Neighborhood Properties of Certain Classes of Analytic Functions Using the Dziok-Srivastava Operator*

K. Suchithra ${ }^{\dagger}$ A. Gangadharan ${ }^{\ddagger}$
Department of Applied Mathematics Sri Venkateswara College
of Engineering Sriperumbudur 602105, India
and
Shigeyoshi Owa ${ }^{\text {§ }}$
Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8520, Japan

Received November 13, 2006, Accepted November 28, 2006.

Abstract

The main object of this paper is to prove several inclusion relations associated with the (n, δ)-neighborhoods of various subclasses of starlike and convex functions of complex order, which are introduced here by means of the Dziok-Srivastava operator. Special cases of some of these inclusion relations are shown to yield known results.

Keywords and Phrases: Analytic functions, Starlike functions, Convex functions, Dziok-Srivastava operator, (n, δ)-neighborhood, Inclusion relations, Identity function.

[^0]
1. Introduction

Let $\mathcal{A}(n)$ denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=n+1}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0 ; k \in \mathbb{N}-\{1\} ; n \in \mathbb{N}:=\{1,2,3, \cdots\}\right), \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\Delta=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

Following [10,13], we define the (n, δ)-neighborhood of a function $f(z) \in \mathcal{A}(n)$ by

$$
\begin{equation*}
N_{n, \delta}(f):=\left\{g \in \mathcal{A}(n): g(z)=z-\sum_{k=n+1}^{\infty} b_{k} z^{k} \text { and } \sum_{k=n+1}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta\right\} \tag{1.2}
\end{equation*}
$$

In particular, for the identity function

$$
e(z)=z
$$

we immediately have

$$
\begin{equation*}
N_{n, \delta}(e):=\left\{g \in \mathcal{A}(n): g(z)=z-\sum_{k=n+1}^{\infty} b_{k} z^{k} \text { and } \sum_{k=n+1}^{\infty} k\left|b_{k}\right| \leq \delta\right\} \tag{1.3}
\end{equation*}
$$

A function $f(z) \in \mathcal{A}(n)$ is said to be starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$, that is $f(z) \in \mathcal{S}_{n}^{\star}(\gamma)$, if it satisfies the inequality:

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{1}{\gamma}\left[\frac{z f^{\prime}(z)}{f(z)}-1\right]\right)>0 \quad(z \in \Delta ; \gamma \in \mathbb{C}-\{0\}) \tag{1.4}
\end{equation*}
$$

Furthermore, a function $f(z) \in \mathcal{A}(n)$ is said to be convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$, that is $f(z) \in \mathcal{C}_{n}(\gamma)$, if it satisfies the inequality:

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{1}{\gamma} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in \Delta ; \gamma \in \mathbb{C}-\{0\}) \tag{1.5}
\end{equation*}
$$

The classes $\mathcal{S}_{n}^{\star}(\gamma)$ and $\mathcal{C}_{n}(\gamma)$ stem essentially from the classes of starlike and convex functions of complex order, which were considered by Nasr and Aouf [12] and Wiatrowski [16], respectively (see also [5] and [6]).

Let $\mathcal{S}_{n}(\gamma, \mu, \beta)$ denote the subclass of $\mathcal{A}(n)$ consisting of functions $f(z)$ which satisfy the inequality:

$$
\begin{gather*}
\quad\left|\frac{1}{\gamma}\left\{\frac{z f^{\prime}(z)+\mu z^{2} f^{\prime \prime}(z)}{\mu z f^{\prime}(z)+(1-\mu) f(z)}-1\right\}\right|<\beta \tag{1.6}\\
(z \in \Delta ; \gamma \in \mathbb{C}-\{0\} ; \quad 0 \leq \mu \leq 1 ; \quad 0<\beta \leq 1)
\end{gather*}
$$

