(q^{\chi} ; q\right)_{\infty}}=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{1} t^{x-1}(t q ; q)_{\infty} d_{q} t \tag{8}
\end{equation*}
$$

Proof. By definition

$$
\left(q ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5}(z, \alpha)=\frac{1}{(z)_{\infty}} \sum_{n=0}^{\infty}(z)_{n}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)}
$$

Writing q^{z} for z and b for q^{α}, we have

$$
\begin{aligned}
\left(q ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5}\left(q^{z}, \alpha\right) & =\frac{1}{\left(q^{z}\right)_{\infty}} \sum_{n=0}^{\infty}\left(q^{z}\right)_{n}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)} \\
& =\sum_{n=0}^{\infty} \frac{\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)}}{\left(q^{n+z} ; q\right)_{\infty}} .
\end{aligned}
$$

By (8)

$$
\begin{align*}
\left(q ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5}\left(q^{z}, \alpha\right) & =\sum_{n=0}^{\infty}\left(q ; q^{2}\right)_{n}^{2} q^{n(\alpha+1)} \frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{1} t^{n+z-1}(t q ; q)_{\infty} d_{q} t \\
& =\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{1} t^{z-1}(t q ; q)_{\infty} \sum_{n=0}^{\infty}\left(q ; q^{2}\right)_{n}^{2} q^{n}(b t)^{n} d_{q} t \tag{9}
\end{align*}
$$

But

$$
\left(q ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5}(0, b)=\sum_{n=0}^{\infty}\left(q ; q^{2}\right)_{n}^{2} q^{n} b^{n}
$$

so

$$
\begin{equation*}
\left(q ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5}(0, b t) \tag{10}
\end{equation*}
$$

Substituting (10) in (9), we have

$$
\begin{equation*}
\mathscr{D}_{5}\left(q^{z}, \alpha\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{1} t^{z-1}(t q ; q)_{\infty} \mathscr{D}_{5}(0, b t) d_{q} t \tag{11}
\end{equation*}
$$

which proves the theorem.

6. Bibasic expansion for $\mathscr{D}_{5}(z, \alpha)$

We shall prove the following theorem which is a bibasic expansion of the generalized function.

Theorem 3. $\quad \mathscr{D}_{5}(x, \alpha)=\sum_{k=0}^{\infty}\left(1-x q^{-k-1}\right)(1-1 / q)\left(q ; q^{2}\right)_{k-1}^{2}(x ; q)_{k-1} q^{k \alpha+3 k}$

$$
\times \phi\left[\begin{array}{cc}
x q^{k-1}, q ; q^{2 k+1}, q^{2 k+2} & ; q, q^{2} ; q^{\alpha+1} \\
0 ; 0,0
\end{array}\right] .
$$

The summation formula [4, $p 71,(3.6 .7)]$ is

$$
\sum_{k=0}^{n} \frac{\left(1-a p^{k} q^{k}\right)\left(1-b p^{k} q^{-k}\right)(a, b ; p)_{k}(c, a / b c ; q)_{k} q^{k}}{(1-a)(1-b)(q, a q / b ; q)_{k}(a p / c, b c p ; p)_{k}} .
$$

Multiplying both sides by α_{m} and summing from 0 to ∞ and then applying Lemma 10 [7, p.57], we have

$$
\begin{align*}
& \sum_{k=0}^{\infty} \frac{\left(1-a p^{k} q^{k}\right)\left(1-b p^{k} q^{-k}\right)(a, b ; p)_{k}(c, a / b c ; q)_{k} q^{k}}{(1-a)(1-b)(q, a q / b ; q)_{k}(a p / c, b c p ; p)_{k}} \sum_{m=0}^{\infty} \alpha_{m+k} \\
= & \sum_{m=0}^{\infty} \frac{(a p, b p ; p)_{m}(c q, a q / b c ; q)_{m}}{(a p / c, b c p ; p)_{m}(q, a q / b ; q)_{m}} \alpha_{m} . \tag{12}
\end{align*}
$$

Proof. Making $q \rightarrow q^{2}$ and taking $a=0, p=q, b=\frac{x}{q}, c=\frac{1}{q}$ in (12), we have

