An Efficient Algorithm to Compute a Steiner Set and Steiner Tree on Trapezoid Graphs

Prabir K. Ghosh and Madhumangal Pal*
Department of Applied Mathematics with
Oceanology and Computer Programming,
Vidyasagar University, Midnapore-721102, India

Received March 12, 2006, Accepted June 7, 2006.

Abstract

This paper presents an efficient algorithm to compute a minimum cardinality Steiner set and Steiner tree on trapezoid graphs. The algorithm takes $O(m+n \sqrt{\log C})$ time for a trapezoid graph with n vertices and m edges, where cost of each arc is a non-negative integer number bounded by C.

Keywords and Phrases: Design and analysis of algorithms, Spanning tree, Steiner set, Steiner tree, Trapezoid graph.

1. Introduction

A trapezoid T_{i} is defined by fore corner points $\left[a_{i}, b_{i}, c_{i}, d_{i}\right]$, where $a_{i}<b_{i}$ and $c_{i}<d_{i}$ with a_{i}, b_{i} lying on the top channel and c_{i}, d_{i} lying on the bottom channel of the trapezoid diagram (see Figure 1(b)). An undirected graph $G=(V, E)$ is called a trapezoid graph if it can be represented by a trapezoid diagram such that each vertex v_{i} in V corresponds to a trapezoid T_{i} and $\left(v_{i}, v_{j}\right) \in E$ if and only if the trapezoids T_{i} and T_{j} corresponding to the vertices

[^0]v_{i} and v_{j} intersect in the trapezoid diagram. Figure 1(a) and Figure 1(b) represent a trapezoid graph and corresponding trapezoid diagram. The class of trapezoid graphs includes two well known classes of intersection graphs: the permutation
graphs and the interval graphs [9]. The permutation graphs are obtained in the case where $a_{i}=b_{i}$ and $c_{i}=d_{i}$ for all i, and the interval graphs are obtained in the case where $a_{i}=c_{i}$ and $b_{i}=d_{i}$ for all i. In addition to this we assume that these n trapezoids are in increasing order of their right corner points on the top channel i.e., for two trapezoids T_{i} and T_{j}, b_{i} is on the left of b_{j} iff $i<j$. The trapezoid graphs were first studied in [4, 5]. Trapezoid graphs can be recognized in $O\left(n^{2}\right)$ time [13]. These graphs are superclass of interval graphs and permutation graphs and subclass of cocomparability graphs [12]. There are so many works on Steiner tree in different type of graphs

(a)

$c_{2} d_{2} c_{1} c_{3} d_{1} c_{5} d_{3} d_{5} c_{4} c_{7} d_{4} c_{6} d_{7} d_{6} c_{8} d_{8} c_{9} c_{10} c_{11} d_{9} c_{12} d_{10} c_{13} d_{12} d_{11} c_{14} c_{15} d_{13} d_{14} d_{15}$

Figure 1: A trapezoid graph and its corresponding trapezoid diagram.
are available in literature. This generalized problem can be reduced to the node weighted Steiner tree problem, for which algorithms with performance guarantees of $O(\log n)$ are known. Khuller et al. [11] have designed an approximation algorithms with small constant factors for this problem. Drake et al. [7] proposed no polynomial time approximation algorithm for the terminal Steiner tree problem has a performance ratio less then $(1-O(1)) \ln n$ unless $N P$ has slightly superpolynomial time algorithms. Promel [17] has designed
an $R N C$ approximation algorithm for the Steiner tree problem in graph with performance ratio $5 / 3$ and $R N C$ approximation algorithms for the Steiner tree problem in networks with performance ratio $5 / 3+\varepsilon$ for all $\varepsilon>0$. Finding the minimum Steiner set of an arbitrary graph is known to be NP-complete [10]. Polynomial time algorithms are reported in the literature for some special classes of graphs such as strongly chordal graphs and distance heredity graphs [6, 18]. An $O\left(n^{3}\right)$ [3] time algorithm for this problem in permutation graphs was first given using a dynamic programming approach for the cardinality case and the result was improved to $O(m+n \log n)$ for the non-negative weights by reducing the problems into shortest path problem in a general network, and finally to $O(n+m)$ time using a new dynamic programming scheme. Mondal et al. [15] have designed an optimal algorithm to find Steiner tree on permutation graphs. Pal et al. [16] presents a linear time algorithm for the k-connected Steiner subgraph problem on an interval graph.