Let $\mathcal{R}_{n}(\gamma, \mu, \beta)$ denote the subclass of $\mathcal{A}(n)$ consisting of functions $f(z)$ which satisfy the inequality:

$$
\begin{gather*}
\left|\frac{1}{\gamma}\left\{f^{\prime}(z)+\mu z f^{\prime \prime}(z)-1\right\}\right|<\beta \tag{1.7}\\
(z \in \Delta ; \gamma \in \mathbb{C} \backslash\{0\} ; 0 \leq \mu \leq 1 ; 0<\beta \leq 1)
\end{gather*}
$$

Neighborhoods of the classes $\mathcal{S}_{n}(\gamma, \mu, \beta)$ and $\mathcal{R}_{n}(\gamma, \mu, \beta)$ were studied by Altintaş, Özkan and Srivastava[4]. Let \mathcal{A} denote the class of functions of the form $f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}$ which are analytic in the open unit disk $\Delta:=\{z:|z|<1\}$. Following the linear convolution operator introduced and investigated in a series of papers by Dziok and Srivastava (see, for details, [7], [8] and [9]), we define the Dziok-Srivastava operator for $f(z)$ belonging to \mathcal{A} as follows:

For $c_{i} \in \mathbb{C}(i=1, \cdots, l)$ and $d_{j} \in \mathbb{C}-\{0,-1,-2, \cdots\}(j=1, \cdots, m)$, the generalised hypergeometric function is defined by

$$
\begin{gathered}
{ }_{l} F_{m}\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m}\right)=\sum_{k=0}^{\infty} \frac{\left(c_{1}\right)_{k} \cdots\left(c_{l}\right)_{k}}{\left(d_{1}\right)_{k} \cdots\left(d_{m}\right)_{k}} \times \frac{z^{k}}{k!}, \\
\left(l \leq m+1 ; l, m \in \mathbb{N}_{0}=\{0,1,2, \cdots\}\right)
\end{gathered}
$$

where $(a)_{n}$ is the Pochhammer symbol defined by

$$
(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}=a(a+1) \cdots(a+n-1)
$$

for $n \in \mathbb{N}=\{1,2, \cdots\}$ and 1 when $n=0$.
Corresponding to the function

$$
h\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m} ; z\right)=z{ }_{l} F_{m}\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m}\right),
$$

the Dziok-Srivastava operator, $H_{m}^{l}\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m}\right)$ is defined by

$$
\begin{gather*}
H_{m}^{l}\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m}\right) f(z)=h\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m} ; z\right) * f(z) \\
=z-\sum_{k=2}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}} \cdot \frac{a_{k} z^{k}}{(k-1)!} \tag{1.8}
\end{gather*}
$$

where "*" stands for convolution.
It is well known that

$$
\begin{align*}
& c_{1} H_{m}^{l}\left(c_{1}+1, \cdots, c_{l} ; d_{1}, \cdots, d_{m}\right) f(z) \\
= & z\left[H_{m}^{l}\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m}\right) f(z)\right]^{\prime} \\
& +\left(c_{1}-1\right) H_{m}^{l}\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m}\right) f(z) . \tag{1.9}
\end{align*}
$$

To make the notation simple, we write,

$$
\begin{equation*}
H_{m}^{l}\left[c_{1}\right] f(z)=H_{m}^{l}\left(c_{1}, \cdots, c_{l} ; d_{1}, \cdots, d_{m} ; z\right) f(z) \tag{1.10}
\end{equation*}
$$

We can define the Dziok-Srivatsava operator for $f(z)$ belonging to the class $\mathcal{A}(n)$ as follows:

$$
\begin{equation*}
H_{m}^{l}\left[c_{1}\right] f(z)=z-\sum_{k=n+1}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}} \cdot \frac{a_{k} z^{k}}{(k-1)!} \tag{1.11}
\end{equation*}
$$

Let $\mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ denote the subclass of $\mathcal{A}(n)$ consisting of functions $f(z)$ in $\mathcal{A}(n)$ which satisfy the inequality:

$$
\begin{equation*}
\left|\frac{1}{\gamma}\left\{\frac{z\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime}+\mu z^{2}\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime \prime}}{\mu z\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime}+(1-\mu)\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)}-1\right\}\right|<\beta \tag{1.12}
\end{equation*}
$$

