D-Graceful Labeling of a Path*

Chi-Nan Chang and Jing-Ho Yan ${ }^{\dagger}$
Department of Mathematics
Aletheia University, Tamsui 251, Taiwan

Received December 31, 2008, Accepted May 19, 2009.

Abstract

Let G be a undirected graph with a vertex set V and an edge set E. Given a nonnegative integer set D. A D-graceful labeling f of G is an injection $f: V \rightarrow D$ such that $$
\{|f(x)-f(y)| \mid x y \in E\}=\{1,2,3, \ldots,|E|\} .
$$

A graph is called D-graceful if it has a D-graceful labeling. We call a graph G graceful if G is $\{0,1, \ldots,|E|\}$-graceful. Let $Z(n ; a, b)$ denote the set $\{0,1, \cdots, a-1, b+1, \cdots, n+b-a\}$. In this paper, we showed that P_{n} is D-graceful for some D. And we conjecture that P_{n} is $Z(n ; t, t)$ graceful except $n=2 t=2$ and $n=3,4$.

Keywords and Phrases: Graceful labeling, D-Graceful, Labeling, Path.

1. Introduction

In 1964, Ringel [9] conjectured that $K_{2 n+1}$, the complete graph on $2 n+1$ vertices, can be decomposed into $2 n+1$ isomorphic copies of a given tree

[^0]with n vertices. In 1967, Rosa [10] introduced β-labelings as a tool to attack Ringels's conjecture. This labeling was called graceful by Golomb.

Let G be a undirected graph with a vertex set V and an edge set E. Given a nonnegative integer set D, a D-graceful labeling f of G is an injection $f: V \rightarrow D$ such that

$$
\{|f(x)-f(y)| \mid x y \in E\}=\{1,2,3, \ldots,|E|\}
$$

A graph is called D-graceful if it has a D-graceful labeling, where the set D is called a graceful set of G. In addition, we use a graceful labeling to represent a $\{0,1, \ldots,|E|\}$-graceful labeling. A graph is called graceful if it has a graceful labeling. The gracefulness will get influenced by various properties of set theory. The following lemma shows the result due to some set extension.

Lemma 1. Suppose $A \subseteq D$ and G is A-graceful. Then G is D-graceful.
A graceful set D of G is exactly if D has no proper subset A such that G is A-graceful. It is trivial that $|D|=|V(G)|$ if D is an exactly graceful set of G. A complete labeling, introduced by Barrientos [1] in 2005, is a D-graceful labeling for some exactly graceful set D. Chang and Yan [2] show that the gracefulness of $C_{m} \cup P_{n}$ by D-gracefulness.

Lemma 2. If D is an exactly graceful set of G, then

$$
\max D-\min D \leq \frac{|E(G)|(|E(G)|-1)}{2}
$$

Theorem 3. [7] K_{n} is graceful if and only if $n \leq 4$.
Lemma 4. An integer set D is an exactly graceful set of a complete graph K_{n} if and only if one of following conditions holds.
(1) $n=1$ and $D=\{t\}$ for any integer t.
(2) $n=2$ and $D=\{t, t+1\}$ for any integer t.
(3) $n=3$ and $D=\{t, t+1, t+3\}$ or $\{t, t+2, t+3\}$ for any integer t.
(4) $n=4$ and $D=\{t, t+1, t+4, t+6\}$ or $\{t, t+2, t+5, t+6\}$ for any integer t.

It is trivial that G is $(D-t)$-graceful for each integer t if G is D-graceful, where $D-t=\{d-t \mid d \in D\}$. So we only consider the exactly graceful set D which $\min D=0$. Given two positive integers $a \leq b$, let $Z(n ; a, b)$ denote the
set $\{0,1, \cdots, a-1, b+1, \cdots, n+b-a\}$. It is trivial that P_{n} is $Z(n ; a, b)$-graceful if $a \geq n$. Hence, the assumption of $a<n$ is made for our discussion later in this paper. In addition, " t-graceful" is used to denote $Z(n ; t, t)$-graceful for notation simplification. We showed that P_{n} is D-graceful for some D. And we conjecture that P_{n} is t-graceful except $n=2 t=2$ or 4 .