A path of a graph G is an alternating sequence of distinct vertices and edges, beginning and ending with vertices. The length of a path is the number of edges in the path. A path from vertex u to v is shortest path if there is no other path from u to v with length less then this.

For a given subset T of V, called a set of target vertices, a set $S \subset V$ is said to be a Steiner set for T in G if
(i) S is a subset of $V-T$, i.e., $S \subseteq V-T$,
(ii) the subgraph induced by $S \cup T$ in G is connected.

The Steiner set S is said to be minimum cardinality Steiner set, if the cardinality of S is minimum. A spanning tree of a connected subgraph induced by $S \cup T$ in G is called a Steiner tree. The minimum cardinality Steiner set problem is the problem of finding the minimum number of vertices to connect a given set of target vertices T.

In this paper, an algorithm is presented to compute a minimum cardinality Steiner set and Steiner tree on trapezoid graphs. The proposed algorithm takes $O(m+n \sqrt{\log C})$ time.

2. Preliminaries

In this section, we present some definitions and results. These results are found useful in developing the proposed algorithm.

Lemma 1. [2] Two vertices i and j of a trapezoid graph are not adjacent iff
either (i) $b_{i}<a_{j}$ and $d_{i}<c_{j}$ or (ii) $b_{j}<a_{i}$ and $d_{j}<c_{i}$.
Lemma 2. [8] Let G be a trapezoid graph and u, v be two adjacent vertices of G. If $u<w<v$, then w is adjacent to at least one of u or v.

Define the following term for a trapezoid graph $G=(V, E)$.
Let $N(u)=\{v: v \in V$ and $(v, u) \in E\}$ be the set of vertices which are adjacent to u.
$L N(u)=\{v: v \in N(u)$ and $v<u\}$ be the set of vertices which are less then u and adjacent to u, called left adjacent to u.
$R N(u)=\{v: v \in N(u)$ and $v>u\}$ be the set of vertices which are greater then u and adjacent to u, called right adjacent to u.
i.e., $N(u)=L N(u) \cup R N(u)$.

A Trapezoid T_{j} is said to be right adjacent to T_{i} if
(i) $a_{i}<a_{j}<b_{i}$ and $c_{i}<c_{j}<d_{i}$ or
(ii) $a_{i}<a_{j}<b_{i}$ and $c_{j}>d_{i}$ or
(iii) $a_{j}>b_{i}$ and $c_{i}<c_{j}<d_{i}$.

Conversely, T_{i} is called the left adjacent to T_{j}.
The possible cases when T_{i} is left adjacent to T_{j} or T_{j} is right adjacent to T_{i} are shown in Figure 2.

(i)

(ii)

(iii)

Figure 2: T_{i} is left adjacent to T_{j}
Given a trapezoid graph $G=(V, E)$ and a set of target vertices $T=$ $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ of V, with $x_{1}<x_{2}<\cdots<x_{k}$, we note that the subgraph induced by T is not necessarily connected. In general, it contains some connected subgraphs and some isolated vertices. If x_{1} and x_{k} belong to such two connected subgraphs we denote them by C_{0} and C_{1} respectively. If x_{1} and x_{k} are isolated then $C_{0}=\left\{x_{1}\right\}$ and $C_{1}=\left\{x_{k}\right\}$. Four situations arise, (a)
none of C_{0} and C_{1} is a singleton, (b) C_{0} is a singleton but not $C_{1},(c) C_{1}$ is a singleton but not C_{0} and (d) both C_{0} and C_{1} are singleton. If C_{0} and C_{1} are not singleton sets then we find two fictitious trapezoids T_{s} and T_{t} corresponding to C_{0} and C_{1} respectively. The four corner points of the trapezoid T_{s} are $\min \left\{a_{i}, i \in C_{0}\right\}, \max \left\{b_{i}, i \in C_{0}\right\}, \min \left\{c_{i}, i \in C_{0}\right\}$ and $\max \left\{d_{i}, i \in C_{0}\right\}$. Similarly, the four corner points of the trapezoid T_{t} are $\min \left\{a_{i}, i \in C_{1}\right\}$, $\max \left\{b_{i}, i \in C_{1}\right\}, \min \left\{c_{i}, i \in C_{1}\right\}$ and $\max \left\{d_{i}, i \in C_{1}\right\}$. Let s and t are the vertices corresponding to the trapezoids T_{s} and T_{t} respectively. We note that when C_{0} is singleton then $s=x_{1}$ and when C_{1} is singleton then $t=x_{k}$.

