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Abstract  
In this study, we consider a periodic review inventory model involving 

variable lead time with partial backorders. The objective is simultaneously 
to optimize the length of review period, the backorder rate, and the lead 
time in order to minimize the total expected annual cost. We first assume 
that the protection interval (i.e., review period plus lead time) demand 
follows a normal distribution, and then relaxes this assumption to consider 
the distribution free case where only the mean and the standard deviation of 
the protection interval demand are known. Two algorithm procedures of 
finding the optimal solution are developed. Also two numerical examples 
are given to illustrate the results. 
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1. Introduction 
 

In classical economic order quantity (EOQ) inventory model dealing with the problem 
of shortages, it was often assumed that during the stock-out period, shortages are 
either completely backordered or completely lost. However, in many market situations, 
we can often observe that some customers may prefer their demands to be 
backordered while shortages occur, and some may refuse the backorder case. When a 
shortage occurs, many factors may affect customers’ willingness of accepting 
backorders. It is obvious that for well-famed products or fashionable goods such as 
certain brand gum shoes, hi-fi equipment, and clothes, customers may prefer to wait 
in order to satisfy their demands. Besides the products themselves, there is a potential 
factor that may motivate the customers’ desire for backorders. The factor is in some 
extent a price discount offered by the supplier. In general, provided that the supplier 
could offer a price discount on the stock-out item by negotiation to secure more 
backorders, it may make the customers more willing to wait for the desired items. In 
other words, the higher the price discounts of a supplier, the higher the advantage of 
the customers, and hence, higher backorder rate may result. This phenomenon reveals 
that, as unsatisfied demands occur during the stock-out period, how to find an optimal 
backorder rate through controlling a price discount from supplier to minimize the 
relevant inventory total cost is a decision-making problem worth discussing. 

In 2001, Pan and Hsiao [10] presented an EOQ inventory model with back-order 
discount and variable lead time. Later, Ouyang et al. [7] considered a periodic review 
inventory model with review period and backorder discounts viewed as decision 
variables, but the lead time is treated as a fixed constant. However, as pointed out by 
Silver [11], if the quantitative models are to be more useful as aids for managerial 
decision making, they must permit some of the usual parameters to be treated as 
decision variables. In many practical situations, lead time can be reduced at an added 
crashing cost; in other words, it is controllable. By shortening the lead time, we can 
lower the safety stock, reduce the stock-out loss, and improve the customer service 
level so as to gain the competitive advantages in business. Recently, the Japanese 
successful experience of using Just-In-Time (JIT) production also evidenced that 
substantial advantages and benefits can be attained by controlling lead time. 

In the literature of inventory theory, the lead time reduction in the continuous 
review inventory models have been continually modified (see, e.g., Liao and Shyu [5], 
Ben-Daya and Raouf [1], Ouyang et al. [9], Moon and Choi [6], Hariga and Ben-Daya 
[4], Pan and Hsiao [10], and Chuang et al. [2]) so as to accommodate more practical 
features of the real production/inventory systems. It is noted that the reduction of lead 
time in the periodic review inventory model is quite sparse. 
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The purpose of this paper is to examine the effects of the reduction of lead time 
associated with the controllable backorder rate in the periodic review inventory model. 
That is, the study proposes a general model which allows review period, T , 
backorder rate, β , (or price discount, xπ ), and lead time, L , as decision variables 
to accommodate a more realistic inventory situation. In this paper, we start with a 
protection interval demand that follows a normal distribution, and try to determine the 
optimal ordering policy. We next relax this assumption by only assuming that the first 
and second moments of the probability distribution of the protection interval demand 
to be known and finite, and then solve this inventory model by using the minimax 
distribution free approach.  

This paper is organized as follows. In the next section, we first review and extend 
the Ouyang et al.’s [7] model. The model in which the protection interval demand has 
perfect information is formulated in Section 3, and the model in which there is only 
partial information for the protection interval demand is asserted in Section 4. Two 
numerical examples are provided to illustrate the proposed models in Section 5, and 
Section 6 is a summary of the work done in this article. 