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{(x ; q)_{m}\left(q ; q^{2}\right)_{m}}{(x / q ; q)_{m}\left(q^{2} ; q^{2}\right)_{m}} \alpha_{m}=\sum_{k=0}^{\infty} \frac{\left(1-x q^{-k-1}\right)\left(1 / q ; q^{2}\right)_{k} q^{2 k}}{(1-x / q)\left(q^{2} ; q^{2}\right)_{k}} \sum_{m=0}^{\infty} \alpha_{m+k} . \tag{13}
\end{equation*}
$$

Take $\alpha_{m}=\left(q ; q^{2}\right)_{m}\left(q^{2} ; q^{2}\right)_{m}(x / q ; q)_{m} q^{m(\alpha+1)}$ in (13),
$(x)_{\infty}\left(q ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5}(x, \alpha)=\sum_{k=0}^{\infty}\left(1-x q^{-k-1}\right)(1-1 / q)\left(q ; q^{2}\right)_{k-1}^{2}(x ; q)_{k-1} q^{k \alpha+3 k}$

$$
\times \phi\left[\begin{array}{cc}
x q^{k-1}, q ; q^{2 k+1}, q^{2 k+2} & ; q, q^{2} ; q^{\alpha+1} \tag{14}\\
0 ; 0,0 &
\end{array}\right] .
$$

7. Relation Between Second Order Mock Theta $\mathscr{D}_{5}(q)$ and the Other Second Order Mock Theta Function $B(q)$

We shall give an expansion of $\mathscr{D}_{5}(q)$ in terms of the mock theta function $B(q)$. For this we shall require the following identity.

$$
\begin{equation*}
\sum_{r=0}^{p} \alpha_{r} \beta_{r}=\beta_{p+1} \sum_{r=0}^{p} \alpha_{r}+\sum_{m=0}^{p}\left(\beta_{m}-\beta_{m+1}\right) \sum_{r=0}^{m} \alpha_{r} . \tag{15}
\end{equation*}
$$

Proof. The proof is simple requiring a rearrangement of the series:

$$
\begin{aligned}
\sum_{m=0}^{p}\left(\beta_{m}-\beta_{m+1}\right) \sum_{r=0}^{m} \alpha_{r}= & \left(\beta_{0}-\beta_{1}\right) \alpha_{0}+\left(\beta_{1}-\beta_{2}\right) \sum_{r=0}^{1} \alpha_{r} \\
& +\left(\beta_{2}-\beta_{3}\right) \sum_{r=0}^{2} \alpha_{r}+\cdots+\left(\beta_{p}-\beta_{p+1}\right) \sum_{r=0}^{p} \alpha_{r} \\
= & \alpha_{0} \beta_{0}+\alpha_{1} \beta_{1}+\cdots+\alpha_{p} \beta_{p}-\beta_{p+1}\left(\alpha_{0}+\alpha_{1}+\cdots+\alpha_{p}\right) \\
= & \sum_{r=0}^{p} \alpha_{r} \beta_{r}-\beta_{p+1} \sum_{r=0}^{p} \alpha_{r}
\end{aligned}
$$

The technique is that we choose α_{r}, β_{r} such that α_{r} is a mock theta function and $\alpha_{r} \beta_{r}$ is another mock theta function.

Relation between $\mathscr{D}_{5}(q)$ and $B(q)$
Take $\alpha_{r}=q^{r}\left(-q ; q^{2}\right)_{r} /\left(q^{3} ; q^{2}\right)_{r}$ and $\beta_{r}=q^{r}\left(-q ; q^{2}\right)_{r}\left(q^{3} ; q^{2}\right)_{r}$ and put in (15), to get

$$
\begin{aligned}
\sum_{r=0}^{p}\left(-q ; q^{2}\right)_{r} q^{2 r}= & q^{p+1}\left(-q ; q^{2}\right)_{p+1}\left(q^{3} ; q^{2}\right)_{p+1} \sum_{r=0}^{p} \frac{q^{r}\left(-q ; q^{2}\right)_{r}}{\left(q^{3} ; q^{2}\right)_{r}} \\
& +\sum_{m=0}^{p}\left[q^{m}\left(-q ; q^{2}\right)_{m}\left(q^{3} ; q^{2}\right)_{m}-q^{m+1}\left(-q ; q^{2}\right)_{m+1}\left(q^{3} ; q^{2}\right)_{m+1}\right]
\end{aligned}
$$