As the minimum cardinality Steiner set problem involves of finding the minimum number of vertices which connect a given set of target vertices, we construct an auxiliary graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V-L N\left(x_{1}\right)-R N\left(x_{k}\right)$ and $E^{\prime} \subseteq E$ and also containing the fictitious trapezoids T_{s} and T_{t} (Figure 3).

$c_{s} c_{5} d_{5} c_{7} d_{s} d_{7} c_{6} d_{6} c_{8} c_{9} d_{8} c_{11} c_{10} d_{9} d_{11} c_{12} d_{10} c_{t} d_{12} d_{t}$
(b)

Figure 3: New trapezoid graph G^{\prime} and its trapezoid diagram with respect to T.

Lemma 3. If T_{i} is a left adjacent trapezoid to $T_{x_{1}}$ in G then the trapezoid T_{i} is deleted from G, the reduced graph G^{\prime} has no effect.

Proof. Let T_{k} be a trapezoid in G and T_{k} is right adjacent to T_{i}. Since, T_{k} is right adjacent to T_{i} then T_{k} must adjacent to T_{j}, because T_{j} is right adjacent to T_{i}. But if T_{i} is deleted from G then T_{k} can not be deleted from G. Therefore, T_{k} becomes in G^{\prime}, i.e., the auxiliary graph G^{\prime} has no effect.

Similar to the above result we have the following lemma.
Lemma 4. If T_{i} is right adjacent to $T_{x_{k}}$ in G then the trapezoid T_{i} is deleted from G, the reduced graph G^{\prime} has no effect.

Lemma 5. If a trapezoid T_{j} is adjacent to at least one trapezoid of C_{0} then T_{j} is adjacent to T_{s}.

Proof. Let C_{0} be a connected subgraph containing the target vertex x_{1}. Let T_{s} be the fictitious trapezoid corresponding the subgraph C_{0}. The four corner points of the trapezoid T_{s} are $\min \left\{a_{i}, i \in C_{0}\right\}, \max \left\{b_{i}, i \in C_{0}\right\}$, $\min \left\{c_{i}, i \in C_{0}\right\}$ and $\max \left\{d_{i}, i \in C_{0}\right\}$. So, T_{s} is the least region which includes all the members of C_{O}. If the trapezoid T_{j} is adjacent to at least one trapezoid of C_{0} then that trapezoid of C_{0} and T_{j} have a common region, i.e., T_{j} and T_{s} have a common region. Therefore, T_{j} is adjacent to T_{s}. Hence the lemma.

Similar to the above lemma we have the following result.
Lemma 6. If a trapezoid T_{j} is adjacent to at least one trapezoid of C_{1} then T_{j} is adjacent to T_{t}.

To find the Steiner set we determine a shortest path between the vertices s and t containing maximum number of target vertices and let such shortest path be the subgraph $P^{\prime}=\left(V_{P^{\prime}}, E_{P^{\prime}}\right)$, where $V_{P^{\prime}}$ and $E_{P^{\prime}}$ respectively denote the set of vertices and edges. Let this path be $s \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{r-2} \rightarrow t$. We denote the path $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{r-2}$ by the subgraph $P=\left(V_{P}, E_{P}\right)$. We now consider the set $V_{P}-T$ and denote it by S. It can be shown that this set S is a Steiner set.

For the graph of Figure 1, let $T=\{3,4,6,8,9,13,14\}$ then $x_{1}=3, x_{k}=14$, $L N\left(x_{1}\right)=\{1,2\}, R N\left(x_{k}\right)=\{15\}, C_{0}=\{3,4\}$ and $C_{1}=\{13,14\}$.

In the following lemma we prove that S is a Steiner set.
Lemma 7. The set S is a Steiner set.

