
An Efficient Algorithm to Compute a Steiner

Set and Steiner Tree on Trapezoid Graphs

Prabir K. Ghosh and Madhumangal Pal∗

Department of Applied Mathematics with

Oceanology and Computer Programming,

Vidyasagar University, Midnapore-721102, India

Received March 12, 2006, Accepted June 7, 2006.

Tamsui Oxford Journal of Mathematical Sciences 24(1) (2008) 11-24
Aletheia University

Abstract

This paper presents an efficient algorithm to compute a minimum
cardinality Steiner set and Steiner tree on trapezoid graphs. The algo-
rithm takes O(m + n

√
log C) time for a trapezoid graph with n vertices

and m edges, where cost of each arc is a non-negative integer number
bounded by C.

Keywords and Phrases: Design and analysis of algorithms, Spanning tree,
Steiner set, Steiner tree, Trapezoid graph.

1. Introduction

A trapezoid Ti is defined by fore corner points [ai, bi, ci, di], where ai < bi and
ci < di with ai, bi lying on the top channel and ci, di lying on the bottom
channel of the trapezoid diagram (see Figure 1(b)). An undirected graph
G = (V, E) is called a trapezoid graph if it can be represented by a trapezoid
diagram such that each vertex vi in V corresponds to a trapezoid Ti and
(vi, vj) ∈ E if and only if the trapezoids Ti and Tj corresponding to the vertices

∗Corresponding author E-mail: madhumangal@lycos.com

12 Prabir K. Ghosh and Madhumangal Pal

vi and vj intersect in the trapezoid diagram. Figure 1(a) and Figure 1(b)
represent a trapezoid graph and corresponding trapezoid diagram. The class
of trapezoid graphs includes two well known classes of intersection graphs: the
permutation

graphs and the interval graphs [9]. The permutation graphs are obtained
in the case where ai = bi and ci = di for all i, and the interval graphs are
obtained in the case where ai = ci and bi = di for all i. In addition to this
we assume that these n trapezoids are in increasing order of their right corner
points on the top channel i.e., for two trapezoids Ti and Tj, bi is on the left of
bj iff i < j. The trapezoid graphs were first studied in [4, 5]. Trapezoid graphs
can be recognized in O(n2) time [13]. These graphs are superclass of inter-
val graphs and permutation graphs and subclass of cocomparability graphs
[12]. There are so many works on Steiner tree in different type of graphs

C
C
C
C
C
CA

A
A
A
A
A �

�
�
�
�
��

�
�
�
�
�

C
C
C
C
CC

S
S
S
S
S
SS

S
S
S
S
S �

�
�
�
�
��

�
�
�
�
� C

C
C
C
C
CA

A
A
A
A
A �

�
�
�
�
��

�
�
�
�
�

�
�
�
�
�
�

C
C
C
C
C
CS

S
S
S
S
S C

C
C
C
C
CC

C
C
C
C
C A

A
A
A
A
A�

�
�
�
�
� �

�
�
�
�
��

�
�
�
�� C

C
C
C
CC�

�
�
�
��

C
C
C
C
C
C

�
�
�
�
�
��

(b)

a1 a2 a3 b1 b2
a4 b3 b4

a5 a6 b5
a7 b6

a9 a8 b7
a10b8 b9

a11b10
a12b11

a13a14b12b13
a15b14b15

c2 d2 c1 c3 d1 c5 d3 d5 c4 c7 d4 c6 d7 d6 c8 d8 c9 c10c11d9 c12d10c13d12d11c14c15d13d14d15

(a)

l l l l ll
l m l l l l l l lbb

""

��

PP
@
@

@
@%
%%

QQ

��

��

aa

HH

""

1

2

3

5

4

6

7 9

8

10

11
12

13

14
15

Figure 1: A trapezoid graph and its corresponding trapezoid diagram.

are available in literature. This generalized problem can be reduced to the
node weighted Steiner tree problem, for which algorithms with performance
guarantees of O(log n) are known. Khuller et al. [11] have designed an ap-
proximation algorithms with small constant factors for this problem. Drake et
al. [7] proposed no polynomial time approximation algorithm for the terminal
Steiner tree problem has a performance ratio less then (1 − O(1)) ln n unless
NP has slightly superpolynomial time algorithms. Promel [17] has designed

