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Abstract

The main purpose of this paper is to use a variant of Grüss inequality
to obtain a sharp generalized Ostrowski-Grüss inequality for absolutely
continuous functions whose derivative is bounded both above and below
almost everywhere. Thus we provide improvement and generalization
of some previous results.

Keywords and Phrases: Grüss inequality, Ostrowski-Grüss inequality, Ab-
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1. Introduction

In 1935, G.Grüss (see for example [6, p.296]), proved the following inte-
gral inequality which gives an approximation for the integral of a product of
two functions in terms of the product of integrals of the two functions.

Theorem A. Let h, g : [a, b] → R be two integrable functions such that
φ ≤ h(t) ≤ Φ and γ ≤ g(t) ≤ Γ for all t ∈ [a, b], where φ, Φ, γ, Γ are
real numbers. Then we have
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|T (h, g)| ≤ 1

4
(Φ− φ)(Γ− γ), (1)

where

T (h, g) =
1

b− a

∫ b

a

h(t)g(t) dt− 1

b− a

∫ b

a

h(t) dt · 1

b− a

∫ b

a

g(t) dt (2)

and the inequality is sharp, in the sense that the constant 1
4

cannot be replaced
by a smaller one.

From then on, (1) is well known in the literature as Grüss inequality.
A premature Grüss inequality originated from Grüss’ work (see also [6,

p.296]) is embodied in the following theorem which was considered and ap-
plied for the first time in the paper [5] by M.Matić, J.Pečarić and N.Ujević in
2000.

Theorem B. Let h, g : [a, b] → R be two integrable functions such that
γ ≤ g(t) ≤ Γ for all t ∈ [a, b], where γ,Γ ∈ R. Then we have

|T (h, g)| ≤ Γ− γ
2

[T (h, h)]
1
2 , (3)

where T (h, g) is as defined in (2).

In 2002, X.L.Cheng and J.Sun [3] have got the following variant of the
Grüss inequality.

Theorem C. Let h, g : [a, b] → R be two integrable functions such that
γ ≤ g(t) ≤ Γ for all t ∈ [a, b], where γ,Γ ∈ R. Then

|T (h, g)| ≤ Γ− γ
2(b− a)

∫ b

a

|h(t)− 1

b− a

∫ b

a

h(u) du|dt, (4)

where T (h, g) is as defined in (2).

It is not difficult to find that the premature Grüss inequality (3) provides
a sharper bound than the Grüss inequality (1) and the variant of Grüss in-
equality (4) provides a sharper bound than the premature Grüss inequality
(3).
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In [1], Theorem A and Theorem B have been used to provide a general-
ized Ostrowski-Grüss inequality with different bounds. In this paper, we will
use Theorem C to give a sharp generalized Ostrowski-Grüss inequality for ab-
solutely continuous functions whose derivative is bounded above and below
almost everywhere. Some sharp integral inequalities of midpoint, trapezoidal
and Simpson type are obtained or recaptured as particular cases.

2. The Results

Theorem. Let f : [a, b]→ R be a function which is absolutely continuous on
[a, b]. Assume that there exist constants γ,Γ ∈ R such that γ ≤ f ′(t) ≤ Γ a.e.
on [a, b]. Then for all x ∈ [a, b] we have

|
∫ b
a
f(t) dt− (b− a){(1− θ)f(x) + θ[(x−a

b−a )f(a) + ( b−x
b−a)f(b)]}

+(b− a)(1− 2θ)(x− a+b
2

)S| ≤ Γ−γ
2
I(θ, x),

(5)

where

S =
f(b)− f(a)

