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Abstract

Let G be a undirected graph with a vertex set V and an edge set F.
Given a nonnegative integer set D. A D-graceful labeling f of G is an
injection f : V — D such that

{If(z) = f)] | 2y € B} = {1,2,3,....|E]}.

A graph is called D-graceful if it has a D-graceful labeling. We call a
graph G graceful if G is {0,1,...,|E|}-graceful. Let Z(n;a,b) denote
theset {0,1, -+ ,a—1,b+1,--- ;n+b—a}. In this paper, we showed that
P, is D-graceful for some D. And we conjecture that P, is Z(n;t,t)-
graceful except n =2t =2 and n = 3, 4.
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1. Introduction

In 1964, Ringel [9] conjectured that Ks,.;, the complete graph on 2n + 1
vertices, can be decomposed into 2n + 1 isomorphic copies of a given tree
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with n vertices. In 1967, Rosa [10] introduced (-labelings as a tool to attack
Ringels’s conjecture. This labeling was called graceful by Golomb.

Let G be a undirected graph with a vertex set V' and an edge set E.
Given a nonnegative integer set D, a D-graceful labeling f of G is an injection
f 'V — D such that

{’f(x)_f(y)‘ | xyeE}:{1’2’37"'>|E’}'

A graph is called D-graceful if it has a D-graceful labeling, where the set
D is called a graceful set of G. In addition, we use a graceful labeling to
represent a {0, 1, ..., |E|}-graceful labeling. A graph is called graceful if it has
a graceful labeling. The gracefulness will get influenced by various properties
of set theory. The following lemma shows the result due to some set extension.

Lemma 1. Suppose A C D and G is A-graceful. Then G is D-graceful.

A graceful set D of G is exactly if D has no proper subset A such that G
is A-graceful. It is trivial that |D| = |V(G)| if D is an exactly graceful set of
G. A complete labeling, introduced by Barrientos [1] in 2005, is a D-graceful
labeling for some exactly graceful set D. Chang and Yan [2] show that the
gracefulness of C,, U P,, by D-gracefulness.

Lemma 2. If D is an exactly graceful set of G, then
[E(G)|(E(G)| 1)

max D —min D < 5 .

Theorem 3. [7/K, is graceful if and only if n < 4.

Lemma 4. An integer set D is an exactly graceful set of a complete graph K,
if and only if one of following conditions holds.

(1) n =1 and D = {t} for any integer t.

(2) n=2 and D = {t,t + 1} for any integer t.

(3) n=3and D = {t,t+ 1,t+ 3} or {t,t +2,t + 3} for any integer t.
(4)n=4and D = {t,t+1,t+4,t4+6} or {t,t+2,t+5,t+6} for any integer
t.

It is trivial that G is (D — t)-graceful for each integer ¢ if G is D-graceful,
where D —t = {d — t|d € D}. So we only consider the exactly graceful set D
which min D = 0. Given two positive integers a < b, let Z(n;a,b) denote the
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set {0,1,--+ ,a—1,b+1,--- ;n+b—a}. Itis trivial that P, is Z(n; a, b)-graceful
if a > n. Hence, the assumption of a < n is made for our discussion later in
this paper. In addition, “t-graceful” is used to denote Z(n;t,t)-graceful for
notation simplification. We showed that P, is D-graceful for some D. And we
conjecture that P, is t-graceful except n = 2t = 2 or 4.

2. D-Graceful labeling of P,

A [k, l]-D-graceful labeling of P, is a D-graceful labeling of P, in which the
end vertices of P, are labeled by k and . P, is [k,[]-D-graceful if it has a
[k, []- D-graceful labeling.

Lemma 5. Let 1 <t <n—2. If P, is [0,l]-Z(n; 1,t)-graceful, then P, 241
is [0,n + 3t — [|-Z(n + 2t + 1; 1, t)-graceful.

Proof. Let g be a [0,1]-Z(n; 1,t)-graceful labeling of P, : vy, vy, -+ ,v,. We

define a labeling f of P,i0i11 : 1,22, - , Xpi941 such that
0, 1=1;
Sy =4 21k i=2%k+1, 1<k<t
Yol n+2t—1+k, 1=2k, 1<k<t

n+3t—g(vi_2t_1), 2t+2§2§n+2t+1

Then it is easy to check that f is a bijection from the vertex set of P, 911 to
the set Z(n + 2t + 1;1,t). And we have

n + 2t, 1=1;
|f(x;) — flxip1)| =< n+i—2, 2<1<2t+1;
|9(vicar—1) — g(vicar)|, 2t +2 < i <n+ 2L

Thus, f is a[0,n + 3t — [|-Z(n + 2t + 1; 1, t)-graceful labeling of P, ot41. O
Theorem 6. P, is Z(n;1,1)-graceful if and only if n # 2.