2. D-Graceful labeling of P_{n}

A $[k, l]-D$-graceful labeling of P_{n} is a D-graceful labeling of P_{n} in which the end vertices of P_{n} are labeled by k and $l . P_{n}$ is $[k, l]-D$-graceful if it has a [$k, l]$ - D-graceful labeling.

Lemma 5. Let $1 \leq t \leq n-2$. If P_{n} is $[0, l]-Z(n ; 1, t)$-graceful, then $P_{n+2 t+1}$ is $[0, n+3 t-l]-Z(n+2 t+1 ; 1, t)$-graceful.

Proof. Let g be a $[0, l]-Z(n ; 1, t)$-graceful labeling of $P_{n}: v_{1}, v_{2}, \cdots, v_{n}$. We define a labeling f of $P_{n+2 t+1}: x_{1}, x_{2}, \cdots, x_{n+2 t+1}$ such that

$$
f\left(x_{i}\right)= \begin{cases}0, & i=1 \\ 2 t+1-k, & i=2 k+1,1 \leq k \leq t \\ n+2 t-1+k, & i=2 k, 1 \leq k \leq t \\ n+3 t-g\left(v_{i-2 t-1}\right), & 2 t+2 \leq i \leq n+2 t+1\end{cases}
$$

Then it is easy to check that f is a bijection from the vertex set of $P_{n+2 t+1}$ to the set $Z(n+2 t+1 ; 1, t)$. And we have

$$
\left|f\left(x_{i}\right)-f\left(x_{i+1}\right)\right|= \begin{cases}n+2 t, & i=1 \\ n+i-2, & 2 \leq i \leq 2 t+1 \\ \left|g\left(v_{i-2 t-1}\right)-g\left(v_{i-2 t}\right)\right|, & 2 t+2 \leq i \leq n+2 t\end{cases}
$$

Thus, f is a $[0, n+3 t-l]-Z(n+2 t+1 ; 1, t)$-graceful labeling of $P_{n+2 t+1}$.
Theorem 6. P_{n} is $Z(n ; 1,1)$-graceful if and only if $n \neq 2$.
Proof. By Lemma 5, we have P_{n+3} is $[0, n+3-l]-Z(n+3 ; 1,1)$-graceful when P_{n} is $[0, l]-Z(n ; 1,1)$-graceful. Therefore, the theorem holds under the following labelings.

$$
\begin{aligned}
& P_{3}: 0,2,3, \\
& P_{4}: 0,3,4,2, \\
& P_{5}: 0,4,3,5,2
\end{aligned}
$$

Theorem 7. P_{n} is $Z(n ; 1,2)$-graceful if and only if $n \neq 2,3$.
Proof. It is trivial that P_{n} is not $Z(n ; 1,2)$-graceful for $n=2,3$. By Lemma 5, we have P_{n+5} is $[0, n+6-l]-Z(n+5 ; 1,2)$-graceful when P_{n} is $[0, l]-Z(n ; 1,2)$ graceful. Therefore, the theorem holds under the following labelings.

$$
\begin{aligned}
& P_{4}: 0,3,5,4, \\
& P_{5}: 0,4,5,3,6, \\
& P_{6}: 0,5,6,4,7,3, \\
& P_{7}: 0,6,4,5,8,2,7, \\
& P_{8}: 0,7,4,5,9,3,8,6 .
\end{aligned}
$$

Lemma 8. Let a, b be two integers and $a \leq b \leq 2 a-2$. If P_{n} is $[0, l]-Z(n ; a, b)-$ graceful and $n>a$, then $P_{n+2 a-1}$ is $[0, n-a+2 b+1-l]-Z(n+2 a-1 ; a, b)-$ graceful.

Proof. Let g be a $[0, l]-Z(n ; a, b)$-graceful labeling of $P_{n}: v_{1}, v_{2}, \cdots, v_{n}$. We define a labeling f of $P_{n+2 a-1}: x_{1}, x_{2}, \cdots, x_{n+2 a-1}$ such that

$$
f\left(x_{i}\right)= \begin{cases}k, & i=2 k+1,0 \leq k \leq a-1 \\ n+2(b-a)+2-k, & i=2 k, 1 \leq k \leq b-a+1 \\ n+2 b+1-k, & i=2 k, b-a+2 \leq k \leq a-1 \\ n-a+2 b+1-g\left(v_{i-2 a+1}\right), & 2 a \leq i \leq n+2 a-1\end{cases}
$$