b− a
,

and

I(θ, x) =


[a+b

2
− (1− θ)a− θx]2, a ≤ x ≤ a+(1−2θ)b

2(1−θ) ,

[1
4

+ (θ − 1
2
)2][(x− a)2 + (b− x)2], a+(1−2θ)b

2(1−θ) < x < (1−2θ)a+b
2(1−θ) ,

[θx+ (1− θ)b− a+b
2

]2, (1−2θ)a+b
2(1−θ) ≤ x ≤ b

(6)
for 0 ≤ θ ≤ 1

2
, and

I(θ, x) =


[a+b

2
− θa− (1− θ)x]2, a ≤ x ≤ a+(2θ−1)b

2θ
,

[1
4

+ (θ − 1
2
)2][(x− a)2 + (b− x)2], a+(2θ−1)b

2θ
< x < (2θ−1)a+b

2θ
,

[(1− θ)x+ θb− a+b
2

]2, (2θ−1)a+b
2θ

≤ x ≤ b

(7)
for 1

2
< θ ≤ 1.

Proof.Integrating by parts produces the identity
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∫ b

a

K(x, t)f ′(t) dt = (1−θ)(b−a)f(x)+θ(x−a)f(a)+θ(b−x)f(b)−
∫ b

a

f(t) dt,

(8)
where

K(x, t) =

{
t− [θx+ (1− θ)a], t ∈ [a, x],
t− [θx+ (1− θ)b], t ∈ (x, b].

(9)

Moreover

1

b− a

∫ b

a

K(x, t) dt = (1− 2θ)(x− a+ b

2
). (10)

Applying the variant of Grüss inequality (4) by associating g(t) with f ′(t)
and h(t) with K(x, t) and multiply through by (b-a) gives

|
∫ b
a
K(x, t)f ′(t) dt− 1

b−a

∫ b
a
K(x, t) dt

∫ b
a
f ′(t) dt|

≤ Γ−γ
2

∫ b
a
|K(x, t)− 1

b−a

∫ b
a
K(x, u) du| dt.

Then for any fixed x ∈ [a, b] we can derive from (8), (9) and (10) that

|
∫ b
a
f(t) dt− (b− a){(1− θ)f(x) + θ[(x−a

b−a )f(a) + ( b−x
b−a)f(b)]}

+(b− a)(1− 2θ)(x− a+b
2

)S| ≤ Γ−γ
2
I(θ, x),

(11)

where

I(θ, x) =
∫ x
a
|t− [θx+ (1− θ)a]− (1− 2θ)(x− a+b

2
)| dt

+
∫ b
x
|t− [θx+ (1− θ)b]− (1− 2θ)(x− a+b

2
)| dt

=
∫ x
a
|t− [(1− θ)x+ θb− b−a

2
]| dt+

∫ b
x
|t− [θa+ (1− θ)x+ b−a

2
]| dt.

The last two integrals can be calculated as follows:
For brevity, we put

p1(t) := t− [(1− θ)x+ θb− b− a
2

], t ∈ [a, x],

p2(t) := t− [θa+ (1− θ)x+
b− a

2
], t ∈ [x, b]
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and denote t1 = (1− θ)x+ θb− b−a
2

, t2 = θa+ (1− θ)x+ b−a
2

.
It is clear that both p1(t) and p2(t) are strictly increasing on [a, x] and [x, b]

respectively. Moreover, we have

p1(a) = (1− θ)(b− x)− b− a
2

, p1(x) =
b− a

2
− θ(b− x);

p2(x) = θ(x− a)− b− a
2

, p2(b) =
b− a

2
− (1− θ)(x− a).

For 0 ≤ θ ≤ 1
2
, it is immediate that p1(x) > 0 and p2(x) < 0. Meanwhile,

p1(a) ≥ 0 if x ∈ [a, a+(1−2θ)b
2(1−θ) ] and p1(a) < 0 if x ∈ (a+(1−2θ)b

2(1−θ) , b], p2(b) ≤ 0 if

x ∈ [ (1−2θ)a+b
2(1−θ) , b] and p2(b) > 0 if x ∈ [a, (1−2θ)a+b

2(1−θ) ). Notice that a+(1−2θ)b
2(1−θ) ≤

(1−2θ)a+b
2(1−θ) , there are three possible cases to be determined.