An Efficient Algorithm to Compute 13

an RNC approximation algorithm for the Steiner tree problem in graph with
performance ratio 5/3 and RNC approximation algorithms for the Steiner
tree problem in networks with performance ratio 5/3+ε for all ε > 0. Finding
the minimum Steiner set of an arbitrary graph is known to be NP-complete
[10]. Polynomial time algorithms are reported in the literature for some special
classes of graphs such as strongly chordal graphs and distance heredity graphs
[6, 18]. An O(n3) [3] time algorithm for this problem in permutation graphs
was first given using a dynamic programming approach for the cardinality case
and the result was improved to O(m+n log n) for the non-negative weights by
reducing the problems into shortest path problem in a general network, and
finally to O(n + m) time using a new dynamic programming scheme. Mondal
et al. [15] have designed an optimal algorithm to find Steiner tree on permuta-
tion graphs. Pal et al. [16] presents a linear time algorithm for the k-connected
Steiner subgraph problem on an interval graph.

A path of a graph G is an alternating sequence of distinct vertices and
edges, beginning and ending with vertices. The length of a path is the number
of edges in the path. A path from vertex u to v is shortest path if there is no
other path from u to v with length less then this.

For a given subset T of V , called a set of target vertices, a set S ⊂ V is
said to be a Steiner set for T in G if

(i) S is a subset of V − T , i.e., S ⊆ V − T ,
(ii) the subgraph induced by S ∪ T in G is connected.
The Steiner set S is said to be minimum cardinality Steiner set, if the

cardinality of S is minimum. A spanning tree of a connected subgraph induced
by S ∪ T in G is called a Steiner tree. The minimum cardinality Steiner set
problem is the problem of finding the minimum number of vertices to connect
a given set of target vertices T .

In this paper, an algorithm is presented to compute a minimum cardinality
Steiner set and Steiner tree on trapezoid graphs. The proposed algorithm takes
O(m + n

√
log C) time.

2. Preliminaries

In this section, we present some definitions and results. These results are found
useful in developing the proposed algorithm.

Lemma 1. [2] Two vertices i and j of a trapezoid graph are not adjacent iff

14 Prabir K. Ghosh and Madhumangal Pal

either (i) bi < aj and di < cj or (ii) bj < ai and dj < ci.

Lemma 2. [8] Let G be a trapezoid graph and u, v be two adjacent vertices of
G. If u < w < v, then w is adjacent to at least one of u or v.

Define the following term for a trapezoid graph G = (V, E).
Let N(u) = {v : v ∈ V and (v, u) ∈ E} be the set of vertices which are

adjacent to u.
LN(u) = {v : v ∈ N(u) and v < u} be the set of vertices which are less

then u and adjacent to u, called left adjacent to u.
RN(u) = {v : v ∈ N(u) and v > u} be the set of vertices which are greater

then u and adjacent to u, called right adjacent to u.
i.e., N(u) = LN(u) ∪RN(u).

A Trapezoid Tj is said to be right adjacent to Ti if
(i) ai < aj < bi and ci < cj < di or
(ii) ai < aj < bi and cj > di or
(iii) aj > bi and ci < cj < di.
Conversely, Ti is called the left adjacent to Tj.
The possible cases when Ti is left adjacent to Tj or Tj is right adjacent to

Ti are shown in Figure 2.

�
�
�
�
�
� �

�
�
�
�
�

�
�
�
�
�
� �

�
�
�
�
�

�
�
�
�
�
� �

�
�
�
�
�

A
A
A
A
AT

T
T
T
TT

�
�
�
�
�
� �

�
�
�
�
�

�

�
�
�
�

ai aj bi bj
ai aj bi bj

ai bi
aj bj

Ti Tj Ti Tj Ti Tj

ci cj di dj

(i)
ci di cj dj

(ii)

ci cj di dj

(iii)

Figure 2: Ti is left adjacent to Tj

Given a trapezoid graph G = (V, E) and a set of target vertices T =
{x1, x2, . . . , xk} of V , with x1 < x2 < · · · < xk, we note that the subgraph
induced by T is not necessarily connected. In general, it contains some con-
nected subgraphs and some isolated vertices. If x1 and xk belong to such two
connected subgraphs we denote them by C0 and C1 respectively. If x1 and
xk are isolated then C0 = {x1} and C1 = {xk}. Four situations arise, (a)

