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Abstract 
  In this paper we consider a second order mock theta function, recently 

given by Hikami. We define a generalized function and show it is a qF -
function and give its integral representation and multibasic expansion. We 
also show that this mock theta function can be obtained by performing a left 
half-shift transformation on a certain theta series. 
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1.  Introduction  
 Recently Hikami [3] introduced the q-series D ][5 q , 
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in connection with the quantum invariant of 3-manifold.  Hikami [3] in his short note 
has shown the function D ][5 q  is a mock theta function and has called it of order two.  
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He has given a transformation formula for D ][5 q , using the method of Watson [9]. 
Using the transformation formula [1] 
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D ][5 q  can be written as 

D ][5 q .);(
);(

1
0

222
22 ∑

∞

=∞

=
n

n
n qqq

qq
                                                                     (1) 

Considering the importance of this second order mock theta function, we have studied 
the other properties of D ][5 q . 

 Mock theta functions are mysterious functions and not much is known about them. 
Ramanujan in his last letter to Hardy gave a list of 17 functions )(qF and called them 
mock theta functions. He called them mock theta functions as they were not theta 
functions. He stated that as q radially approaches any point ire π2

 (r rational) there is a 
theta function ),(qrθ   such that ).1()()( OqqF r =−θ  Moreover there is no single theta 
function which works for all r  i.e. for every theta function ),(qθ  there is some root of 
unity r for which )()( qqF θ−  is unbounded as →q ire π2

  radially.   
In Entry 12.45 of Andrews and Berndt [1], D ][5 q  has been written in the form of the 

Lerche’s sum. We write D ][5 q  as a double summation series. 
In section 4 we give a mild generalization of this mock theta function and show this 

generalized function belongs to the family of qF -functions. 

In sections 5 and 6 we give an integral representation and a bibasic expansion, 
respectively, for this generalized function. 

Lastly, by performing a half left-shift transformation on a theta series, we get this 
mock theta function.  
 
 

2.  Notation 
We shall use the following usual basic hypergeometric notations:      
      For ⎪qk⎪ < 1,     
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3.  Double Series Expansion 
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For giving the double series representation we shall use the Bailey pair method. 
 
Bailey’s Lemma 
If { }nα   and { }nβ  form a Bailey pair relative to a ,  then 
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Proof .Making 2qq →  and letting =1ρ q=2ρ  and 2qa =  in (3), we have
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In the Bailey pair given in [2, (2.13) and (2.14), p 73], making 2qq →  and taking 
2qa =  and putting in (4), we have 

  



 On a Second Order Mock Theta Functions 28

223

2224

);(
);();(

∞

∞∞

qq
qqqq ∑

∞

=0
2222

222

);();(
);(

n nn

n
n

qcqqbq
qqq

 

         ∑
∞

=

=
0

223

222

);(
);(

n n

n
n

qq
qqq 22 4 2 2 2 2 2

2 2 2 2 2
( ) (1 )( / ; ) ( / ; )

(1 )( ; ) ( ; )

n n n
n n

n n

q bc q q b q q c q
q q b q q c q

+−

−
 

           ( ) ( )∑
=

−

−−−
×

n

j jjj
jjj

jjj
jj

qcqqbqqqbcq

qcqbqqq

0
222222

22
1

224

;/;/);()(

);();();)(1()1(
2 .                                          (5) 

Letting ∞→cb,  in (5) we get, after simple calculation, 
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4. Generalized Function  
We give mild generalization of D ][5 q .  We define 
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For 0=z  and 1=α , this generalized function reduces to mock theta  function D ][5 q . 
 

qF -Function 

 Truesdell [8] calls the functions which satisfy the F- equation 

  )1,(),( +=
∂
∂ αα zFzF
z

              

 F -function. 
The q -analogue of Truesdell’s definition: the functions which satisfy the q -

difference equation 
 Dq,z )1,(),( += αα zFzF  

where 
 zDq,z ),(),(),( ααα zqFzFzF −=  
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are called qF -functions.  We now show D 5 ),( zα  is a  qF -function. 
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which shows D 5 ),( αz  is a  qF -function. 

 
 

5. Integral Representation 

Theorem 2. D ),(5 αzq = ∫ ∞
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The theorem is an integral representation for the generalized function. 
Thomae [4, p. 19] and Jackson [4, p.19] defined the q-integral as 
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 Obviously the q -integration is a discrete process while Riemann integration is a 
limiting process. For q -integration the only requirements are the value of the function 
at the discrete set of points{ }L,1,0: =rqr  and the convergence of the series defining 
the q -integral. 
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Equations (1.10.14) and (1.11.7) [4, pp. 18-19] it is easily seen , in the limiting 
case,  
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Proof. By definition 
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Writing zq for z and b  for αq ,  we have 
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By (8) 
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Substituting (10) in (9), we have 
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which proves the theorem. 
 
 

6. Bibasic expansion for D ( )α,5 z  
 We shall prove the following theorem which is a bibasic expansion of the generalized 
function. 
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Multiplying both sides by mα  and summing from 0 to ∞  and then applying                  
Lemma 10 [7, p.57], we have 
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7. Relation Between Second Order Mock Theta D  
and the Other Second Order Mock Theta  
Function ( )qB  

 
We shall give an expansion of D ( )q5  in terms of the mock theta function ( )qB . For 
this we shall require the following identity. 
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Proof.  The proof is simple requiring a rearrangement of the series:  
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The technique is that we choose rα , rβ  such that rα  is a mock theta function and 

rrβα  is another mock theta function. 
 

          Relation between D ( )q5  and ( )qB  

 Take rr
r
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 where )(qB is a second order mock theta function [6] and D p,5 )( q−  and )(qBm  are 

partial mock theta function. We take the partial sum from 0 to r and write by inserting 
suffix  r  to denote the partial sum. 

 
 

8. Half-Shift Transformation On  D ( )q5
  

 
                       Gordon and McIntosh [5] gave a method of constructing mock theta functions by 
performing left-shift transformation on certain q-series. Here we show this mock theta 
function D ( )q5  is obtained by using this method. 
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Hence if we apply left half-shift transformation on the series 
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       we have the mock theta function D ( )q5 . 
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