$\left(z \in \Delta ; \gamma \in \mathbb{C}-\{0\} ; l \leq m+1 ; \quad 0<\beta \leq 1 ; \mu \geq 0 ; \quad c_{i} \in \mathbb{C}, i=1,2, \cdots, l ;\right.$ $\left.d_{j} \in \mathbb{C}-\{0,-1,-2, \cdots\}, j=1,2, \cdots, m\right)$.

Also let $\mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ denote the subclass of $\mathcal{A}(n)$ consisting of functions $f(z)$ in $\mathcal{A}(n)$ which satisfy the inequality:

$$
\begin{equation*}
\left|\frac{1}{\gamma}\left\{\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime}+\mu z\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime \prime}-1\right\}\right|<\beta \tag{1.13}
\end{equation*}
$$

$\left(z \in \Delta ; \gamma \in \mathbb{C}-\{0\} ; \mu \geq 0 ; \quad 0<\beta \leq 1 ; \quad l \leq m+1 ; \quad c_{i} \in \mathbb{C}, i=1,2, \cdots, l ;\right.$ $\left.d_{j} \in \mathbb{C}-\{0,-1,-2, \cdots\}, j=1, \cdots, m\right)$.

For $c_{1}=\lambda+1, c_{2}=1$ and $d_{1}=1$ with $l=2$ and $m=1$ the Dziok-Srivastava operator for $f(z)$ belong to $\mathcal{A}(n)$ reduces to the Ruscheweyh derivative operator $D^{\lambda}: \mathcal{A}(n) \rightarrow \mathcal{A}(n)$ which is defined as

$$
D^{\lambda} f(z)=\frac{z}{(1-z)^{\lambda+1}} * f(z)(\lambda>-1 ; \quad f(z) \in \mathcal{A}(n))
$$

or equivalently, by

$$
\begin{equation*}
D^{\lambda} f(z)=z-\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1} a_{k} z^{k} \quad(\lambda>-1 ; \quad f(z) \in \mathcal{A}(n)) \tag{1.14}
\end{equation*}
$$

Here, and in what follows, we make use of the following standard notation:

$$
\binom{p}{q}:=\frac{p(p-1) \cdots(p-q+1)}{q!}\left(p \in \mathbb{C} ; q \in \mathbb{N}_{0}\right) .
$$

for a binomial coefficient. In particular, we have

$$
D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!}\left(n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right)
$$

The above defined classes $\mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ and $\mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ with the above convention for c_{1}, c_{2} and d_{1} reduces to the classes $\mathcal{S}_{n}(\gamma, \mu, \beta, \lambda)$ and $\mathcal{R}_{n}(\gamma, \mu, \beta, \lambda)$ which are defined as follows:

Let $\mathcal{S}_{n}(\gamma, \mu, \beta, \lambda)$ denote the subclass of $\mathcal{A}(n)$ consisting of functions $f(z)$ in $\mathcal{A}(n)$ which satisfy the inequality:

$$
\begin{align*}
& \left|\frac{1}{\gamma}\left\{\frac{z\left(D^{\lambda} f(z)\right)^{\prime}+\mu z^{2}\left(D^{\lambda} f(z)\right)^{\prime \prime}}{\mu z\left(D^{\lambda} f(z)\right)^{\prime}+(1-\mu)\left(D^{\lambda} f(z)\right)}-1\right\}\right|<\beta \tag{1.15}\\
& (z \in \Delta ; \gamma \in \mathbb{C}-\{0\} ; \quad 0<\beta \leq 1 ; \mu \geq 0, \lambda>-1) .
\end{align*}
$$