An Efficient Algorithm to Compute 15

none of C0 and C1 is a singleton, (b) C0 is a singleton but not C1, (c) C1 is
a singleton but not C0 and (d) both C0 and C1 are singleton. If C0 and C1

are not singleton sets then we find two fictitious trapezoids Ts and Tt corre-
sponding to C0 and C1 respectively. The four corner points of the trapezoid
Ts are min{ai, i ∈ C0}, max{bi, i ∈ C0}, min{ci, i ∈ C0} and max{di, i ∈ C0}.
Similarly, the four corner points of the trapezoid Tt are min{ai, i ∈ C1},
max{bi, i ∈ C1}, min{ci, i ∈ C1} and max{di, i ∈ C1}. Let s and t are the
vertices corresponding to the trapezoids Ts and Tt respectively. We note that
when C0 is singleton then s = x1 and when C1 is singleton then t = xk.

As the minimum cardinality Steiner set problem involves of finding the
minimum number of vertices which connect a given set of target vertices, we
construct an auxiliary graph G′ = (V ′, E ′), where V ′ = V −LN(x1)−RN(xk)
and E ′ ⊆ E and also containing the fictitious trapezoids Ts and Tt (Figure 3).

S
S
S
S
S
S

�
�
�
�
�
��

�
�
�
��

C
C
C
C
C
CS

S
S
S
S
S �

�
�
�

�
��

�
�
�
�
� �

�
�
�
�
�
�D

D
D
D
D
D
D

C
C
C
C
CC

A
A
A
A
A
AA

A
A
A
A
A �

�
�
�
�
��

�
�
�
�� C

C
C
C
C
C�
�
�
�
�
��

cs c5 d5 c7 ds d7 c6 d6 c8 c9 d8 c11c10d9 d11c12d10ct d12dt

(b)

as bs
a5 a6 b5

a7 b6
a8 a9 b7

a10b8
a11b9 b10

a12b11b12
at bt

l l l l
l l l l

l l@
@
@@

@
@
@@

b
b
bb

��
��

�
�
��

s 7 9 10

5 6 8 11

12 t

(a)

Figure 3: New trapezoid graph G′ and its trapezoid diagram with respect to
T .

Lemma 3. If Ti is a left adjacent trapezoid to Tx1 in G then the trapezoid Ti

is deleted from G, the reduced graph G′ has no effect.

16 Prabir K. Ghosh and Madhumangal Pal

Proof. Let Tk be a trapezoid in G and Tk is right adjacent to Ti. Since, Tk is
right adjacent to Ti then Tk must adjacent to Tj, because Tj is right adjacent
to Ti. But if Ti is deleted from G then Tk can not be deleted from G. There-
fore, Tk becomes in G′, i.e., the auxiliary graph G′ has no effect. 2

Similar to the above result we have the following lemma.

Lemma 4. If Ti is right adjacent to Txk
in G then the trapezoid Ti is deleted

from G, the reduced graph G′ has no effect.

Lemma 5. If a trapezoid Tj is adjacent to at least one trapezoid of C0 then
Tj is adjacent to Ts.

Proof. Let C0 be a connected subgraph containing the target vertex x1.
Let Ts be the fictitious trapezoid corresponding the subgraph C0. The four
corner points of the trapezoid Ts are min{ai, i ∈ C0}, max{bi, i ∈ C0},
min{ci, i ∈ C0} and max{di, i ∈ C0}. So, Ts is the least region which in-
cludes all the members of CO. If the trapezoid Tj is adjacent to at least one
trapezoid of C0 then that trapezoid of C0 and Tj have a common region, i.e.,
Tj and Ts have a common region. Therefore, Tj is adjacent to Ts. Hence the
lemma. 2

Similar to the above lemma we have the following result.

Lemma 6. If a trapezoid Tj is adjacent to at least one trapezoid of C1 then
Tj is adjacent to Tt.

To find the Steiner set we determine a shortest path between the vertices
s and t containing maximum number of target vertices and let such shortest
path be the subgraph P ′ = (VP ′ , EP ′), where VP ′ and EP ′ respectively denote
the set of vertices and edges. Let this path be s→ v1 → v2 → · · · → vr−2 → t.
We denote the path v1 → v2 → · · · → vr−2 by the subgraph P = (VP , EP).
We now consider the set VP −T and denote it by S. It can be shown that this
set S is a Steiner set.