(i) In case x ∈ [a, a+(1−2θ)b
2(1−θ) ], p1(t) ≥ 0 for t ∈ [a, x] and p2(b) > 0 with

t2 ∈ (x, b) such that p2(t2) = 0. We have

I(θ, x) =
∫ x
a

(t− t1) dt+
∫ t2
x

(t2 − t) dt+
∫ b
t2

(t− t2) dt

= (1−2θ)(x−a)(b−x)
2

+ θ(θ − 1)(x− a)2 + (x−a)2+(b−x)2

4

= [1
2
(b− x) + (1

2
− θ)(x− a)]2 = [a+b

2
− (1− θ)a− θx]2.

(12)

(ii) In case x ∈ (a+(1−2θ)b
2(1−θ) , (1−2θ)a+b

2(1−θ) ), p1(a) < 0 with t1 ∈ (a, x) such that

p1(t1) = 0 and p2(b) > 0 with t2 ∈ (x, b) such that p2(t2) = 0. We have

I(θ, x) =
∫ t1
a

(t1 − t) dt+
∫ x
t1

(t− t1) dt+
∫ t2
x

(t2 − t) dt+
∫ b
t2

(t− t2) dt

= [1
4

+ (θ − 1
2
)2][(x− a)2 + (b− x)2].

(13)

(iii) In case x ∈ [ (1−2θ)a+b
2(1−θ) , b], p1(a) < 0 with t1 ∈ (a, x) such that p1(t1) = 0

and p2(t) ≤ 0 for t ∈ [x, b]. We have

I(θ, x) =
∫ t1
a

(t1 − t) dt+
∫ x
t1

(t− t1) dt+
∫ b
x
(t2 − t) dt

= (1−2θ)(x−a)(b−x)
2

+ θ(θ − 1)(b− x)2 + (x−a)2+(b−x)2

4

= [1
2
(x− a) + (1

2
− θ)(b− x)]2 = [θx+ (1− θ)b− a+b

2
]2.

(14)

For 1
2
< θ ≤ 1, it is immediate that p1(a) < 0 and p2(b) > 0. Meanwhile,

p1(x) ≤ 0 if x ∈ [a, a+(2θ−1)b
2θ

] and p1(x) > 0 if x ∈ (a+(2θ−1)b
2θ

, b], p2(x) ≥ 0 if
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x ∈ [ (2θ−1)a+b
2θ

, b] and p2(x) < 0 if x ∈ [a, (2θ−1)a+b
2θ

). Notice that a+(2θ−1)b
2θ

≤
(2θ−1)a+b

2θ
, there are three possible cases to be determined.

(iv) In case x ∈ [a, a+(2θ−1)b
2θ

], p1(t) ≤ 0 for t ∈ [a, x] and p2(x) < 0 with
t2 ∈ (x, b) such that p2(t2) = 0. We have

I(θ, x) =
∫ x
a

(t1 − t) dt+
∫ t2
x

(t2 − t) dt+
∫ b
t2

(t− t2) dt

= (2θ−1)(x−a)(b−x)
2

+ θ(θ − 1)(x− a)2 + (x−a)2+(b−x)2

4

= [1
2
(b− x) + (θ − 1

2
)(x− a)]2 = [a+b

2
− θa− (1− θ)x]2.

(15)

(v) In case x ∈ (a+(2θ−1)b
2θ

, (2θ−1)a+b
2θ

), p1(x) > 0 with t1 ∈ (a, x) such that
p1(t1) = 0 and p2(x) < 0 with t2 ∈ (x, b) such that p2(t2) = 0. We have

I(θ, x) =
∫ t1
a

(t1 − t) dt+
∫ x
t1

(t− t1) dt+
∫ t2
x

(t2 − t) dt+
∫ b
t2

(t− t2) dt

= [1
4

+ (θ − 1
2
)2][(x− a)2 + (b− x)2].