Then f is a bijection from the vertex set of $P_{n+2 a-1}$ to the set $Z(n+2 a-1 ; a, b)$. Noted that, $f\left(a_{2 a-2}\right)=n+2 b-a+2<n-a+2 b+1=f\left(x_{2 a}\right)$ if $b<2 a-2$ and $f\left(a_{2 a-2}\right)=n+b-a+1<n-a+2 b+1=f\left(x_{2 a}\right)$ if $b=2 a-2$. Since

$$
\left|f\left(x_{i}\right)-f\left(x_{i+1}\right)\right|= \begin{cases}n+2(b-a)+2-i, & 1 \leq i \leq 2(b-a)+2 \\ n+2 b+1-i, & 2(b-a)+3 \leq i \leq 2 a-1 \\ \left|g\left(v_{i-2 a+1}\right)-g\left(v_{i-2 a+2}\right)\right|, & 2 a \leq i \leq n+2 a-2\end{cases}
$$

we have $0 \leq\left|f\left(x_{i}\right)-f\left(x_{i+1}\right)\right| \leq n+2 a-2$ and $\left|f\left(x_{i}\right)-f\left(x_{i+1}\right)\right| \neq \mid f\left(x_{j}\right)-$ $f\left(x_{j+1}\right) \mid$ if $i \neq j$. Thus, f is a $[0, n-a+2 b+1-l]-Z(n+2 a-1 ; a, b)$-graceful labeling of $P_{n+2 a-1}$.

Corollary 9. Let $2 \leq t \leq n-1$. If P_{n} is $[0, l]-Z(n ; t, t)$-graceful, then $P_{n+2 t-1}$ is $[0, n+t+1-l]-Z(n+2 t-1 ; t, t)$-graceful.

Corollary 10. Let $3 \leq t \leq n-1$. If P_{n} is $[0, l]-Z(n ; t, t+1)$-graceful, then $P_{n+2 t-1}$ is $[0, n+t+3-l]-Z(n+2 t-1 ; t, t+1)$-graceful.

Theorem 11. P_{n} is $Z(n ; 2,2)$-graceful if and only if $n \neq 4$. Moreover, P_{n} is $\left[0, \frac{n}{2}\right]-Z(n ; 2,2)$-graceful if n is even and $n \neq 4$. And P_{n} is $\left[0, \frac{n+3}{2}\right]-Z(n ; 2,2)$ graceful if n is odd and $n \geq 2$.

Proof. By Corollary 9, we have $P_{n+3}, n \geq 3$, is $[0, n+3-l]-Z(n+3 ; 2,2)$ graceful when P_{n} is $[0, l]-Z(n ; 2,2)$-graceful. Consider the followings labelings of P_{2}, P_{3}, P_{5}, and P_{7}, we have P_{n} is $\left[0, \frac{n}{2}\right]-Z(n ; 2,2)$-graceful if n is even and $n \neq 4$ and P_{n} is $\left[0, \frac{n+3}{2}\right]$ - $Z(n ; 2,2)$-graceful if n is odd and $n \geq 2$.
$P_{2}: 0,1$
$P_{3}: 0,1,3$
$P_{5}: 0,3,1,5,4$
$P_{7}: 0,3,7,1,6,4,5$.
It could be checked that P_{4} is not $Z(n ; 2,2)$-graceful and P_{1} is $Z(n ; 2,2)$ graceful.

Theorem 12. P_{n} is $Z(n ; 3,3)$-graceful.
Proof. By Corollary 9, we have P_{n+5} is $[0, n+5-l]-Z(n+5 ; 3,3)$-graceful when P_{n} is $[0, l]-Z(n ; 3,3)$-graceful. Therefore, the theorem holds under the following labelings.

$$
\begin{aligned}
& P_{1}: 0 ; \\
& P_{2}: 0,1 ; \\
& P_{3}: 0,2,1 ; \\
& P_{4}: 0,2,1,4 ; \\
& P_{5}: 0,1,5,2,4 ; \\
& P_{6}: 0,5,6,2,4,1 ; \\
& P_{7}: 0,6,2,7,5,4,1 ; \\
& P_{8}: 0,7,2,8,6,5,1,4 .
\end{aligned}
$$

Lemma 13. If $n \geq 3$ and there is a $Z(n ; 2,3)$-graceful labeling g in P_{n} : $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ with $g\left(x_{1}\right)=0$, then there is a $Z(n+9 ; 2,3)$-graceful labeling f in $P_{n+9}: v_{1}, v_{2}, v_{3}, \ldots, v_{n+9}$ with $f\left(v_{1}\right)=0$.