For the graph of Figure 1, let T = {3, 4, 6, 8, 9, 13, 14} then x1 = 3, xk = 14,
LN(x1) = {1, 2}, RN(xk) = {15}, C0 = {3, 4} and C1 = {13, 14}.

In the following lemma we prove that S is a Steiner set.

Lemma 7. The set S is a Steiner set.

An Efficient Algorithm to Compute 17

Proof. Let P ′ is a shortest path between s and t in G′. Therefore, if xp is a
member of T which is not a member of P ′ such that s < xp < t then there
always exist two adjacent vertices u and v of P ′ with u < xp < v. By Lemma
2, xp is connected with at least one vertex of u and v as u and v are connected.
Therefore, each vertex xp of T with s < xp < t is connected with at least one
vertex of P ′. Now s in G′ is connected with v1 of P ′. Therefore v1 is connected
with s in G. Since s of G is in C0 and C1 is connected, it follows that C0 ∪ P
is a connected subgraph in G. Similarly, C1 ∪ P is also a connected subgraph
in G. Hence C0 ∪ P ∪ C1 is a connected subgraph of G. Again each member
of T is either a vertex of one of the subgraphs C0, P and C1 or it is connected
with some member of VP . Hence the subgraph T ∪VP of G is connected. Now
S = VP−T implies T ∪VP = T ∪S. So, S is a Steiner set. Hence the lemma. 2

Next we show that the Steiner set S contains minimum number of vertices.

Lemma 8. The Steiner set S is minimum Steiner set.

Proof. By Lemma 7, S = VP − T is a Steiner set. As VP contains minimum
number of vertices, cardinality of VP is minimum. Since S = VP − T and T is
fixed. Therefore, S is minimum. Hence the lemma. 2

It may be noted that the subgraphs C0 and C1 are not necessarily tree,
they may contain cycle. If they are not tree let T0 and T1 be the spanning
trees corresponding to the subgraphs C0 and C1 respectively. It is shown in
the following lemma that T0 ∪ P ∪ T1 is a tree.

Lemma 9. The subgraph T0 ∪ P ∪ T1 is a tree.

Proof. Let T0 and T1 be the spanning trees of C0 and C1. Let the num-
ber of vertices of T0, T1 and P ′ be respectively p, q and r. The path P ′ is
s → v1 → v2 → · · · → vr−2 → t. If v1 is connected with s in G′, then v1 is
connected with s in G. The path v1 → v2 → · · · → vr−2 is P . Hence the tree
T0 is connected with the path P which again connected with the tree T1 i.e.,
T0 ∪ P ∪ T1 is connected. If T0 and P are connected by more then one edge
we consider only one such edge. Similarly, we consider only one such edge
connecting P and T1. Clearly, the set of vertices of T0, T1 and P are mutually
disjoint. Therefore the number of vertices of T0 ∪ P ∪ T1 is p + (r − 2) + q
and the number of edges in it is (p − 1) + (r − 2 − 1) + (q − 1) + 1 + 1 i.e.,
(p + (r − 2) + q)− 1. Since T0 ∪ P ∪ T1 is connected and its number of edges

18 Prabir K. Ghosh and Madhumangal Pal

is one less then its number of vertices, it is a tree. Hence the lemma. 2

If all the vertices of T are member of T0∪P ∪T1, then T0∪P ∪T1 = S∪T .
So, the connected subgraph induced by S ∪ T is a Steiner tree.

If T 6⊂ T0 ∪ P ∪ T1, then let R = T−(vertices of (T0 ∪ P ∪ T1)). By lemma
2, each vertex of R is connected to at least one vertex of P . Now we construct
a subgraph TP∪R = (VP∪R, EP∪R) as follows.

The vertex set VP∪R is taken as VP ∪ R. For each vertex v ∈ R, we find
two consecutive vertices u and w of P such that u < v < w. Then by Lemma
2, at least one of (u, v) and (u, v) ∈ E. For each v ∈ R, we add one of these
edges with EP to form EP∪R.

From the construction of TP∪R it is obvious that TP∪R is a tree with
minimum number of vertices |VP∪R| = |P | + |R| and the number of edges
|EP∪R| = |EP |+ |R| = |P | − 1 + |R|.

Thus if S ∪ T=(vertices of (T0 ∪ P ∪ T1)), then the Steiner tree is T ∗ =
(T0 ∪ P ∪ T1), otherwise it is T ∗ = (T0 ∪ TP∪R ∪ T1).