Also, let $\mathcal{R}_{n}(\gamma, \mu, \beta, \lambda)$ denote the subclass of $\mathcal{A}(n)$ consisting of $f(z)$ in $\mathcal{A}(n)$ which satisfy the inequality:

$$
\begin{equation*}
\left|\frac{1}{\gamma}\left\{\left(D^{\lambda} f(z)\right)^{\prime}+\mu z\left(D^{\lambda} f(z)\right)^{\prime \prime}-1\right\}\right|<\beta \tag{1.16}
\end{equation*}
$$

$$
(z \in \Delta ; \gamma \in \mathbb{C}-\{0\} ; \quad 0<\beta \leq 1 ; \mu \geq 0, \lambda>-1)
$$

Various subclasses of $\mathcal{S}_{n}(\gamma, \mu, \beta, 0)$ and $\mathcal{R}_{n}(\gamma, \mu, \beta, 0)$ with $\gamma=1$ were studied in many earlier works (cf., e.g., $[2,15]$).

Clearly we have,

$$
\mathcal{S}_{n}(\gamma, 0,1,0) \subset \mathcal{S}_{n}^{\star}(\gamma) \text { and } \mathcal{S}_{n}(\gamma, 0,1,1) \subset \mathcal{C}_{n}(\gamma) \quad(n \in \mathbb{N}, \gamma \in \mathbb{C}-\{0\})
$$

The main object of the present paper is to investigate the (n, δ)-neighborhoods of the subclasses

$$
\mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right), \mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right) \text { and } \mathcal{S}_{n}(\gamma, \mu, \beta, \lambda), \mathcal{R}_{n}(\gamma, \mu, \beta, \lambda) .
$$

of the class $\mathcal{A}(n)$ of normalised analytic functions in Δ with negative and missing coefficients.

Our definition of the function classes

$$
\mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right), \mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right) \text { and } \mathcal{S}_{n}(\gamma, \mu, \beta, \lambda), \mathcal{R}_{n}(\gamma, \mu, \beta, \lambda)
$$

are motivated essentially by two earlier investigations [4] and [11], in each of which closely- related subclasses can be found.In particular in our function classes $\mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right), \mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ and $\mathcal{S}_{n}(\gamma, \mu, \beta, \lambda), \mathcal{R}_{n}(\gamma, \mu, \beta, \lambda)$ involving the inequality (1.12),(1.13),(1.15) and (1.16), we have relaxed the parametric constraint $0 \leq \mu \leq 1$, which was imposed earlier by Altintaş, Özkan and Srivastava[4, p. 64 Equations (1.7) and (1.8)](see also Remark 3 below).

2. A Set of Inclusion Relations Involving $N_{n, \delta}(e)$

In our investigation of the inclusion relations involving $N_{n, \delta}(e)$, we need the following Lemmas.
Lemma 1. Let the function $f(z) \in \mathcal{A}(n)$ be defined by (1.1), then $f(z)$ is in the class $\mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}}[((k-1)+\beta|\gamma|)(1+\mu(k-1))] \frac{a_{k}}{(k-1)!} \leq \beta|\gamma| .(\tag{2.1}
\end{equation*}
$$

Proof. Let $f(z) \in \mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$. Then by appealing to condition (1.12), we readily get

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime}+\mu z^{2}\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime \prime}}{\mu z\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime}+(1-\mu)\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)}-1\right\}>-\beta|\gamma|,(z \in \Delta) \tag{2.2}
\end{equation*}
$$

or equivalently,

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{-\sum_{k=n+1}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}}[(k-1)(1+\mu(k-1))] \frac{a_{k} z^{k}}{(k-1)!}}{z-\sum_{k=n+1}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}}[1+\mu(k-1)] \frac{a_{k} z^{k}}{(k-1)!}}\right\} \\
& >-\beta|\gamma|,(z \in \Delta) \tag{2.3}
\end{align*}
$$

where we have made use of definition (1.1). Now choose values of z on the real axis and let $z \rightarrow 1^{-}$through real values. Then the inequality (2.3) immediately yields the required condition(2.1).