          

2. Review and Extension of the Ouyang et al.’s Model 
 

Ouyang et al. [7] considered a periodic review inventory model with backorder rate 
(or price discount) and asserted the total expected annual cost as follows: 

T
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where notation used are: 

D  = average demand per year 

A  = fixed ordering cost per order 

h  = inventory holding cost per item per year 

R  = target level 

β  = backorder rate, 10 << β  
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0β  = upper bound of the backorder rate 

xπ  = backorder price discount offered by the supplier per unit 

0π  = marginal profit (i.e. cost of lost demand) per unit 

T  = length of a review period 

L  = length of lead time 

X  = the protection interval, T L+ , demand which has a probability 
density function (p.d.f.) f X  with finite mean D T L( )+  and 
standard deviation σ T L+  

)(⋅E  = mathematical expectation 

x +  = maximum value of x  and 0, i.e., x + = { }Max x,0  

( )+− RXE  = the expected demand short at the end of cycle, 

 

and assumptions are: 

1.  The inventory level is reviewed every T  units of time. A sufficient quantity is 
ordered up to the target level R , and the ordering quantity is received after L  
units of time. 

2.  The length of the lead time L  does not exceed an inventory cycle time T  so that 
there is never more than a single order outstanding in any cycle. 

3.  The target level R = expected demand during the protection interval + safety 
stock (SS), and SS = k × (standard deviation of protection interval demand), i.e., 

LTkLTDR +++= σ)( , where k  is the safety factor and satisfies 
P X R q( )> = , q  is given to represent the allowable stock-out probability 
during the protection interval. 

4.  During the stock-out period, the backorder rate, β , is variable and is in proportion 
to the price discount offered by the supplier per unit xπ . The backorder rate is 
defined as 00 ππββ x= , where 10 0 <≤ β  and 00 ππ ≤≤ x . 

It is noted that the lead time, L , in model (1) is viewed as a fixed constant. 
However, as mentioned previously, in many practical situations, lead time can be 
reduced at an added crashing cost; in other words, it is controllable. In this study, we 
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will consider the lead time as a decision variable and assume that: 

5.  The lead time L  consists of n  mutually independent components. The i -th 
component has a minimum duration ai  and normal duration bi , and a crashing 
cost per unit time ci . Further, for convenience, we rearrange ci  such that 

1 2 nc c c≤ ≤ ≤L . Then, it is clear that the reduction of lead time should be first on 
component 1 because it has the minimum unit crashing cost, and then component 
2, and so on. 

6.  We let L bj
j

n

0
1

=
=
∑  and Li  be the length of lead time with components 

1, 2, , iL  crashed to their minimum duration, then Li  can be expressed 

as L b b ai j
j

n

j j
j

i

= − −
= =
∑ ∑

1 1

( ) , i =1, 2, , nL ; and the lead time crashing cost 

C L( ) per cycle for a given L L Li i∈ −[ , ]1  is given by 

C L c L L c b ai i j j j
j

i

( ) ( ) ( )= − + −−
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−
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Therefore, the objective of our problem is to minimize the following total 
expected annual cost: 

=),,( LTEAC xπ  ordering cost + holding cost + stock-out cost  

+ lead time crashing cost 
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3. Basic Model 
We first assume that the protection interval demand X follows a normal 

distribution with mean )( LTD +  and standard deviation LT +σ . 
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Given that R D T L k T L= + + +( ) σ , the expected shortage quantity 

( )E X R− +
 at the end of the cycle can be expressed as  

( )+− RXE = ∫
∞

−
R X dxxfRx )()( =σ LT + 0)( >kψ , 

where )(kψ ≡ [ ])(1)( kkk Φ−−φ , )(kφ and )(kΦ  denote the standard normal    
p.d.f. and distribution function (d.f.), respectively.  

 Therefore, the total expected annual cost Eq (2) becomes 
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   The problem is to find the optimal values of ,T  xπ  and L, such that 

),,( LTEAC xπ  in Eq (3) is minimized. Taking the first partial derivatives of 

),,( LTEAC xπ  with respect to ,T  xπ  and L L Li i∈ −[ , ]1 , respectively, we obtain 
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where 
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    By examining the second order sufficient conditions, it can be easily verified 
that ),,( LTEAC xπ  is not a convex function of ),,( LT xπ . However, for fixed T  
and xπ , ),,( LTEAC xπ  is concave in ( )1, −∈ ii LLL , since 
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Therefore, for fixed T  and xπ , the minimum total expected annual cost will 
occur at the end points of the interval [ , ]L Li i−1 . On the other hand, for a given value 
of L L Li i∈ −[ , ]1 , ),,( LTEAC xπ is a convex function of ),( xT π  ( the proof is the 
same as that in Ouyang et al. [7], we omit it here ). Thus, for fixed L L Li i∈ −[ , ]1 , the 
minimum value of ),,( LTEAC xπ  will occur at the point ),( xT π , which satisfies 
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Hence, setting Eq (4) and Eq (5) to zero and solving it, respectively, produces 
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Substituting Eq (8) into Eq (7) leads to 
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Thus, we can establish the following algorithm to find the optimal xT π ,  and L. 