To find the shortest path between two vertices s and t containing maximum

number of target vertices on G′, the graph G′ is converted to a digraph
−→
G ′′.

Then applying the algorithm of Ahuja et al. [1] the shortest path P ′ is to be
determined. The conversion method is described below.

3. Shortest Distance Between two Given Ver-

tices Through Some Specified Vertices

Let G = (V, E) be an undirected graph and T = {x1, x2, . . . , xk} be the set of
specified vertices through which the shortest path is to be determined. This
problem is solve into two stages stated below:

(i) Convert the undirected graph into a directed graph,
(ii) Convert the vertex weight to edge weight.

3.1 Conversion of undirected graph to directed graph

A relation R is said to be symmetric relation if any two elements xi and xj,
xiRxj holds then also xjRxi holds. Using symmetric relation, undirected graph

G′ = (V ′, E ′) is transformed to a directed graph
−→
G ′ = (V ′,

−→
E ′). The edge set

−→
E ′ is constructed as follows: If (u, v) ∈ E ′ then the order pairs (u, v) and (v, u)

An Efficient Algorithm to Compute 19

are both the edges of
−→
E ′. Thus every undirected graph is a representation of

some symmetric binary relation (on the set of its vertices). Furthermore, every
undirected graph with m edges can be through of as a symmetric digraph with

2m directed edges. Figure 4 represents to a digraph
−→
G ′ corresponding to an

undirected trapezoid graph G′ of Figure 3.

�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��

�
�� �
��
- - -

?

6

-
�

6

?

�

?

6

�

6

?@
@

@@I@
@
@
@R

@
@
@@R@
@

@@I �
�

��	�
�
���

PPPPPqP
PP

PPi

�����
��

�
��*

-
�

s 7 9 10

11865

12 t

�

Figure 4: The digraph
−→
G′ corresponding to the graph G′.

3.2 Conversion of vertex weight to edge weight

Suppose the graph
−→
G ′ = (V ′,

−→
E ′) is weighted and the weights are assigned to

the edges. Let w(u, v) be the weight of the edge (u, v). Here we assume that
the weight of each edge and each specified vertex of the corresponding directed
graph are unit and each non-specified vertex is a large number, say, M . Let
w(i) be the weight of the vertex i. Therefore, w(i)=1, for i ∈ T and w(i)=M ,
for i ∈ V ′ − T .

A network can be transformed into a network by replacing each vertex i
by two vertices i′ and i′′ and introducing a new directed edge (i′, i′′). All edges
previously incident on i are made to be incident on i′ and all edges previously
incident out of i are made to be incident of i′′. This process is briefly illustrated

in Figure 5. Again the digraph
−→
G ′ is transformed to a digraph

−→
G ′′ by splitting

all the vertices using the following method. Replacing each vertex i by two
vertices i′ and i′′ and introducing a new directed edge (i′, i′′). Therefore, weight

of each vertex i is transformed to the weight of edge (i′, i′′). The graph
−→
G ′′

is a edge weighted directed graph of
−→
G ′. The basic difference between the

digraph
−→
G ′ and

−→
G ′′ is that a non-negative integer weight w(i) is assigned to

each vertex i in
−→
G ′ but there is no weight assigned to any vertex in

−→
G ′′. The

weight of each vertex i of
−→
G ′ has been converted to the weight of each edge

20 Prabir K. Ghosh and Madhumangal Pal

�
�� �
��-

�
�
��

-

�
�
�7

S
S
SSw

-�
�
��3

�
�� �
�� �
�� �
��-

�
�
��

- -

�

- -�
�
��7J

J
JĴ

i j i′ i′′ j′ j′′

w(i) w(j)
w(i) w(j)

(a) (b)

Figure 5: The replacement process of vertices i and j by the vertices i′, i′′, j′

and j′′.

(i′, i′′) of
−→
G ′′. Figure 6 represents the edge weighted digraph

−→
G ′′ corresponding

to the digraph
−→
G ′ of Figure 4.

3.3 Weight of the edges

In Section 3.2, we construct a network, where weight of each vertex i is trans-
formed to weight of edge (i′, i′′). Let w(i, j) be the weight of the directed
edge (i′, i′′) of the directed graph. Already, we assume that the weight of each
edge of the digraph be 1. For simplicity, w(i, j) = w(j, i) = 1, for all i and j.