Conversely, by applying the hypothesis (2.1) and letting $|z|=1$, we find that

$$
\begin{align*}
& \left|\frac{z\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime}+\mu z^{2}\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime \prime}}{\mu z\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)^{\prime}+(1-\mu)\left(H_{m}^{l}\left[c_{1}\right] f(z)\right)}-1\right| \\
= & \left|\frac{\sum_{k=n+1}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}}[(k-1)(1+\mu(k-1))] \frac{a_{k} z^{k}}{(k-1)!}}{z-\sum_{k=n+1}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}}[1+\mu(k-1)] \frac{a_{k} z^{k}}{(k-1)!}}\right| \\
\leq & \beta|\gamma|\left\{1-\sum_{k=n+1}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}}[1+\mu(k-1)] \frac{a_{k}}{(k-1)!}\right\} \\
\leq & \beta|\gamma| . \tag{2.4}
\end{align*}
$$

Hence, by maximum modulus theorem, we have $f(z) \in \mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$, which evidently completes the proof of Lemma 1.

Similarly, we can prove the following.

Lemma 2. Let the function $f(z) \in \mathcal{A}(n)$ be defined by (1.1). Then $f(z)$ is in
the class $\mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} \frac{\left(c_{1}\right)_{k-1} \cdots\left(c_{l}\right)_{k-1}}{\left(d_{1}\right)_{k-1} \cdots\left(d_{m}\right)_{k-1}}[k(1+\mu(k-1))] \frac{a_{k}}{(k-1)!} \leq \beta|\gamma| . \tag{2.5}
\end{equation*}
$$

Now, for $c_{1}=\lambda+1, c_{2}=1$ and $d_{1}=1$ with $l=2$ and $m=1$ in the above lemmas, we get the corresponding results for the subclasses $\mathcal{S}_{n}(\gamma, \mu, \beta, \lambda)$ and $\mathcal{R}_{n}(\gamma, \mu, \beta, \lambda)$.

Lemma 3. Let the function $f(z) \in \mathcal{A}(n)$ be defined by (1.1). Then $f(z)$ is in the class $\mathcal{S}_{n}(\gamma, \mu, \beta, \lambda)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}[((k-1)+\beta|\gamma|)(1+\mu(k-1))] a_{k} \leq \beta|\gamma| . \tag{2.6}
\end{equation*}
$$

Lemma 4. Let the function $f(z) \in \mathcal{A}(n)$ be defined by (1.1). Then $f(z)$ is in the class $\mathcal{R}_{n}(\gamma, \mu, \beta, \lambda)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\binom{\lambda+k-1}{k-1}[k(1+\mu(k-1))] a_{k} \leq \beta|\gamma| . \tag{2.7}
\end{equation*}
$$

Remark 1. A special case of Lemma 1 and Lemma 2 when $l=2, m=1, c_{1}=$ $c_{2}=d_{1}=1$ was given by Altintaş et. al[4, p.64,Lemma 1 and p.65,Lemma 2].

Remark 2. A special case of Lemma 3 when $\mu=0$ was given recently by Murugusundaramoorthy and Srivastava [11]. Also a special case of Lemma 3 when $n=1, \gamma=1, \mu=0$ and $\beta=1-\alpha(0 \leq \alpha<1)$ was given earlier by Ahuja [1]. Furthermore, if, in Lemma 3 with $n=1, \gamma=1, \mu=0, \beta=$ $1-\alpha(0 \leq \alpha<1)$, we set $\lambda=0$ and $\lambda=1$, we shall obtain the familiar results of Silverman [14].

