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Abstract

In this paper we have established for the Kullback-Leibler divergence
D (·||·) that the functional exp[−D(p||.)] is supperadditive, preserves the
bounds under some likelihood ratio conditions and is concave on the
convex cone of all probability distributions of given length n ≥ 2. Some
lower bounds for exp[D(p||H (q, r))], where H (q, r) is the harmonic
mean of the probability distributions q and r are also given.

1. Introduction

In Probability and Information Theory, the Kullback–Leibler divergence (or
information divergence, or information gain, or relative entropy) is a natu-
ral distance measure from a ”true” probability distribution p to an arbitrary
probability distribution q. Typically p represents data, observations, or a pre-
cise calculated probability distribution. The measure q typically represents a
theory, a model, a description or an approximation of p.

It can be interpreted as the expected extra message-length per datum that
must be communicated if a code that is optimal for a given (wrong) distribution
q is used, compared to using a code based on the true distribution p.
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The Kullback–Leibler divergence can also be interpreted as the expected
discrimination information for H1 over H0: the mean information per sample
for discriminating in favour of a hypothesis H1 against a hypothesis H0, when
hypothesis H1 is true.

In Bayesian Statistics the Kullback–Leibler divergence can be used as a
measure of the information gain in moving from a prior distribution to a pos-
terior distribution.

Originally introduced by Solomon Kullback and Richard Leibler in 1951,
[7] as the directed divergence between two distributions, it is not the same
as a divergence in calculus: the term ”divergence” in the terminology should
not be misinterpreted. One might be tempted to call it a ”distance metric”
on the space of probability distributions, but this would not be correct as the
Kullback-Leibler divergence is not symmetric. Mistaking p for q is not the
same as mistaking q for p. Moreover, D(p||q) does not satisfy the triangle in-
equality (see http://en.wikipedia.org/wiki/Kullback-Leibler divergence). To
be more specific, let p = (p1, ..., pn) , q = (q1, ..., qn) be two discrete probability
distributions. Define the Kullback-Leibler divergence (see [7] or [3]) by

D(p||q) :=
n∑

i=1

pi log

(
pi

qi

)
, (1)

the χ2−distance (see for example [3]) by

Dχ2 (p||q) :=
n∑

i=1

p2
i − q2

i

qi

(2)

and the variational distance (see for example [3]) by

V (p||q) :=
n∑

i=1

|pi − qi| . (3)

The following result is of fundamental importance in Information Theory
[3, p. 26].

Under the above assumptions for p and q, we have (the Information In-
equality, Gibbs’ inequality):

D(p||q) ≥ 0, (4)

with equality iff pi = qi for all i ∈ {1, ..., n} .
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As a matter of fact, the inequality (4) can be improved as follows (see [3,
p. 300]).

Let p, q be as above. Then

D(p||q) ≥ 1

2
V 2 (p||q) (≥ 0) , (5)

with equality iff pi = qi for all i ∈ {1, ..., n} .
The following counterpart of (5) is also known

Dχ2 (p||q) ≥ D (p||q) , (6)

with equality iff pi = qi for all i ∈ {1, ..., n} .
For various other bounds involving the Kullback–Leibler divergence see for

instance [5], [6], [7], [8], [9] and the book [3].
The aim of the present note is to explore some properties for the expo-

nential of the Kullback-Leibler divergence when the second probability q is
replaced by either the convex combination of two probabilities, the sum of
those probabilities or even the harmonic mean of them. As a consequence, we
have established that the functional exp[−D(p||.)] is supperadditive, preserve
the bounds under some likelihood ratio conditions and it is concave on the
convex cone of all probability distributions of given length n ≥ 2. Some lower
bounds for exp[D(p||H (q, r))], where H (q, r) denotes the harmonic mean of
the probability distributions q and r are also given. Some numerical experi-
ments for densities of length 2 which depict the behavior of the terms in the
obtained inequalities are also provided.

2. Some Preliminary Results

For the n-tuples of nonnegative real numbers a = (a1, ..., an) and the probabil-
ity distribution p = (p1, ..., pn) we can consider the weighted geometric mean
denoted by Gn (p, a) and defined by the equation

Gn (p, a) :=
n∏

i=1

api

i . (7)

The weighted geometric mean has an important property as a function in
the second variable a, namely Gn (p, ·) is superadditive, which means that

Gn (p, a + b) ≥ Gn (p, a) + Gn (p, b) , (8)



144 Sergiu C. Dragomir

for any choice of the nonnegative n-tuples a = (a1, ..., an) and b = (b1, ..., bn)
and each probability distribution p = (p1, ..., pn) .

This is a well known fact and a proof based on the quasi-linearization
method can be seen in [1, p. 214].