(16)

(vi) In case x ∈ [ (2θ−1)a+b
2θ

, b], p1(x) > 0 with t1 ∈ (a, x) such that p1(t1) = 0
and p2(t) ≥ 0 for t ∈ [x, b]. We have

I(θ, x) =
∫ t1
a

(t1 − t) dt+
∫ x
t1

(t− t1) dt+
∫ b
x
(t− t2) dt

= (2θ−1)(x−a)(b−x)
2

+ θ(θ − 1)(b− x)2 + (x−a)2+(b−x)2

4

= [1
2
(x− a) + (θ − 1

2
)(b− x)]2 = [(1− θ)x+ θb− a+b

2
]2.

(17)

Consequently, the inequality (5) with (6) and (7) follows from (11), (12),
(13), (14), (15), (16) and (17).

The proof is completed.

Remark. It is not difficult to prove that the inequality (5) with (6) and (7) is
sharp in the sense that we can construct the function f to attain the equality
in (5) with (6) and (7). Indeed, if 0 ≤ θ ≤ 1

2
then we may choose f such that

f(t) =


Γ(t− a), a ≤ t < x,
γ(t− x) + (x− a)Γ, x ≤ t < t2,
Γ(t− t2 + x− a) + (t2 − x)γ, t2 ≤ t ≤ b

for any x ∈ [a, a+(1−2θ)b
2(1−θ) ], and
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f(t) =


γ(t− a), a ≤ t < t1,
Γ(t− t1) + (t1 − a)γ, t1 ≤ t < x,
γ(t− x+ t1 − a) + (x− t1)Γ, x ≤ t < t2,
Γ(t− t2 + x− t1) + (t2 − x+ t1 − a)γ, t2 ≤ t ≤ b

for any x ∈ (a+(1−2θ)b
2(1−θ) , (1−2θ)a+b

2(1−θ) ), and

f(t) =


γ(t− a), a ≤ t < t1,
Γ(t− t1) + (t1 − a)γ, t1 ≤ t < x,
γ(t− x+ t1 − a) + (x− t1)Γ, x ≤ t ≤ b

for any x ∈ [ (1−2θ)a+b
2(1−θ) , b], and if 1

2
< θ ≤ 1 then we may choose f such that

f(t) =

{
γ(t− a), a ≤ t < t2,
Γ(t− t2) + (t2 − a)γ, t2 ≤ t ≤ b

for any x ∈ [a, a+(2θ−1)b
2θ

], and

f(t) =


γ(t− a), a ≤ t < t1,
Γ(t− t1) + (t1 − a)γ, t1 ≤ t < x,
γ(t− x+ t1 − a) + (x− t1)Γ, x ≤ t < t2,
Γ(t− t2 + x− t1) + (t2 − x+ t1 − a)γ, t2 ≤ t ≤ b

for any x ∈ (a+(2θ−1)b
2θ

, (2θ−1)a+b
2θ

), and

f(t) =

{
γ(t− a), a ≤ t < t1,
Γ(t− t1) + (t1 − a)γ, t1 ≤ t ≤ b

for any x ∈ [ (2θ−1)a+b
2θ

, b].
It is clear that the above all f(t) are absolutely continuous on [a, b].

Corollary 1. Let the assumptions of Theorem hold. Then for all x ∈ [a, b],
we have

|
∫ b

a

f(t) dt− (b− a)[f(x)− (x− a+ b

2
)S]| ≤ (Γ− γ)(b− a)2

8
. (18)
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Proof. Letting θ = 0 in (5) readily produces the result (18) from (6) on noting

that I(0, x) = (b−a)2

4
.

It should be noted that (18) is a sharp perturbed Ostrowski inequality
with a uniform bound independent of x, and in particular, if we choose in
(18), x = a+b

2
, we get a sharp midpoint inequality

|
∫ b

a

f(t) dt− (b− a)f(
a+ b

2
)| ≤ (Γ− γ)(b− a)2

8
.

Corollary 2. Let the assumptions of Theorem hold. Then for all x ∈ [a, b],
we have

|
∫ b
a
f(t) dt− (b− a)[(x−a

b−a )f(a) + ( b−x
b−a)f(b)

−(x− a+b
2

)S]| ≤ (Γ−γ)(b−a)2

8
.