Proof. Let P^{\prime} is a shortest path between s and t in G^{\prime}. Therefore, if x_{p} is a member of T which is not a member of P^{\prime} such that $s<x_{p}<t$ then there always exist two adjacent vertices u and v of P^{\prime} with $u<x_{p}<v$. By Lemma $2, x_{p}$ is connected with at least one vertex of u and v as u and v are connected. Therefore, each vertex x_{p} of T with $s<x_{p}<t$ is connected with at least one vertex of P^{\prime}. Now s in G^{\prime} is connected with v_{1} of P^{\prime}. Therefore v_{1} is connected with s in G. Since s of G is in C_{0} and C_{1} is connected, it follows that $C_{0} \cup P$ is a connected subgraph in G. Similarly, $C_{1} \cup P$ is also a connected subgraph in G. Hence $C_{0} \cup P \cup C_{1}$ is a connected subgraph of G. Again each member of T is either a vertex of one of the subgraphs C_{0}, P and C_{1} or it is connected with some member of V_{P}. Hence the subgraph $T \cup V_{P}$ of G is connected. Now $S=V_{P}-T$ implies $T \cup V_{P}=T \cup S$. So, S is a Steiner set. Hence the lemma.

Next we show that the Steiner set S contains minimum number of vertices.
Lemma 8. The Steiner set S is minimum Steiner set.
Proof. By Lemma 7, $S=V_{P}-T$ is a Steiner set. As V_{P} contains minimum number of vertices, cardinality of V_{P} is minimum. Since $S=V_{P}-T$ and T is fixed. Therefore, S is minimum. Hence the lemma.

It may be noted that the subgraphs C_{0} and C_{1} are not necessarily tree, they may contain cycle. If they are not tree let T_{0} and T_{1} be the spanning trees corresponding to the subgraphs C_{0} and C_{1} respectively. It is shown in the following lemma that $T_{0} \cup P \cup T_{1}$ is a tree.

Lemma 9. The subgraph $T_{0} \cup P \cup T_{1}$ is a tree.
Proof. Let T_{0} and T_{1} be the spanning trees of C_{0} and C_{1}. Let the number of vertices of T_{0}, T_{1} and P^{\prime} be respectively p, q and r. The path P^{\prime} is $s \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{r-2} \rightarrow t$. If v_{1} is connected with s in G^{\prime}, then v_{1} is connected with s in G. The path $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{r-2}$ is P. Hence the tree T_{0} is connected with the path P which again connected with the tree T_{1} i.e., $T_{0} \cup P \cup T_{1}$ is connected. If T_{0} and P are connected by more then one edge we consider only one such edge. Similarly, we consider only one such edge connecting P and T_{1}. Clearly, the set of vertices of T_{0}, T_{1} and P are mutually disjoint. Therefore the number of vertices of $T_{0} \cup P \cup T_{1}$ is $p+(r-2)+q$ and the number of edges in it is $(p-1)+(r-2-1)+(q-1)+1+1$ i.e., $(p+(r-2)+q)-1$. Since $T_{0} \cup P \cup T_{1}$ is connected and its number of edges
is one less then its number of vertices, it is a tree. Hence the lemma.

If all the vertices of T are member of $T_{0} \cup P \cup T_{1}$, then $T_{0} \cup P \cup T_{1}=S \cup T$. So, the connected subgraph induced by $S \cup T$ is a Steiner tree.

If $T \not \subset T_{0} \cup P \cup T_{1}$, then let $R=T$-(vertices of $\left.\left(T_{0} \cup P \cup T_{1}\right)\right)$. By lemma 2 , each vertex of R is connected to at least one vertex of P. Now we construct a subgraph $T_{P \cup R}=\left(V_{P \cup R}, E_{P \cup R}\right)$ as follows.

The vertex set $V_{P \cup R}$ is taken as $V_{P} \cup R$. For each vertex $v \in R$, we find two consecutive vertices u and w of P such that $u<v<w$. Then by Lemma 2, at least one of (u, v) and $(u, v) \in E$. For each $v \in R$, we add one of these edges with E_{P} to form $E_{P \cup R}$.

From the construction of $T_{P \cup R}$ it is obvious that $T_{P \cup R}$ is a tree with minimum number of vertices $\left|V_{P \cup R}\right|=|P|+|R|$ and the number of edges $\left|E_{P \cup R}\right|=\left|E_{P}\right|+|R|=|P|-1+|R|$.

Thus if $S \cup T=\left(\right.$ vertices of $\left.\left(T_{0} \cup P \cup T_{1}\right)\right)$, then the Steiner tree is $T^{*}=$ $\left(T_{0} \cup P \cup T_{1}\right)$, otherwise it is $T^{*}=\left(T_{0} \cup T_{P \cup R} \cup T_{1}\right)$.