Our first inclusion relations involving $N_{n, \delta}(e)$ are given by Theorems below.
Theorem 1. If

$$
\begin{equation*}
\delta:=\frac{(n+1) \beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right]} \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right) \subset N_{n, \delta}(e) \tag{2.9}
\end{equation*}
$$

Proof. For a function $f(z) \in \mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$, lemma 1 immediately yields

$$
\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right] \sum_{k=n+1}^{\infty} a_{k} \leq \beta|\gamma|
$$

so that

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} a_{k} \leq \frac{\beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right]} \tag{2.10}
\end{equation*}
$$

On the other hand, we also find from (2.1) and (2.10) that

$$
\begin{aligned}
& {\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{1+\mu n}{n!}\right] \sum_{k=n+1}^{\infty} k a_{k} } \\
\leq & \beta|\gamma|+(1-\beta|\gamma|)\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{1+\mu n}{n!}\right] \sum_{k=n+1}^{\infty} a_{k} \\
\leq & \beta|\gamma|+(1-\beta|\gamma|)\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{1+\mu n}{n!}\right] \\
& {\left[\frac{\beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{l}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right]}\right.} \\
\leq & \frac{(n+1) \beta|\gamma|}{n+\beta|\gamma|}(|\gamma|<1),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k a_{k} \leq \frac{(n+1) \beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right]}:=\delta . \tag{2.11}
\end{equation*}
$$

which, in view of definition (1.3), proves Theorem 1.

Similarly by applying Lemma 2 instead of Lemma 1, we now prove Theorem 2 below.

Theorem 2. If

$$
\begin{equation*}
\delta:=\frac{\beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{1+\mu n}{n!}\right]}, \tag{2.12}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right) \subset N_{n, \delta}(e) \tag{2.13}
\end{equation*}
$$

Proof. Suppose that a function $f(z) \in \mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ is of the form (1.1). Then we find from the assertion (2.5) of Lemma 2 that

$$
\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(n+1)(1+\mu n)}{n!}\right] \sum_{k=n+1}^{\infty} a_{k} \leq \beta|\gamma|,
$$

which yields the following inequality:

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} a_{k} \leq \frac{\beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(n+1)(1+\mu n)}{n!}\right]} \tag{2.14}
\end{equation*}
$$

Making use of (2.5) in conjunction with (2.14), we have

$$
\begin{aligned}
& {\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right] \frac{\mu(n+1)}{n!} \sum_{k=n+1}^{\infty} k a_{k} } \\
\leq & \beta|\gamma|+\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(\mu-1)(n+1)}{n!}\right] \sum_{k=n+1}^{\infty} a_{k} \\
\leq & \beta|\gamma|+\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(\mu-1)(n+1)}{n!}\right] \\
& {\left[\frac{\beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(n+1)(1+\mu n)}{n!}\right]}\right.}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k a_{k} \leq \frac{\beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{1+\mu n}{n!}\right]}:=\delta \tag{2.15}
\end{equation*}
$$

which in light of definition (1.3), completes the proof of Theorem 2.
Now for $c_{1}=\lambda+1, c_{2}=1$ and $d_{1}=1$ with $l=2$ and $m=1$ in the above theorems, we get the corresponding results for the subclasses $\mathcal{S}_{n}(\gamma, \mu, \beta, \lambda)$ and $\mathcal{R}_{n}(\gamma, \mu, \beta$, lambda $)$.

Theorem 3. If

$$
\begin{equation*}
\delta:=\frac{(n+1) \beta|\gamma|}{\binom{\lambda+n}{n}(1+\mu n)(n+\beta|\gamma|)}, \tag{2.16}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{S}_{n}(\gamma, \mu, \beta, \lambda) \subset N_{n, \delta}(e) \tag{2.17}
\end{equation*}
$$

Theorem 4. If

$$
\begin{equation*}
\delta:=\frac{\beta|\gamma|}{\binom{\lambda+n}{n}(1+\mu n)}, \tag{2.18}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{R}_{n}(\gamma, \mu, \beta, \lambda) \subset N_{n, \delta}(e) \tag{2.19}
\end{equation*}
$$

Remark 3. A special case of Theorem 1 and Theorem 2 when $l=2, m=$ $1, c_{1}=c_{2}=d_{1}=1$ was given by Altintaş et. al[4, p.65,Theorem 1 and p.66,Theorem 2].Incidentally as we indicated in section 1 above, the condition of $\mu>1$ is needed in the proof of one of these known results [4, p.66, Theorem $2]$.This implies that the constraint $0 \leq \mu \leq 1$ in [4, p. 64 Equations (1.7) and (1.8)] should be replaced by a less stringent constraint $\mu \geq 0$.