Therefore, finally the digraph
−→
G ′′ is the edge weighted digraph of

−→
G ′.

For the graph
−→
G ′ of Figure 4, let the set of specified vertices be {s, 6, 8, 9, t}.

Then we put the weight of the vertices be w(s) = 1,w(5) = M , w(6) = 1, w(7)
= M , w(8) = 1, w(9) = 1, w(10) = M , w(11) = M , w(12) = M and w(t) = 1

and the weight of each edges be unit. The weight of the edges of the graph
−→
G ′′

of Figure 6 are then become w(5′, 5′′) = w(7′, 7′′) = w(10′, 10′′) = w(11′, 11′′)
= w(12′, 12′′) = M , w(s′, s′′) = w(6′, 6′′) = w(8′, 8′′) = w(9′, 9′′) = w(t′, t′′) =
1 and all other edges be unit.

Now, finding the shortest path between two vertices s and t through some
specified (target vertices) vertices on G′ is equivalent to finding of shortest

path between two vertices s′ and t′′ on
−→
G ′′. The shortest path P ′ between s′

and t′′ can be obtained by using the algorithm of Ahuja et al. [1].

An Efficient Algorithm to Compute 21

l l l l l l
l l

l
l
l

l
l
l

l l m l l l- - -

���

6

6
?

?

��
��

�
��

�
��

��* ���
���

���
���

����

�
�
�
�
�
�
�
�
�
�
�� �
�
�
�
�
�
�
�
�
�
�
�
�
���

S
S
S
S
S
S
SSo

J
J
J
J
J
J
J
J
J
J
Ĵ

-

�

@
@
@
@
@R

@
@

@
@

@
@

@
@I

���
����

�
�
�
�
�
��3

�����������)
��

��
��

��
��

��
��1

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BNB

B
B
B
B
B
B
B
B
B
B
B
B
B
B
BBM

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�3 �

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
��+

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

���

�
��

�
��

�
��

�
��

�
��

�
��
�*

��
���

���
���

���
����

6

?

��
���

���
���

���
���

���
���

��:

�������������������������9

9′′ 9′ 6′′ 6′ s′′ s′

12′

12′′

8′

8′′

t′ t′′ 7′ 7′′ 11′ 11′′

10′

10′′

5′

5′′

Figure 6: The edge weighted digraph
−→
G′′ corresponding to the digraph

−→
G′.

4. Algorithm and its Complexity

To compute the Steiner set and Steiner tree we follow the following algorithm.
The main steps of the algorithm are listed in Algorithm TSST.

ALGORITHM TSST
Input: A trapezoid graph G with trapezoid representation Ti(ai, bi, ci, di),

i = 1, 2, . . . , n and a set of target vertices T = {x1, x2, . . . , xk}.
Output: The Steiner set S and Steiner tree T ∗.
Step 1: Compute the vertex set LN(x1) and RN(xk).
Step 2: Construct an auxiliary graph G′ = (V ′, E ′), where V ′ = V −

LN(x1)−RN(xk) and E ′ ⊆ E.
Step 3: Compute the subgraph C0 and C1 of G.
Step 4: Compute the spanning trees T0 and T1 of C0 and C1 respectively.
Step 5: Construct two fictitious trapezoids Ts and Tt.
Step 6: Compute a shortest path P ′ = (VP ′ , EP ′) from s′ to t′′ containing

maximum number of target vertices on
−→
G ′′.

Step 7: Compute P = (VP , EP) from P ′.
Step 8: Compute the Steiner set S = VP − T .
Step 9: Compute the set R = T−(vertices of T0 ∪ P ∪ T1)).

22 Prabir K. Ghosh and Madhumangal Pal

Step 10: If T 6⊂ (vertices of (T0 ∪ P ∪ T1)) then compute TP∪R.
Step 11: If T ⊂ (vertices of (T0 ∪ P ∪ T1)) then

T ∗ = (T0 ∪ P ∪ T1)
else
T ∗ = (T0 ∪ TP∪R ∪ T1).

end TSST.
For the graph of Figure 1, the Seiner set S = {7, 10, 12} or {7, 11, 12} if we

consider the set of target vertices T = {3, 4, 6, 8, 9, 13, 14}.

Theorem 1. The minimum cardinality Steiner tree of a trapezoid graph with
n vertices and m edges can be computed in O(m + n

√
log C) time, where cost

of each arc is a non-negative integer number bounded by C.