Proof. By Lemma 5, we have P,,3 is [0,n + 3 — {]-Z(n + 3;1, 1)-graceful
when P, is [0,1]-Z(n; 1, 1)-graceful. Therefore, the theorem holds under the
following labelings.

P5:0,2,3,

P, :0,3,4,2,

P5:0,4,3,5,2, O
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Theorem 7. P, is Z(n;1,2)-graceful if and only if n# 2, 3.

Proof. It is trivial that P, is not Z(n; 1, 2)-graceful for n = 2,3. By Lemma 5,
we have P, 5 is [0,n+6 —[]-Z(n + 5; 1, 2)-graceful when P, is [0,1]-Z(n; 1, 2)-
graceful. Therefore, the theorem holds under the following labelings.

P,:0,3,5,4,

Ps:0,4,5,3.6,

Ps:0,5,6,4,7,3,

P;:0,6,4,5,8,2,7,

Ps:0,7,4,5,9,3,8,6. u

Lemma 8. Let a,b be two integers and a < b < 2a—2. If P, is[0,1]-Z(n;a,b)-
graceful and n > a, then P, 9,1 is [0,n —a+2b+1—1]-Z(n + 2a — 1;a,b)-
graceful.

Proof. Let g be a [0,1]-Z(n;a, b)-graceful labeling of P, : vy, vg,- -+ ,v,. We

define a labeling f of P,104-1 : 21,22, - , Tpi2q—1 such that
k, 1=2k+1, 0<k<a-—1,
F) = n+2(0b—a)+2—k, 1=2k, 1<k<b—a+1;
TOZY nr2b+1—k, i=2% b—a+2<k<a-—1;

n—a+2b+1—g(vi_oqs1), 2a<i<n+2a-—1.

Then f is a bijection from the vertex set of P, 9, 1 to the set Z(n+2a—1;a,b).
Noted that, f(ag,2) =n+20—a+2<n—a+2b+1= f(xy,)if b <2a—2
and f(ag,2)=n+b—a+1<n—a+2b+1= f(xy,)if b =2a — 2. Since

n+2b—a)+2—1, 1<i<2(b—a)+2;
|f(z:) — flrig1)] = ¢ n+20+1—14, 2b—a)+3<i<2a—1;
19(Vi—2a41) — 9(Vi—2a42)|, 2a <i<n+2a—2,

we have 0 < |f(z;) — f(zi1)| < n+2a — 2 and |f(2:) — fai)| # |f(z)) —
f(xj)|ifi# 7. Thus, fisa [0,n—a+2b+1—1-Z(n+ 2a —1; a, b)-graceful
labeling of P, y9,_1. O

Corollary 9. Let2 <t <n—1. If P, is[0,{]-Z(n;t,t)-graceful, then P, o;_1is
0,n+t+1—1]-Z(n+ 2t — 1;t,t)-graceful.

Corollary 10. Let 3 <t <n—1. If P, is [0

JA)-Z(nst,t 4+ 1)-graceful, then
Prpor1is [0,n+t+3—1)-Z(n+2t — 15t +1)-

graceful.



D-Graceful Labeling of a Path 419

Theorem 11. P, is Z(n;2,2)-graceful if and only if n # 4. Moreover, P, is
[0, 2]-Z(n; 2, 2)-graceful if n is even and n # 4. And P, is [0, "2]-Z(n; 2, 2)-
graceful if n is odd and n > 2.
Proof. By Corollary 9, we have P,,3, n > 3,is [0,n + 3 — []-Z(n + 3;2,2)-
graceful when P, is [0,1]-Z(n; 2, 2)-graceful. Consider the followings labelings
of Py, Ps, Ps, and P7, we have P, is [0, §]-Z(n; 2, 2)-graceful if n is even and
n# 4 and P, is [0, 22]-Z(n; 2, 2)-graceful if n is odd and n > 2.
P 0,1
:0,1,3
Ps:0,3,1,5,4
P-:0,3,7,1,6,4,5.
It could be checked that Py is not Z(n;2,2)-graceful and P, is Z(n;2,2)-
graceful. |

Theorem 12. P, is Z(n; 3, 3)-graceful.

Proof. By Corollary 9, we have P, 5 is [0,n + 5 — []-Z(n + 5; 3, 3)-graceful
when P, is [0,1]-Z(n; 3, 3)-graceful. Therefore, the theorem holds under the
following labelings.

P1 : O,

Pg :

Pg .

7772787 ] 74' D

Lemma 13. If n > 3 and there is a Z(n;2,3)-graceful labeling g in P, :
X1, T2, T3,y ..., Ty with g(xy) =0, then there is a Z(n+9;2, 3)-graceful labeling
fin Puig :v1,02,03,. .., Unsg with f(v1) = 0.