To find the shortest path between two vertices s and t containing maximum number of target vertices on G^{\prime}, the graph G^{\prime} is converted to a digraph $\vec{G}^{\prime \prime}$. Then applying the algorithm of Ahuja et al. [1] the shortest path P^{\prime} is to be determined. The conversion method is described below.

3. Shortest Distance Between two Given Vertices Through Some Specified Vertices

Let $G=(V, E)$ be an undirected graph and $T=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be the set of specified vertices through which the shortest path is to be determined. This problem is solve into two stages stated below:
(i) Convert the undirected graph into a directed graph,
(ii) Convert the vertex weight to edge weight.

3.1 Conversion of undirected graph to directed graph

A relation R is said to be symmetric relation if any two elements x_{i} and x_{j}, $x_{i} R x_{j}$ holds then also $x_{j} R x_{i}$ holds. Using symmetric relation, undirected graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is transformed to a directed graph $\vec{G}^{\prime}=\left(V^{\prime}, \overrightarrow{E^{\prime}}\right)$. The edge set \vec{E}^{\prime} is constructed as follows: If $(u, v) \in E^{\prime}$ then the order pairs (u, v) and (v, u)
are both the edges of \vec{E}^{\prime}. Thus every undirected graph is a representation of some symmetric binary relation (on the set of its vertices). Furthermore, every undirected graph with m edges can be through of as a symmetric digraph with $2 m$ directed edges. Figure 4 represents to a digraph \vec{G}^{\prime} corresponding to an undirected trapezoid graph G^{\prime} of Figure 3.

Figure 4: The digraph $\overrightarrow{G^{\prime}}$ corresponding to the graph G^{\prime}.

3.2 Conversion of vertex weight to edge weight

Suppose the graph $\vec{G}^{\prime}=\left(V^{\prime}, \vec{E}^{\prime}\right)$ is weighted and the weights are assigned to the edges. Let $w(u, v)$ be the weight of the edge (u, v). Here we assume that the weight of each edge and each specified vertex of the corresponding directed graph are unit and each non-specified vertex is a large number, say, M. Let $w(i)$ be the weight of the vertex i. Therefore, $w(i)=1$, for $i \in T$ and $w(i)=M$, for $i \in V^{\prime}-T$.

A network can be transformed into a network by replacing each vertex i by two vertices i^{\prime} and $i^{\prime \prime}$ and introducing a new directed edge ($\left.i^{\prime}, i^{\prime \prime}\right)$. All edges previously incident on i are made to be incident on i^{\prime} and all edges previously incident out of i are made to be incident of $i^{\prime \prime}$. This process is briefly illustrated in Figure 5. Again the digraph \vec{G}^{\prime} is transformed to a digraph $\vec{G}^{\prime \prime}$ by splitting all the vertices using the following method. Replacing each vertex i by two vertices i^{\prime} and $i^{\prime \prime}$ and introducing a new directed edge ($i^{\prime}, i^{\prime \prime}$). Therefore, weight of each vertex i is transformed to the weight of edge $\left(i^{\prime}, i^{\prime \prime}\right)$. The graph $\vec{G}^{\prime \prime}$ is a edge weighted directed graph of \vec{G}^{\prime}. The basic difference between the digraph \vec{G}^{\prime} and $\vec{G}^{\prime \prime}$ is that a non-negative integer weight $w(i)$ is assigned to each vertex i in \vec{G}^{\prime} but there is no weight assigned to any vertex in $\vec{G}^{\prime \prime}$. The weight of each vertex i of \vec{G}^{\prime} has been converted to the weight of each edge

Figure 5: The replacement process of vertices i and j by the vertices $i^{\prime}, i^{\prime \prime}, j^{\prime}$ and $j^{\prime \prime}$.
$\left(i^{\prime}, i^{\prime \prime}\right)$ of $\vec{G}^{\prime \prime}$. Figure 6 represents the edge weighted digraph $\vec{G}^{\prime \prime}$ corresponding to the digraph \vec{G}^{\prime} of Figure 4.