Proof. Let $f\left(v_{1}\right)=0, f\left(v_{2}\right)=n+5, f\left(v_{3}\right)=5, f\left(v_{4}\right)=n+6, f\left(v_{5}\right)=4$, $f\left(v_{6}\right)=n+10, f\left(v_{7}\right)=6, f\left(v_{8}\right)=n+9, f\left(v_{9}\right)=1$, and $f\left(v_{k}\right)=n+8-g\left(x_{k-9}\right)$ for $k \geq 10$. Then we have $\left\{\left|f\left(x_{i}\right)-f\left(x_{i+1}\right)\right| \mid 1 \leq i \leq 9\right\}=\{n, n+1, \ldots, n+8\}$ and $\left\{\left|f\left(x_{i}\right)-f\left(x_{i+1}\right)\right| \mid 10 \leq i \leq n+8\right\}=\left\{\left|g\left(x_{j+1}\right)-g\left(x_{j}\right)\right| \mid 1 \leq j \leq n-1\right\}=$ $\{1,2, \ldots, n-1\}$. Hence, f is $Z(n+9 ; 2,3)$-graceful labeling.

Theorem 14. P_{n} is $Z(n ; 2,3)$-graceful except $n=3,4,5$.

Proof. It could be checked that P_{n} is not $Z(n ; 2,3)$-graceful if $n=3,4,5$. By Lemma 13, theorem holds under the following labelings.

$$
\begin{aligned}
& P_{1}: 0, \\
& P_{2}: 0,1, \\
& P_{6}: 0,5,1,4,6,7, \\
& P_{7}: 0,6,1,4,8,7,5, \\
& P_{8}: 0,7,1,4,9,5,6,8, \\
& P_{9}: 0,8,1,4,10,5,9,7,6, \\
& P_{12}: 0,11,1,10,4,5,13,6,9,7,12,8, \\
& P_{13}: 0,12,1,7,9,4,14,5,13,6,10,11,8, \\
& P_{14}: 0,13,1,8,9,4,15,5,14,6,12,10,7,11 .
\end{aligned}
$$

Theorem 15. P_{n} is $Z(n ; t, t)$-graceful if $4 t-1 \leq n \leq 4 t+3$.
Proof. Let $P_{n}: x_{1}, x_{2}, \cdots, x_{n}$. For the case of $n=4 t-1$, the labeling of $P_{4 t-1}$ is as following.

$$
f\left(x_{i}\right)= \begin{cases}k, & i=2 k+1,0 \leq k \leq t-1 \\ k+1, & i=2 k+1, t \leq k \leq 2 t-2 \\ n-k, & i=2 k, 1 \leq k \leq 2 t-1 \\ n, & i=4 t-1\end{cases}
$$

For the case of $n=4 t$, the labeling of $P_{4 t}$ is as following.

$$
f\left(x_{i}\right)= \begin{cases}k, & i=2 k+1,0 \leq k \leq t-1 \\ k+1, & i=2 k+1, t \leq k \leq 2 t-1 \\ n-k, & i=2 k, 1 \leq k \leq 2 t-1 \\ n, & i=4 t\end{cases}
$$

For the case of $n=4 t+1$, the labeling of $P_{4 t+1}$ is as following.

$$
f\left(x_{i}\right)= \begin{cases}k, & i=2 k+1,0 \leq k \leq t-1 \\ n-k, & i=2 k, 1 \leq k \leq t \\ n-k-1, & i=2 k+1, t \leq k \leq 2 t \\ k, & i=2 k, t+1 \leq k \leq 2 t-1 \\ n, & i=4 t\end{cases}
$$

For the case of $n=4 t+2$, the labeling of $P_{4 t+2}$ is as following.

$$
f\left(x_{i}\right)= \begin{cases}k-1, & i=2 k, 1 \leq k \leq t \\ k, & i=2 k, t+1 \leq k \leq 2 t \\ n-k-1, & i=2 k+1,0 \leq k \leq 2 t \\ n, & i=4 t+2\end{cases}
$$

For the case of $n=4 t+3$, the labeling of $P_{4 t+3}$ is as following.

$$
f\left(x_{i}\right)= \begin{cases}k-1, & i=2 k, 1 \leq k \leq t \\ k, & i=2 k, t+1 \leq k \leq 2 t+1 \\ n-k-1, & i=2 k+1,0 \leq k \leq 2 t \\ n, & i=4 t+3\end{cases}
$$

We can check that these labelings are $Z(n ; t, t)$-graceful. So, P_{n} is $Z(n ; t, t)$ graceful if $4 t-1 \leq n \leq 4 t+3$.