 

Algorithm 1 

Step1. For each , , ,2 ,1 ,0  , niLi ⋅⋅⋅=  and a given q (and hence, the value of  k  can 
be found directly from the normal distribution table), use a numerical search 
technique to obtain iT  which satisfies Eq (9) and compute 

ixπ  from Eq (8). 
And compare 

ixπ  and 0π . 

(i) If 0ππ ≤
ix , 

ixπ  is feasible, then go to Step2. 

(ii) If 0ππ >
ix , 

ixπ  is not feasible. Set 0ππ =
ix  and calculate the 

corresponding value of iT  from Eq (7), then go to Step2. 

Step2. For each ),,( ixi LT
i

π , compute the corresponding total expected annual cost 

),,( ixi LTEAC
i

π , .,2,1,0 ni L=  

Step3. Find
ni

Min
,...,2,1,0=

),,( ixi LTEAC
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π . If ),,( *** LTEAC xπ =
ni

Min
,...,2,1,0=

),,( ixi LTEAC
i

π , 

then ),,( *** LT xπ  is the optimal solution.  

Once, the optimal solution ),,( *** LT xπ  obtain, then the optimal target level is 
***** )( LTkLTDR +++= σ . And the optimal backorder rate is 0

*
0

* ππββ x= . 

 

4. Distribution Free Model 
 

In many practical situations, the distributional information of the protection 
interval demand is often quite limited. Hence, in this section, we relax the assumption 
about the normal distribution of the protection interval demand and only assume that 
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the protection interval demand X  has given finite first two moments; i.e., the 
Xffdp ...  belongs to the class Ω  of p.d.f.’s with finite mean D T L( )+  and 

standard deviation σ T L+ . Since the probability distribution of X is unknown, we 
can not find the exact value of +− )( RXE . We propose to apply the minimax 
distribution free procedure for our problem. The minimax distribution free approach 
for this problem is to find the “most unfavorable” Xffdp ...  in Ω  for each 

),,( LT xπ  and then minimize the total expected annual cost over ),,( LT xπ ; more 
exactly, we need to solve 

),,(
),,(

LTEACMaxMin xfLT Xx

π
π Ω∈

.                          (10) 

 For this purpose, we need the following proposition which can be verified by the 
similar method as in Gallego and Moon [3]. 
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Moreover, the upper bound of Eq (11) is tight. 

Given that R D T L k T L= + + +( ) σ , and for any probability distribution of the 
protection interval demand X , the above inequality always holds. Then, using model 
(2) and inequality (11), the problem (10) is reduced to minimize 
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Once again the approach employed in the previous section is utilized to solve 
problem (12). For fixed L L Li i∈ −[ , ]1 , it can be shown that ),,( LTEAC x

W π  is 
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convex at the point ),( xT π  which satisfies 0),,(
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Substituting Eq (14) into Eq (13), we get 
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where )(TH  be defined as above. 

Next, for fixed T  and xπ , ),,( LTEAC x
W π  is concave in ( )1, −∈ ii LLL , since 
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Therefore, for fixed T  and xπ , the minimum total expected annual cost will 
occur at the end points of the interval [ , ]L Li i−1 .  

Theoretically, for given khDA ,,,,,, 00 σβπ (which depends on the allowable 
stock-out probability q and the p.d.f. f xX ( ) ) and each ( 0, 1, 2, , )iL i     n= L , from Eq 
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(14) and Eq (15), we can obtain the optimal value ),(
ixiT π , and the corresponding 

total expected annual cost ),,( ixi
W LTEAC

i
π  for 0, 1, 2, , .i     n= L  Thus, the 

minimum total expected annual cost can be obtained. However, in practice, since the 
p.d.f. f xX ( ) is unknown, even if the value of q  is given, we can not get the exact 
value of k . Therefore, in order to find the value of k , we need the following 
proposition.  

 

Proposition 2 

    Let X  represent the protection interval demand which has a p.d.f. f xX ( )  
with finite mean D T L( )+  and standard deviation σ T L+ , then for any real 
number )(c LTD +> , 

P X c T L
T L c D T L
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+ + − +
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The proof is similar to that of Ouyang and Wu [8], and hence we omit it here. 