3.3 Weight of the edges

In Section 3.2, we construct a network, where weight of each vertex i is transformed to weight of edge $\left(i^{\prime}, i^{\prime \prime}\right)$. Let $w(i, j)$ be the weight of the directed edge $\left(i^{\prime}, i^{\prime \prime}\right)$ of the directed graph. Already, we assume that the weight of each edge of the digraph be 1 . For simplicity, $w(i, j)=w(j, i)=1$, for all i and j. Therefore, finally the digraph $\vec{G}^{\prime \prime}$ is the edge weighted digraph of \vec{G}^{\prime}.
For the graph $\overrightarrow{G^{\prime}}$ of Figure 4, let the set of specified vertices be $\{s, 6,8,9, t\}$. Then we put the weight of the vertices be $w(s)=1, w(5)=M, w(6)=1, w(7)$ $=M, w(8)=1, w(9)=1, w(10)=M, w(11)=M, w(12)=M$ and $w(t)=1$ and the weight of each edges be unit. The weight of the edges of the graph $\vec{G}^{\prime \prime}$ of Figure 6 are then become $w\left(5^{\prime}, 5^{\prime \prime}\right)=w\left(7^{\prime}, 7^{\prime \prime}\right)=w\left(10^{\prime}, 10^{\prime \prime}\right)=w\left(11^{\prime}, 11^{\prime \prime}\right)$ $=w\left(12^{\prime}, 12^{\prime \prime}\right)=M, w\left(s^{\prime}, s^{\prime \prime}\right)=w\left(6^{\prime}, 6^{\prime \prime}\right)=w\left(8^{\prime}, 8^{\prime \prime}\right)=w\left(9^{\prime}, 9^{\prime \prime}\right)=w\left(t^{\prime}, t^{\prime \prime}\right)=$ 1 and all other edges be unit.

Now, finding the shortest path between two vertices s and t through some specified (target vertices) vertices on G^{\prime} is equivalent to finding of shortest path between two vertices s^{\prime} and $t^{\prime \prime}$ on $\vec{G}^{\prime \prime}$. The shortest path P^{\prime} between s^{\prime} and $t^{\prime \prime}$ can be obtained by using the algorithm of Ahuja et al. [1].

Figure 6: The edge weighted digraph $\overrightarrow{G^{\prime \prime}}$ corresponding to the digraph $\overrightarrow{G^{\prime}}$.

4. Algorithm and its Complexity

To compute the Steiner set and Steiner tree we follow the following algorithm. The main steps of the algorithm are listed in Algorithm TSST.

ALGORITHM TSST
Input: A trapezoid graph G with trapezoid representation $T_{i}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$, $i=1,2, \ldots, n$ and a set of target vertices $T=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$.

Output: The Steiner set S and Steiner tree T^{*}.
Step 1: Compute the vertex set $L N\left(x_{1}\right)$ and $R N\left(x_{k}\right)$.
Step 2: Construct an auxiliary graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V-$ $L N\left(x_{1}\right)-R N\left(x_{k}\right)$ and $E^{\prime} \subseteq E$.

Step 3: Compute the subgraph C_{0} and C_{1} of G.
Step 4: Compute the spanning trees T_{0} and T_{1} of C_{0} and C_{1} respectively.
Step 5: Construct two fictitious trapezoids T_{s} and T_{t}.
Step 6: Compute a shortest path $P^{\prime}=\left(V_{P^{\prime}}, E_{P^{\prime}}\right)$ from s^{\prime} to $t^{\prime \prime}$ containing maximum number of target vertices on $\vec{G}^{\prime \prime}$.

Step 7: Compute $P=\left(V_{P}, E_{P}\right)$ from P^{\prime}.
Step 8: Compute the Steiner set $S=V_{P}-T$.
Step 9: Compute the set $R=T-\left(\right.$ vertices of $\left.\left.T_{0} \cup P \cup T_{1}\right)\right)$.

Step 10: If $T \not \subset\left(\right.$ vertices of $\left.\left(T_{0} \cup P \cup T_{1}\right)\right)$ then compute $T_{P \cup R}$.
Step 11: If $T \subset\left(\right.$ vertices of $\left.\left(T_{0} \cup P \cup T_{1}\right)\right)$ then
$T^{*}=\left(T_{0} \cup P \cup T_{1}\right)$
else
$T^{*}=\left(T_{0} \cup T_{P \cup R} \cup T_{1}\right)$.

end TSST.

For the graph of Figure 1, the Seiner set $S=\{7,10,12\}$ or $\{7,11,12\}$ if we consider the set of target vertices $T=\{3,4,6,8,9,13,14\}$.

Theorem 1. The minimum cardinality Steiner tree of a trapezoid graph with n vertices and m edges can be computed in $O(m+n \sqrt{\log C})$ time, where cost of each arc is a non-negative integer number bounded by C.