For the sake of completeness we point out here a simple proof that can be
derived from the Jensen’s inequality [4].

First, recall that if f : R → R is a convex function and x = (x1, ..., xn) is
an n-tuple of real numbers while p = (p1, ..., pn) is a probability distribution,
then [1, p. 30]

n∑
i=1

pif (xi) ≥ f

(
n∑

i=1

pixi

)
. (9)

Further, if we consider the function f (x) = ln (1 + ex) , then [4]

f ′ (x) =
ex

1 + ex
and f ′′ (x) =

ex

(1 + ex)2 , x ∈ R

which, due to the fact that f ′′ (x) > 0 for any x ∈ R, shows that f is strictly
convex where is defined.

Now if we apply Jensen’s inequality to the function f (x) = ln (1 + ex) and

xi = ln
(

ai

bi

)
(provided bi > 0), i = {1, ...n} then we can write the inequality:

n∏
i=1

(
1 +

ai

bi

)pi

≥ 1 +
n∏

i=1

(
ai

bi

)pi

,

which gives the desired superadditivity property (8).
A simple consequence that is worth mentioning is the following monotonic-

ity property of the weighted geometric mean Gn (p, ·) :

Gn (p, b) ≥ Gn (p, a) (10)

provided b ≥ a, which means that bi ≥ ai for each i ∈ {1, ..., n}. This fact
follows from the superadditivity property on noticing that

Gn (p, b) = Gn (p, b− a + a)

≥ Gn (p, a) + Gn (p, b− a) ≥ Gn (p, b− a) ≥ 0

since b− a is nonnegative and Gn (p, b− a) ≥ 0.
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3. The Superadditive Property of exp [−D (p||·)]
We consider X, Y, Z three discrete random variables having the probability
distributions p = (p1, . . . , pn) , q = (q1, . . . , qn) and r = (r1, . . . , rn) . If we

write the weighted geometric mean of q
p

=
(

q1

p1
, . . . , qn

pn

)
with the weights p =

(p1, . . . , pn) , (pi 6= 0, i ∈ {1, . . . , n}) we have

Gn

(
p,

q

p

)
=

n∏
i=1

(
qi

pi

)pi

= exp

{
ln

[
n∏

i=1

(
qi

pi

)pi

]}

= exp

[
n∑

i=1

pi ln

(
qi

pi

)]
= exp [−D (p||q)]

and in a similar fashion

Gn

(
p,

r

p

)
= exp [−D (p||r)] .

Also, the weighted geometric mean with the weights p = (p1, ..., pn) and

the nonnegative sequence q
p

+ r
p

=
(

q1+r1

p1
, ..., qn+rn

pn

)
gives

Gn

(
p,

q + r

p

)
=

n∏
i=1

(
qi + ri

pi

)pi

= exp

[
n∑

i=1

pi ln

(
qi + ri

pi

)]
= exp [−D (p||q + r)] .

Now, by the superadditivity of the weighted geometric mean we can con-
clude that

Gn =

(
p,

q + r

p

)
≥ Gn

(
p,

q

p

)
+ Gn

(
p,

r

p

)
(11)

which shows that the function exp [−D (p||·)] is superadditive as claimed in
the title of the section.

It is also a natural problem to ask how far the exponential quantities
exp [−D (p||q)] and exp [−D (p||r)] are from each other when some bounds
to the likelihood ratio qi

ri
, i ∈ {1, ..., n} are a priory known.

To be more specific, we assume that there exists the positive quantities
m,M where M > m and so that

0 < m ≤ qi

ri

≤ M for all i ∈ {1, ..., n} . (12)
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This condition obviously implies that m < ri

pi
≤ qi

pi
≤ M ri

pi
for each i ∈

{1, ..., n} . By utilising the motonicity properties of the geometric mean, we
conclude that

Gn

(
p,

mr

p

)
≤ Gn

(
p,

q

p

)
. (13)

Since

Gn

(
p,

mr

p

)
=

n∏
i=1

(
m

ri

pi

)pi

= m
n∏

i=1

(
ri

pi

)pi

= m exp [−D (p||r)] ,

hence by (13) we deduce the following bounds:

m exp [−D (p||r)] ≤ exp [−D (p||q)] ≤ M exp [−D (p||r)] (14)

provided the probability densities q and r satisfy the condition (12) .
To investigate further the properties of the function exp [−D (p||·)] we no-

tice that if α, β ∈ [0, 1] and α + β = 1 and q, r are probability distributions,
then the convex combination αq + βr is also a probability distribution and
it is natural then to ask how the value exp [−D (p|| (αr + βq))] relates to the
original values exp [−D (p||r)] and exp [−D (p||q)] .