(19)

Proof. Letting θ = 1 in (5) readily produces the result (19) from (7) on noting

that I(1, x) = (b−a)2

4
.

It should be noted that (19) is a sharp perturbed generalized trapezoidal
inequality with a uniform bound independent of x, and in particular, if we
choose in (19), x = a+b

2
, we get a sharp trapezoid inequality

|
∫ b

a

f(t) dt− b− a
2

[f(a) + f(b)]| ≤ (Γ− γ)(b− a)2

8
.

Corollary 3. Let the assumptions of Theorem hold. Then for all x ∈ [a, b],
we have

|
∫ b
a
f(t) dt− 1

2
[(b− a)f(x) + (x− a)f(a) + (b− x)f(b)]|

≤ Γ−γ
8

[(x− a)2 + (b− x)2].
(20)

Proof. Letting θ = 1
2

in (5) readily produces the result (20) from (6) on
noting that I(1

2
, x) = 1

4
[(x− a)2 + (b− x)2].

It should be noted that we can find the inequality (20) in [2] and [8] with
different proofs. However, we here have pointed out that the inequality (20)
is sharp in the sense that we can find f such that the equality in (20) holds.
Corollary 4. Let the assumptions of Theorem hold. Then for any θ ∈ [0, 1],
we have



A Sharp Generalized Ostrowski-Grüss Inequality 183

|
∫ b
a
f(t) dt− (b− a){(1− θ)f(a+b

2
) + θ

2
[f(a) + f(b)]}|

≤ (Γ−γ)(b−a)2

4
[1
4

+ (θ − 1
2
)2].

(21)

Proof. Letting x = a+b
2

in (5) readily produces the result (21) from (6) and

(7) on noting that I(θ, a+b
2

) = (b−a)2

2
[1
4

+ (θ − 1
2
)2].

It should be noted that taking x = a+b
2

in (20) or θ = 1
2

in (21) is equivalent
to taking both these values in (5) which produces a sharp simple three point
inequality as

|
∫ b

a

f(t) dt− b− a
2
{f(

a+ b

2
) +

1

2
[f(a) + f(b)]}| ≤ (Γ− γ)(b− a)2

16
. (22)

Corollary 5. Let the assumptions of Theorem hold. Then for all x ∈ [a, b],
we have

|
∫ b
a
f(t) dt− b−a

3
[2f(x) + (x−a

b−a )f(a) + ( b−x
b−a)f(b)]

+ b−a
3

(x− a+b
2

)S| ≤ Γ−γ
2
I(1

3
, x),

(23)

where

I(
1

3
, x) =


1
36

[(x− a) + 3(b− x)]2, a ≤ x ≤ 3a+b
4
,

5
18

[(x− a)2 + (b− x)2], 3a+b
4

< x < a+3b
4
,

1
36

[3(x− a) + (b− x)]2, a+3b
4
≤ x ≤ b.

(24)

Proof. Letting θ = 1
3

in (5) readily produces the result (23) with (24).
It should be noted that (23) with (24) is a sharp generalized Simpson type

inequality for unprescribed x, and in particular, if we choose in (23) and (24),
x = a+b

2
, we get a sharp Simpson inequality

|
∫ b

a

f(t) dt− b− a
6

[f(a) + 4f(
a+ b

2
) + f(b)]| ≤ 5(Γ− γ)(b− a)2

72
. (25)

It is interesting to note from (22) and (25) we can conclude that an average
of the midpoint quadrature rule and trapezoidal quadrature rule has a better
estimation of error than the well-known Simpson quadrature rule when we
estimate the error in terms of the first derivative f ′ of integrand f . The same
conclusion can also be found in the previous papers [1], [4] and [7]. However,
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we here provide a generalization of the result in [4], and since both (22) and
(25) are sharp, our assertion is more convincing than that stated in [1] and
[7].
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