Because the target level R D T L k T L= + + +( ) σ  as mentioned earlier, if we 
take R  instead of c  in inequality (16), we get 

P X R
k

( )> ≤
+
1

1 2 .                 (17)  

Further it is assumed that the allowable stock-out probability q  during the 
protection interval is given, that is, q P X R= >( ) , then from Eq (17) we can obtain 

0 11≤ ≤ −k q . 

It is easy to verify that ),,( LTEAC x
W π  has a smooth curve for k q∈ −[ , ]0 11 . 

Thus, we can establish the following algorithm to obtain the suitable k , and hence 
the optimal T , xπ  and L . 

 

Algorithm 2 

Step1. For a given q , we divide the interval [ , ]0 11
q −  into N  equal subintervals, 



134 Optimal Review Period and Backorder Rate 

where N  is large enough. And we let k0 0= , k N q= −1 1  and 
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Step2. For each Li , i =0, 1, 2, , nL , perform (i) to (iv).  

      (i)  For given { }Nj kkkk ,,, 10 L∈ , j =1, 2, ,L N , we can use a numerical 
search technique to obtain Ti k j,  which satisfies Eq (15). 
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),,( ****** LT xπ  is the optimal solution; the value of ks i( )  such that 
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),,( ****** LTEAC x
W π  exists is the optimal safety factor and we denote it by 

**k .  
Once, the optimal solution ),,( ****** LT xπ  obtain, then the optimal target level is 

.)( ************ LTkLTDR +++= σ And the optimal backorder rate is 

0
**

0
** ππββ x= . 

 

5. Numerical Examples 
    

In order to illustrate the above solution procedure, let us consider an inventory 
system with the following data used in [7] : D = 600 units per year, A = $200 per order, 
h = $20 per unit per year, =0π $150 per unit short, =σ 7 units per week, Besides, 
we assume that the lead time has three components with data shown in Table 1. 

 

Lead time 
Component 

     i  

 Normal
duration

ib (days)

Minimum
duration 

ia (days) 

  Unit crashing  
 cost 

 ic ($/day) 

     1 
     2 
     3 

   20 
   20 
   16 

    6 
    6 
    9 

0.4 
1.2 
5.0 

Table 1  Lead time data 
 

Example 1.  Suppose that the protection interval demand follows a normal 
distribution. We want to solve the cases when the upper bounds of the backorder rate 

=0β  0.2, 0.35, 0.5, 0.65, 0.8 and 0.95, and =q  0.2 (in this situation, the value of 
safety factor k can be found directly from the standard normal table, and is given by 
0.845). Applying the Algorithm 1 procedure yields the results as tabulated in Table 2. 
From this table, the optimal inventory policy can easily be found by comparing 

),,( ixi LTEAC
i

π , for ,3,2,1,0=i  and thus we summarize these in Table 3.  
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0β  i  iL  )( iLC  iT  
ixπ  iR  ),,( ixi LTEAC