Proof. The vertex set $L N\left(x_{1}\right)$ and $R N\left(x_{k}\right)$ con be computed in $O(n)$ time (Step 1). Construction of the auxiliary graph G^{\prime} takes only $O(1)$ time (Step 2). The connected subgraph C_{0} and C_{1} of T can be computed in $O(n)$ time (Step 3). The spanning trees T_{0} and T_{1} can be computed in $O(n)$ time (Step 4). The fictitious trapezoids T_{s} and T_{t} can be computed in $O(n)$ time (Step 5). The shortest path between s^{\prime} and $t^{\prime \prime}$ in $\vec{G}^{\prime \prime}$ can be obtained in Section 3. The shortest path between two vertices of a general graph is constructed in $O(m+n \sqrt{\log C})$ time [1]. Therefore, Step 6 takes by $O(m+n \sqrt{\log C})$ time. Step 8 can be computed in $O(n)$ time. Step 9 can be computed in $O(n)$ time. Inclusion of a set into another set can be checked in $O(n)$ time. Thus, Steps 10 and 11 can be computed in $O(n)$ time. Hence overall time complexity is $O(m+n \sqrt{\log C})$. Hence the theorem.

References

[1] R. K. Ahuja, K. Mehlhorn, J. B. Orlin and R. E. Tarjan, Faster algorithm for the shortest path problem, J. ACM, 37 (1990) 213-223.
[2] D. Bera, M. Pal and T. K. Pal, An efficient algorithm to generate all maximal cliques on trapezoid graphs, Intern. J. Computer Math., 79 (10)(2002) 1057-1065.
[3] C. J. Colbourn and L. K. Stewant, Permutation graphs: connected domination and Steiner trees, Discrete Math., 86 (1990) 145-164.
[4] D. G. Corneil and P. A. Kamula, Extension of permutation and interval graphs, In: Proc. 18th Southeast Conf. on Combinatorics, Graph Theory and Computing, Congr. Numer, (1987) 267-276.
[5] I. Dagan, M. C. Golumbic and R. Y. Pinter, Trapezoid graphs and their coloring, Discrete Applied Mathematics, 21 (1988) 35-46.
[6] A. D‘Atri, and M. Mascarini, Distance hereditary graphs, Steiner trees and connected domination, SIAM J. Comput., 17 (1988) 521-538.
[7] D. E. Drake, S. Hougardy, On approximation algorithms for the terminal Steiner tree problem, Information Processing Letters, 84 (2004) 15-18.
[8] P. K. Ghosh and M. Pal, An efficient algorithm to find the maximum matching on trapezoid graphs, to appear in KSIAM.
[9] M. C. Golumbic, Algorithmic graph theory and prefect graphs, Academic Press, New York, 1980.
[10] S. T. Hedetniemi, and R. C. Laskar (Eds.), Topics on domination, Annals of Discrete Mathematics, North-Holland, Amsterdam, 48 (1991) 145-164.
[11] S. Khuller and A. Zhu., The general Steiner tree-star problem, Information Processing Letters, 84 (2002) 215-220.
[12] Y. D. Liang, Dominations in trapezoid graphs, Information Processing Letters, 52 (1994) 309-315.
[13] T. Ma and J. P. Spinrad, An $O\left(n^{2}\right)$ algorithm for 2-chain problem on certain classes of perfect graphs, In: Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, 1991.
[14] S. Mondal, M. Pal and T. K. Pal, An optimal algorithm for solving allpairs shortest paths on trapezoid graphs, International Journal of Computational Engineering Science, 3 (2)(2002) 103-116.
[15] S. Mondal, M. Pal and T. K. Pal, Optimal sequential and parallel algorithms to compute a Steiner tree on permutation graphs, International Journal of Computer Math., 80 (8)(2003) 939-945.
[16] M. Pal and G. P. Bhattacharjee, A linear algorithm for k-connected Steiner subgraph problem on an interval graph, Maeer's MIT Pune Journal, III (11) (1994) 50-52.
[17] H. J. Promel, A new approximation algorithm for the Steiner tree problem with performance ratio 5/3, Journal of Algorithms, 36 (2000) 89-101.
[18] Y. L. White, H. C. Chen and C. Y. Lee, $\operatorname{An} O(\log n)$ parallel algorithm for constructing a spanning tree on permutation graphs, Information Processing Letters, 56 (1995) 83-87.

[^0]: *Corresponding author E-mail: madhumangal@lycos.com