By Corollary 9 and Theorem 15, we have the following corollary.
Corollary 16. P_{n} is $Z(n ; t, t)$-graceful if $2 m t-m+1 \leq n \leq 2 m t-m+5$ for $k \geq 2$.

After summarizing the results discussed in this section, we have the following two conjectures.

Conjecture 17. For each positive integer t, P_{n} is $Z(n ; t, t)$-graceful except $n=2 t \neq 2$, 4 .

Conjecture 18. For given integer $1 \leq a \leq b$, there exist integer N such that P_{n} is $Z(n ; a, b)$-graceful if $n \geq N$.

3. Gacefulness of $P_{2, n} \cup P_{m}$

In this section, we showed some graphs are graceful with the support of "Dgracefulness".

Let u and v be two vertices. We connect u and v by means of " b " internally disjoint paths of length " a " each. The resulting graph is denoted by $P_{a, b}$. Kathiresan[5] has shown that $P_{a, b}$ is graceful for a is even and b is odd and he conjectured $P_{a, b}$ is graceful except when $a=2 r+1$ and $b=4 s+2$.

Figure 1: $P_{2, n}$

Lemma 19. $P_{2, n}$ is graceful.
Proof. $P_{2, n}$ is shown in Figure 1. Define the labeling f in $P_{2, n}$ with $f(u)=0$, $f(v)=n$, and $f\left(x_{i}\right)=2 n-i+1$. Then we have f is a graceful labeling.

Theorem 20. $P_{2, n} \cup P_{m}$ is graceful except $m=n=2$ or $n=1$.
Proof. Define the labeling f in $P_{2, n} \cup P_{m}$ as follow.

1. For the vertices in the part of $P_{2, n}$, let $f(u)=0, f(v)=n$ and $f\left(x_{i}\right)=$ $m+2 n-i, 1 \leq i \leq n$.
2. For the vertices in the part of P_{m}, if $m=2$, then $n \geq 3$. We label the two vertices of P_{2} by 1 and 2 . Assume $m \neq 2$. By Theorem 6 , we have a $Z(m ; 1,1)$-graceful g of P_{m}. Let $f(w)=g(w)+n-1$ for each vertex w in the part of P_{m}.

Then f is a graceful labeling of $P_{2, n} \cup P_{m}$.

References

[1] C. Barrientos, Thegracefulness of unions of cycles and complete bipartite graphs, J. Combin. Math. Combin. Comput., 52 (2005), 69-78.
[2] C. N. Chang and J. H. Yan, Graceful labeling of the union of a path and a cycle, submitted.
[3] S. A. Choudum and S. Pitchai Muthu Kishore, Graceful labeling of the union of paths and cycles, Discrete Mathematics 206 (1999), 105-117.
[4] U. N. Deshmukh, Ph.D. Thesis, University of Bombay, 1995.
[5] R. W. Frucht, L. C. salinas, Graceful numbering of snakes with constraints on the first label, Ars. Combin. 20 (1985), 143-157.
[6] J. A. Gallian, A survey: recent results, conjectures, and open problems in labeling graphs, J. Graph Theory 13 (4) (1989), 491-504.
[7] S. W. Golomb, How to number a graph, Graph Theory and Computing, R. C. Read, ed., Academic Press, New York (1972),23-37.
[8] K. M. Kathiresan, Two Classes of Graceful Graphs, Ars. Combinatoria, 55(2000),129-132.
[9] G. Ringel, Problem 25, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, (1964),162.
[10] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs(International Symposium, Rome, July 1966). Gordon and Breach, New York and Dunod Paris (1967), 349-355.

[^0]: *2000 Mathematics Subject Classification. Primary 05C78.
 ${ }^{\dagger}$ E-mail: jhyan@email.au.edu.tw