Hence

$$
\begin{align*}
\left(-q ; q^{2}\right)_{\infty}^{2} \mathscr{D}_{5, p}(-q)= & \frac{q^{p+1}}{1-q}\left(1-q^{2 p+3}\right)\left(q^{2} ; q^{4}\right)_{p+1} B_{p}(q) \sum_{r=0}^{m} \frac{q^{r}\left(-q ; q^{2}\right)_{r}}{\left(q^{3} ; q^{2}\right)_{r}} \\
& +\left[1-\frac{q^{p+1}}{1-q}\left(1-q^{2 p+3}\right)\left(q^{2} ; q^{4}\right)_{p+1}\right] \sum_{m=0}^{\infty} B_{m}(q), \tag{16}
\end{align*}
$$

where $B(q)$ is a second order mock theta function [6] and $\mathscr{D}_{5, p}(-q)$ and $B_{m}(q)$ are partial mock theta function. We take the partial sum from 0 to r and write by inserting suffix r to denote the partial sum.

8. Half-Shift Transformation On $\mathscr{D}_{5}(q)$

Gordon and McIntosh [5] gave a method of constructing mock theta functions by performing left-shift transformation on certain q-series. Here we show this mock theta function $\mathscr{D}_{5}(q)$ is obtained by using this method.

Take the series $\sum_{n=0}^{\infty}\left(q^{2} ; q^{2}\right)_{n}^{2} q^{2 n}$.
We shall write the series

$$
\sum_{n=0}^{\infty}\left(q^{2} ; q^{2}\right)_{n}^{2} q^{2 n}=\left(q^{2} ; q^{2}\right)_{\infty}^{2} \sum_{n=0}^{\infty} \frac{q^{2 n}}{\left(q^{2 n+2} ; q^{2}\right)_{\infty}^{2}}=\sum_{n=0}^{\infty} a_{n} \quad \text { (say) }
$$

where a_{n} is defined for all real n. We make a left half-shift and sum n over the positive half-integers $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \cdots$, instead of the non-negative integers. Define

$$
b_{n}=a_{n-\frac{1}{2}} .
$$

So

$$
\begin{aligned}
\sum_{n=0}^{\infty} b_{n} & =\sum_{n=0}^{\infty} a_{n-\frac{1}{2}}=\left(q^{2} ; q^{2}\right)_{\infty}^{2} \sum_{n=0}^{\infty} \frac{q^{2 n-1}}{\left(q^{2 n+1} ; q^{2}\right)_{\infty}^{2}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{\left(q ; q^{2}\right)_{\infty}^{2}} \sum_{n=0}^{\infty}\left(q ; q^{2}\right)_{n}^{2} q^{2 n-1} \\
& =\frac{1}{q} \frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty}\left(q ; q^{2}\right)_{n}^{2} q^{2 n} \\
& =\frac{1}{q}\left(q^{2} ; q^{2}\right)_{\infty} D_{5}(q) .
\end{aligned}
$$

Hence if we apply left half-shift transformation on the series

$$
\frac{q}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty}\left(q^{2} ; q^{2}\right)_{n}^{2} q^{2 n}
$$

we have the mock theta function $\mathscr{D}_{5}(q)$.

References

[1] G. E. Andrews and B.C. Berndt, Ramaunjan's Lost Notebook Part 1, Springer, New York, 2005.
[2] G. E. Andrews and D. Hickerson, Ramanujan’s 'Lost' Notebook VII: The sixth order mock theta functions, Adv. in Math. 89 (1991), 60-105.
[3] K. Hikami, Transformation formula of the second order Mock theta function, (Preprint).
[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[5] B. Gordon and R. J. McIntosh, Some eight order Mock theta functions, J. London Math. Soc. (2)62 (2000), 321-335.
[6] R. J. McIntosh, Second Order Mock Theta Function, Submitted to Canadian J. Math. 2004.
[7] E. D. Rainville, Special Function, Chelsea Publishing Company, Bronx, New York, 1960 b.
[8] Truesdell, An essay toward a unified theory of special functions, Princeton University Press, Princenton, 1948.
[9] G. N. Watson, The Mock theta functions (2), Proc. London Math. Soc. (2)42 (1937), 274-304.