Remark 4. A special case of Theorem 3 when $\mu=0$ was given recently by Murugusundaramoorthy and Srivastava [11].Also a special case of Theorem 3 when $\lambda=0, \mu=0, \gamma=1-\alpha(0 \leq \alpha<1)$ and $\beta=1$ was proven by Altintaş and Owa [3].

3. Neighborhoods for The Classes
 $$
\mathcal{S}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right) \text { and } \mathcal{R}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)
$$

In this section, we determine the neighborhood for each of the classes $\mathcal{S}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right), \mathcal{R}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ and $\mathcal{S}_{n}^{(\alpha)}(\gamma, \mu, \beta, \lambda), \mathcal{R}_{n}^{(\alpha)}(\gamma, \mu, \beta, \lambda)$ which we define as follows.

A function $f(z) \in \mathcal{A}(n)$ is said to be in the class $\mathcal{S}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$, if there exists a function $g(z) \in \mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-\alpha(z \in \Delta ; \quad 0 \leq \alpha<1) \tag{3.1}
\end{equation*}
$$

Also, a function $f(z) \in \mathcal{A}(n)$ is said to be in the class $\mathcal{R}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$, if there exists a function $g(z) \in \mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ such that the inequality (3.1) holds true.

Analogously, we can define the classes $\mathcal{S}_{n}^{(\alpha)}(\gamma, \mu, \beta, \lambda)$ and $\mathcal{R}_{n}^{(\alpha)}(\gamma, \mu, \beta, \lambda)$.
Theorem 5. If $g(z) \in \mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ and

$$
\begin{equation*}
\alpha=1-\frac{\delta\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right]\left[\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right]}{(n+1)\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\left(\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right)-\beta|\gamma|\right]}, \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \mathcal{S}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right) \tag{3.3}
\end{equation*}
$$

Proof. Suppose that $f(z) \in N_{n, \delta}(g)$. We then find from (1.2) that

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta \tag{3.4}
\end{equation*}
$$

which readily implies the coefficient inequality

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\left|a_{k}-b_{k}\right| \leq \frac{\delta}{n+1}(n \in \mathbb{N}) \tag{3.5}
\end{equation*}
$$

Next, since $g(z) \in \mathcal{S}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$, we have from (2.14)

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} b_{k} \leq \frac{\beta|\gamma|}{\left[\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\left(\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right)\right]} \tag{3.6}
\end{equation*}
$$

so that

$$
\begin{align*}
\left|\frac{f(z)}{g(z)}-1\right| & <\frac{\sum_{k=n+1}^{\infty}\left|a_{k}-b_{k}\right|}{1-\sum_{k=n+1}^{\infty} b_{k}} \\
& \leq \frac{\delta}{n+1}\left[\frac{\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\left(\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right)}{\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\left(\frac{(1+\mu n)(n+\beta|\gamma|)}{n!}\right)-\beta|\gamma|}\right] \\
& =1-\alpha \tag{3.7}
\end{align*}
$$

provided that α is given precisely by (3.2).
Thus, by definition, $f(z) \in \mathcal{S}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ for α given by (3.2), which evidently completes the proof of Theorem 5 .

The proof of Theorem 6 below is much similar to that of Theorem 5 and so the details are omitted.