Utilising the superadditivity properties of the geometrical mean we have:

exp [−D (p|| (αr + βq))] = Gn

(
p,

αr + βq

p

)
≥ Gn

(
p, α

r

p

)
+ Gn

(
p, β

q

p

)
= αGn

(
p,

r

p

)
+ βGn

(
p,

q

p

)
= α exp [−D (p||r)] + β exp [−D (p||q)]

showing that the function exp [−D (p||·)] is concave on the convex cone of all
probability distributions of given length n (n ≥ 2) .

4. Other Properties

It is obvious that different choices for the nonnegative n-tuple in the super-
additivity property of the weighted geometric mean Gn (p, a) would provide
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other inequalities for the Kullback-Leibler divergence measure D (p||q) . In this
section we establish such a result where in the second variable of D (·||·) the
harmonic mean 2qr

q+r
of the two distributions q and r is considered.

For this purpose, we observe that for ai = pi

2qi
, bi = pi

2ri
we have:

Gn

(
p,

p

2q

)
=

n∏
i=1

(
pi

2qi

)pi

= exp

{
ln

[
n∏

i=1

(
pi

2qi

)pi

]}
(15)

= exp

[
n∑

i=1

pi ln

(
pi

2qi

)]

= exp

[
ln

1

2
+ D (p||q)

]
=

1

2
exp [D (p||q)]

and, similarly,

Gn

(
p,

p

2r

)
=

1

2
exp [D (p||r)] . (16)

Also

Gn

(
p,

p

2q
+

p

2r

)
=

n∏
i=1

(
pi

2qi

+
pi

2ri

)pi

(17)

= exp

{
ln

[
n∏

i=1

(
pi

2qi

+
pi

2ri

)pi

]}

= exp

{
n∑

i=1

pi ln

[
pi

(
qi + ri

2qiri

)]}

= exp

[
n∑

i=1

pi ln

(
pi

2qiri

qi+ri

)]

= exp D

(
p|| 2qr

q + r

)
.

Therefore, by (15)− (17) and the superadditive properties of the geometric
mean we have the following inequality:

exp D

(
p|| 2qr

q + r

)
≥ 1

2
[exp D (p||q) + exp D (p||r)] . (18)
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If by H(q, r) we denote the harmonic mean of the distribution q, r, i.e.,
H (q, r) = 2qr

q+r
and by A (x, y) we denote the arithmetic mean of the nonnega-

tive quantities x and y, then (18) can be stated as:

exp D (p||H (q, r)) ≥ A [exp D (p||q) , exp D (p||r)] . (19)

Finally, since always the arithmetic mean of two positive quantities is
greater than the harmonic mean of the same two quantities, we deduce from
(19) the following result as well

exp D (p||H (q, r)) ≥ H (exp D (p||q) , exp D (p||r)) . (20)

5. Some numerical experiments

Consider the probability distributions p = (x, 1− x) , q = (y, 1− y) and r =
(z, 1− z) where x, y, z ∈ (0, 1). Then

exp [−D (p||q + r)] =

(
y + z

x

)x

·
(

2− y − z

1− x

)1−x

,

exp [−D (p||q)] =
(y

x

)x

·
(

1− y

1− x

)1−x

and

Figure 1: The plot of δ (·, ·, z) for z = 1/4.
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exp [−D (p||r)] =
(z

x

)x

·
(

1− z

1− x

)1−x

where x, y, z ∈ (0, 1).
Utilising the fact that the mapping exp [−D (p||·)] is superadditive, we have

that

∆ (x, y, z) := exp [−D (p||q + r)]− exp [−D (p||q)]− exp [−D (p||r)] ≥ 0

for any x, y, z ∈ (0, 1) . The plot depicted in Figure 1 show the behavior of
∆ (·, ·, z) for the value of z = 1/4, in the box (0, 1)× (0, 1).

We also have that

expD

(
p|| 2qr

q + r

)
=

[
x (y + z)

2 (yz)

]x

·
[
(1− x) (2− y − z)

2 (1− y) (1− z)

]1−x

,

1

2
expD (p||q) =

(
x

2y

)x

·
[

1− x

2 (1− y)

]1−x

,

and
1

2
expD (p||r) =

( x

2z

)x

·
[

1− x

2 (1− z)

]1−x

.

Figure 2: The plot of γ (·, ·, z) for z = 1/3.

By (18) we know that the function

γ (x, y, z) := expD

(
p|| 2qr

q + r

)
− 1

2
expD (p||q)− 1

2
expD (p||r)
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is nonnegative for any x, y, z ∈ (0, 1) .
The plot depicted in Figure 2 shows the behavior of γ (·, ·, z) for the value

z = 1/3 in the box (0, 1)× (0, 1) .
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