i
π  

0.2 0 
1 
2 
3 

8 
6 
4 
3 

0 
5.6 

22.4 
57.4 

14.98 
14.56 
14.24 
14.47 

77.88 
77.80 
77.74 
77.78 

293.54 
264.05 
235.74 
226.31 

   $4898.58 
4806.41 

   4746.27  * 
4809.95 

0.35 0 
1 
2 
3 

8 
6 
4 
3 

0 
5.6 

22.4 
57.4 

14.79 
14.38 
14.08 
14.32 

77.84 
77.76 
77.71 
77.75 

291.15 
261.80 
233.73 
224.44 

4819.88 
4729.99 

   4672.85  * 
4739.17 

0.5 0 
1 
2 
3 

8 
6 
4 
3 

0 
5.6 

22.4 
57.4 

14.59 
14.19 
13.91 
14.16 

77.81 
77.73 
77.67 
77.72 

288.73 
259.54 
231.67 
222.54 

4740.54 
4653.01 

   4598.94  * 
4668.00 

0.65 0 
1 
2 
3 

8 
6 
4 
3 

0 
5.6 

22.4 
57.4 

14.39 
14.00 
13.74 
14.01 

77.77 
77.69 
77.64 
77.69 

286.29 
257.25 
229.59 
220.62 

4660.55 
4575.44 

   4524.55  * 
4596.42 

0.8 0 
1 
2 
3 

8 
6 
4 
3 

0 
5.6 

22.4 
57.4 

14.18 
13.81 
13.57 
13.85 

77.73 
77.66 
77.61 
77.66 

283.82 
254.94 
227.49 
218.69 

4579.87 
4497.27 

   4449.66  * 
4524.43 

0.95 0 
1 
2 
3 

8 
6 
4 
3 

0 
5.6 

22.4 
57.4 

13.98 
13.62 
13.39 
13.69 

77.69 
77.62 
77.58 
77.63 

281.33 
252.61 
225.36 
216.75 

4498.48 
4418.46 

   4374.24  * 
4452.00 

Table 2  Solution procedures of Example 1 ),( weekinLT ii  
 

0β  *L  *T  *
xπ  *R  ),,( *** LTEAC xπ

0.2 4 14.24 77.74 235.74   $4746.27 
 0.35 4 14.08 77.71 233.73 4672.85 
0.5 4 13.91 77.67 231.67 4598.94 

 0.65 4 13.74 77.64 229.59 4524.55 
0.8 4 13.57 77.61 227.49 4449.66 

 0.95 4 13.39 77.58 225.36 4374.24 

Table 3  Summary of the optimal solutions of Example 1 ),( ** weekinLT  
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From Table 3, it is interesting to observe that increasing the value of upper bound 
of the backorder rate 0β will results in a decreases in the total expected annual cost,  
the review period, the price discount, and target level. 

 

Example 2.  The data are the same as in Example 1, except that the probability 
distribution of the protection interval demand is unknown. We solve the cases when 
the upper bounds of the backorder rate =0β  0.2, 0.35, 0.5, 0.65, 0.8, and 0.95, and 

2.0=q  (in this situation, we have 00 =k , and 2=Nk ), let k k
k k

Nj j
N= +
−

−1
0 , 

j =1, 2, ,L N −1, and take N=500. Applying the Algorithm 2, the summarized 
optimal values are presented in Table 4.  

 

  0β  **L  **T  **
xπ  **R  ),,( ****** LTEAC x

W π
0.2 4 11.87 77.28 258.45      $5454.74 

 0.35 4 11.85 77.28 256.54 5388.63 
0.5 4 11.83 77.27 254.60 5321.05 

 0.65 4 11.82 77.27 252.60 5251.89 
0.8 4 11.80 77.26 250.56 5158.04 

 0.95 4 11.78 77.26 248.48 5108.37 

Table 4  Summary of the optimal solutions of Example 2 ),( **** weekinLT  
     

Furthermore, we examine the performance of distribution free approach against 
the normal distribution. The optimal solutions of distribution free and normal 
distribution cases are ),,( ****** LT xπ  and ),,( *** LT xπ , respectively. Substituting 
them into Eq (3), the added cost by utilizing the minimax distribution free procedure 
instead of the normal distribution is EAC ),,( ****** LT xπ ),,( *** LTEAC xπ− . This is 
the largest amount that we would be willing to pay for the knowledge of p.d.f. Xf . 
This quantity can be regarded as the expected value of additional information (EVAI), 
a summary is presented in Table 5. 
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0β  EAC ),,( ****** LT xπ EAC ),,( *** LT xπ  EVAI 

0.2 $4877.07 $4746.27      $138.80 

 0.35 4799.77 4672.85  126.92 

0.5 4722.35 4598.94  123.41 

 0.65 4644.31 4524.55  119.76 

0.8 4566.65 4449.66  116.99 

 0.95 4488.86 4374.24  114.62 

Table 5  Calculation of EVAI for ),,( LT xπ model 
 

Table5 reveals that the amount of EVAI decrease as the value of upper bound of 
the backorder rate 0β  increase. 

 

6. Concluding Remarks 
 

  In this study, we seek to extend Ouyang et al. [7] model, and propose more 
general model that allow the lead time as a control variable, rather than as a fixed 
parameter. The objective is to minimize the total expected annual cost, which is the 
sum of the ordering cost, holding cost, stock-out cost, and lead time crashing cost. We 
first assume that the protection interval demand follows a normal distribution, and 
then relax the assumption about probability distributional form of the protection 
interval demand and apply the minimax distribution free procedure to solve the 
problem. 

For further consideration on this problem, it would be interested to deal with a 
mixed stochastic inventory model that the stock-out cost term in the objective 
function is replaced by a service level constraint. 
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