Theorem 6. If $g(z) \in \mathcal{R}_{n}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right)$ and

$$
\begin{equation*}
\alpha=1-\frac{\delta\left(\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right)\left(\frac{(1+\mu n)}{n!}\right)}{\left(\frac{\left(c_{1}\right)_{n} \cdots\left(c_{l}\right)_{n}}{\left(d_{1}\right)_{n} \cdots\left(d_{m}\right)_{n}}\right)\left(\frac{(n+1)(1+\mu n)}{n!}\right)-\beta|\gamma|}, \tag{3.8}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \mathcal{R}_{n}^{(\alpha)}\left(\gamma, \mu, \beta, c_{i}, d_{j}\right) \tag{3.9}
\end{equation*}
$$

For the values of $c_{1}=\lambda+1, c_{2}=1$ and $d_{1}=1$ with $l=2$ and $m=1$ in Theorem 5 and Theorem 6, we get the corresponding results for the subclasses $\mathcal{S}_{n}^{(\alpha)}(\gamma, \mu, \beta, \lambda)$ and $\mathcal{R}_{n}^{(\alpha)}(\gamma, \mu, \beta, \lambda)$.

Theorem 7. If $g(z) \in \mathcal{S}_{n}(\gamma, \mu, \beta, \lambda)$ and

$$
\begin{equation*}
\alpha=1-\frac{\delta\binom{\lambda+n}{n}(1+\mu n)(n+\beta|\gamma|)}{(n+1)\left[\binom{\lambda+n}{n}(1+\mu n)(n+\beta|\gamma|)-\beta|\gamma|\right]} \tag{3.10}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \mathcal{S}_{n}^{(\alpha)}(\gamma, \mu, \beta, \lambda) . \tag{3.11}
\end{equation*}
$$

Theorem 8. If $g(z) \in \mathcal{R}_{n}(\gamma, \mu, \beta, \lambda)$ and

$$
\begin{equation*}
\alpha=1-\frac{\delta\binom{\lambda+n}{n}(1+\mu n)}{\binom{\lambda+n}{n}(n+1)(1+\mu n)-\beta|\gamma|}, \tag{3.12}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{n, \delta}(g) \subset \mathcal{R}_{n}^{(\alpha)}(\gamma, \mu, \beta, \lambda) . \tag{3.13}
\end{equation*}
$$

Remark 5. A special case of Theorem 5 and Theorem 6 when $l=2, m=$ $1, c_{1}=c_{2}=d_{1}=1$ was given by Altintaş et. al $[4$, p. 67 , Theorem 3 and p. 67 , Theorem 4].

Remark 6. A special case of Theorem 7 when $\mu=0$ was given by Murugasundaramoorthy and Srivastava [11].

References

[1] O. P. Ahuja, Hadamard products of analytic functions defined by Ruscheweyh derivatives, in Current Topics in Analytic Function Theory (H. M. Srivastava and S. Owa, Editors), pp. 13-28, World Scientific

Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[2] O. Altintaş, On a subclass of certain starlike functions with negative coefficients, Math. Japon. 36(3) (1991), 489-495.
[3] O. Altintaş and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci., 19(4) (1996), 797-800.
[4] O. Altintaş, Ö. Özkan, and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13(3) (2000), 63-67.
[5] O. Altintaş, Ö. Özkan, and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46 (2001), 207-218.
[6] O. Altintaş and H. M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J. 17 (2001), 175-183.
[7] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[8] J. Dziok and H. M. Srivastava Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. 5 (2002), 115-125.
[9] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct. 14 (2003), 7-18.
[10] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.
[11] G. Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2) (2004), Article 24, 1-8.
[12] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
[13] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81(4) (1981), 521-527.
[14] H. Silverman, Neighborhoods of classes of analytic functions, Far East J. Math. Sci. 3(1995), 165-169.
[15] H. M. Srivastava, S. Owa, and S. K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987), 115-124.
[16] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lódz Nauk. Mat.-Przyrod (2) 39 (1970), 75-85.

[^0]: *2000 Mathematics Subject Classification. Primary 30C45.
 ${ }^{\dagger}$ E-mail: suchithrak@svce.ac.in
 ¥E-mail: ganga@svce.ac.in
 ${ }^{\text {§ E-mail: owa@math.kindai.ac.jp }}$