Proof. The vertex set LN(x1) and RN(xk) con be computed in O(n) time
(Step 1). Construction of the auxiliary graph G′ takes only O(1) time (Step
2). The connected subgraph C0 and C1 of T can be computed in O(n) time
(Step 3). The spanning trees T0 and T1 can be computed in O(n) time (Step
4). The fictitious trapezoids Ts and Tt can be computed in O(n) time (Step

5). The shortest path between s′ and t′′ in
−→
G ′′ can be obtained in Section 3.

The shortest path between two vertices of a general graph is constructed in
O(m + n

√
log C) time [1]. Therefore, Step 6 takes by O(m + n

√
log C) time.

Step 8 can be computed in O(n) time. Step 9 can be computed in O(n) time.
Inclusion of a set into another set can be checked in O(n) time. Thus, Steps
10 and 11 can be computed in O(n) time. Hence overall time complexity is
O(m + n

√
log C). Hence the theorem. 2

References

[1] R. K. Ahuja, K. Mehlhorn, J. B. Orlin and R. E. Tarjan, Faster algorithm
for the shortest path problem, J. ACM, 37 (1990) 213-223.

[2] D. Bera, M. Pal and T. K. Pal, An efficient algorithm to generate all
maximal cliques on trapezoid graphs, Intern. J. Computer Math., 79
(10)(2002) 1057-1065.

An Efficient Algorithm to Compute 23

[3] C. J. Colbourn and L. K. Stewant, Permutation graphs: connected dom-
ination and Steiner trees, Discrete Math., 86 (1990) 145-164.

[4] D. G. Corneil and P. A. Kamula, Extension of permutation and interval
graphs, In: Proc. 18th Southeast Conf. on Combinatorics, Graph Theory
and Computing, Congr. Numer, (1987) 267-276.

[5] I. Dagan, M. C. Golumbic and R. Y. Pinter, Trapezoid graphs and their
coloring, Discrete Applied Mathematics, 21 (1988) 35-46.

[6] A. D‘Atri, and M. Mascarini, Distance hereditary graphs, Steiner trees
and connected domination, SIAM J. Comput., 17 (1988) 521-538.

[7] D. E. Drake, S. Hougardy, On approximation algorithms for the terminal
Steiner tree problem, Information Processing Letters, 84 (2004) 15-18.

[8] P. K. Ghosh and M. Pal, An efficient algorithm to find the maximum
matching on trapezoid graphs, to appear in KSIAM .

[9] M. C. Golumbic, Algorithmic graph theory and prefect graphs, Academic
Press, New York, 1980.

[10] S. T. Hedetniemi, and R. C. Laskar (Eds.), Topics on domination, Annals
of Discrete Mathematics, North-Holland, Amsterdam, 48 (1991) 145-164.

[11] S. Khuller and A. Zhu., The general Steiner tree-star problem, Informa-
tion Processing Letters, 84 (2002) 215-220.

[12] Y. D. Liang, Dominations in trapezoid graphs, Information Processing
Letters, 52 (1994) 309-315.

[13] T. Ma and J. P. Spinrad, An O(n2) algorithm for 2-chain problem on
certain classes of perfect graphs, In: Proc. 2nd ACM-SIAM Symp. on
Discrete Algorithms, 1991.

[14] S. Mondal, M. Pal and T. K. Pal, An optimal algorithm for solving all-
pairs shortest paths on trapezoid graphs, International Journal of Com-
putational Engineering Science, 3 (2)(2002) 103-116.

[15] S. Mondal, M. Pal and T. K. Pal, Optimal sequential and parallel algo-
rithms to compute a Steiner tree on permutation graphs, International
Journal of Computer Math., 80 (8)(2003) 939-945.

24 Prabir K. Ghosh and Madhumangal Pal

[16] M. Pal and G. P. Bhattacharjee, A linear algorithm for k-connected
Steiner subgraph problem on an interval graph, Maeer’s MIT Pune Jour-
nal, III (11)(1994) 50-52.

[17] H. J. Promel, A new approximation algorithm for the Steiner tree problem
with performance ratio 5/3, Journal of Algorithms, 36 (2000) 89-101.

[18] Y. L. White, H. C. Chen and C. Y. Lee, An O(log n) parallel algorithm
for constructing a spanning tree on permutation graphs, Information Pro-
cessing Letters, 56 (1995) 83-87.