Proof. Let f(Ul) =0, f(UQ) =n+ 9, f(v3) = 9, f(vll) =n+06, f(UE’) =4,
f(UG) = n+107 f(U7) = 67 f(US) = n+97 f(Ug) = 17 and f(Uk) = n+8_g(‘rk*9>
for & > 10. Then we have {|f(x;)— f(x;11)| |1 <i <9} ={n,n+1,...,n+8}
and {[f(2;) = f(@ir1)] [ 10 < i < n+8} = {|g(zj+1) —g(z))|[1 < j <n—1} =
{1,2,...,n—1}. Hence, f is Z(n + 9;2, 3)-graceful labeling. O

Theorem 14. P, is Z(n;2,3)-graceful except n= 3,4, 5.
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Proof. It could be checked that P, is not Z(n; 2, 3)-graceful if n = 3,4,5. By
Lemma 13, theorem holds under the following labelings.

P1 : O,

P 0,1,

Fs:0,5,1,4,6,7,

P;:0,6,1,4,8,7,5,

Ps:0,7,1,4,9,5,6,8,

Py:0,8,1,4,10,5,9,7,6,

P5:0,11,1,10,4,5,13,6,9,7,12,8,

Pi3:0,12,1,7,9,4,14,5,13,6,10, 11, 8,

Py :0,13,1,8,9,4,15,5,14,6,12,10,7, 11. O

Theorem 15. P, is Z(n;t,t)-graceful if 4t — 1 <n < 4t + 3.

Proof. Let P, : x1,x9, -+ ,x,. For the case of n = 4t — 1, the labeling of
Py 1 is as following.

k, i=2k+1,0<k<t—1,
) k41, i=2%41, t<k<2-—2
F@) =93k i—2k 1<k<2t—1,
n, 1 =4t — 1.

For the case of n = 4¢, the labeling of Py is as following.

k, 1=2k+1, 0<k<t—1,
Flz) = k+1, 1=2k+1, t<k<2t—1,
! n—k, 1=2k 1<k<2t—1,
n, 1 = 4t.

For the case of n = 4t + 1, the labeling of Py, is as following.

k, 1=2k+1, 0<k<t—1,

n —k, 1 =2k, 1<k <t,
flz)=<¢ n—k—1, i=2k+1, t <k <2t

k, 1=2k, t+1<k<2t—1,

n, 1 = 4t.

For the case of n = 4t 4 2, the labeling of Py, is as following.
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kE—1, =2k 1<k<t,
Flai) = k, i =2k, t+1<k<2t,
’ n—k—1 1=2k+1, 0<k <2t
n, 1 =4t + 2.

For the case of n = 4t 4 3, the labeling of Py, 3 is as following.

k-1, i=2k 1<k<t,
o=k i= 2k t+1<k<2t+1,
! n—k—1, i=2k+1, 0<k <2t
n, 1 =4t + 3.
We can check that these labelings are Z(n; t, t)-graceful. So, P, is Z(n;t,t)-
graceful if 4t — 1 < n <4t + 3. O

By Corollary 9 and Theorem 15, we have the following corollary.

Corollary 16. P, is Z(n;t,t)-graceful if 2mt —m+1 <n < 2mt —m+5 for
k> 2.

After summarizing the results discussed in this section, we have the follow-
ing two conjectures.

Conjecture 17. For each positive integer t, P, is Z(n;t,t)-graceful except
n=2t#2,4.

Conjecture 18. For given integer 1 < a < b, there exist integer N such that
P, is Z(n;a,b)-graceful if n > N.

3. Gacefulness of %, U P,

In this section, we showed some graphs are graceful with the support of “D-
gracefulness”.

Let u and v be two vertices. We connect u and v by means of 70" internally
disjoint paths of length "a” each. The resulting graph is denoted by F,;.
Kathiresan[5] has shown that P, is graceful for a is even and b is odd and he
conjectured P, is graceful except when a = 2r +1 and b = 4s + 2.
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Figure 1: P,,,

Lemma 19. P, is graceful.

Proof. P,, is shown in Figure 1. Define the labeling f in P,,, with f(u) =0,
f(v) =n, and f(x;) =2n —i+ 1. Then we have f is a graceful labeling. O

Theorem 20. P, U F,, is graceful except m =n =2 orn = 1.

Proof. Define the labeling f in P, U P,, as follow.
1. For the vertices in the part of P, let f(u) = 0, f(v) = n and f(z;) =
m+2n—1,1<:<n.
2. For the vertices in the part of P,,, if m = 2, then n > 3. We label the
two vertices of P, by 1 and 2. Assume m # 2. By Theorem 6, we have a
Z(m;1,1)-graceful g of P,,. Let f(w) = g(w)+n — 1 for each vertex w in the
part of P,,.

Then f is a graceful labeling of P, U P,,. O
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