D-Graceful Labeling of a Path^{*}

Chi-Nan Chang and Jing-Ho Yan[†]

Department of Mathematics Aletheia University, Tamsui 251, Taiwan

Received December 31, 2008, Accepted May 19, 2009.

Abstract

Let G be a undirected graph with a vertex set V and an edge set E. Given a nonnegative integer set D. A D-graceful labeling f of G is an injection $f: V \to D$ such that

$$\{|f(x) - f(y)| \mid xy \in E\} = \{1, 2, 3, \dots, |E|\}.$$

A graph is called *D*-graceful if it has a *D*-graceful labeling. We call a graph *G* graceful if *G* is $\{0, 1, \ldots, |E|\}$ -graceful. Let Z(n; a, b) denote the set $\{0, 1, \cdots, a-1, b+1, \cdots, n+b-a\}$. In this paper, we showed that P_n is *D*-graceful for some *D*. And we conjecture that P_n is Z(n; t, t)-graceful except n = 2t = 2 and n = 3, 4.

Keywords and Phrases: Graceful labeling, D-Graceful, Labeling, Path.

1. Introduction

In 1964, Ringel [9] conjectured that K_{2n+1} , the complete graph on 2n + 1 vertices, can be decomposed into 2n + 1 isomorphic copies of a given tree

^{*2000} Mathematics Subject Classification. Primary 05C78.

[†]E-mail: jhyan@email.au.edu.tw

with *n* vertices. In 1967, Rosa [10] introduced β -labelings as a tool to attack Ringels's conjecture. This labeling was called *graceful* by Golomb.

Let G be a undirected graph with a vertex set V and an edge set E. Given a nonnegative integer set D, a D-graceful labeling f of G is an injection $f: V \to D$ such that

$$\{|f(x) - f(y)| \mid xy \in E\} = \{1, 2, 3, \dots, |E|\}.$$

A graph is called *D*-graceful if it has a *D*-graceful labeling, where the set D is called a graceful set of G. In addition, we use a graceful labeling to represent a $\{0, 1, \ldots, |E|\}$ -graceful labeling. A graph is called graceful if it has a graceful labeling. The gracefulness will get influenced by various properties of set theory. The following lemma shows the result due to some set extension.

Lemma 1. Suppose $A \subseteq D$ and G is A-graceful. Then G is D-graceful.

A graceful set D of G is exactly if D has no proper subset A such that G is A-graceful. It is trivial that |D| = |V(G)| if D is an exactly graceful set of G. A complete labeling, introduced by Barrientos [1] in 2005, is a D-graceful labeling for some exactly graceful set D. Chang and Yan [2] show that the gracefulness of $C_m \cup P_n$ by D-gracefulness.

Lemma 2. If D is an exactly graceful set of G, then

$$\max D - \min D \le \frac{|E(G)|(|E(G)| - 1)}{2}$$

Theorem 3. [7] K_n is graceful if and only if $n \leq 4$.

Lemma 4. An integer set D is an exactly graceful set of a complete graph K_n if and only if one of following conditions holds. (1) n = 1 and $D = \{t\}$ for any integer t. (2) n = 2 and $D = \{t, t + 1\}$ for any integer t. (3) n = 3 and $D = \{t, t + 1, t + 3\}$ or $\{t, t + 2, t + 3\}$ for any integer t. (4) n = 4 and $D = \{t, t + 1, t + 4, t + 6\}$ or $\{t, t + 2, t + 5, t + 6\}$ for any integer t.

It is trivial that G is (D - t)-graceful for each integer t if G is D-graceful, where $D - t = \{d - t | d \in D\}$. So we only consider the exactly graceful set D which min D = 0. Given two positive integers $a \leq b$, let Z(n; a, b) denote the set $\{0, 1, \dots, a-1, b+1, \dots, n+b-a\}$. It is trivial that P_n is Z(n; a, b)-graceful if $a \ge n$. Hence, the assumption of a < n is made for our discussion later in this paper. In addition, "t-graceful" is used to denote Z(n; t, t)-graceful for notation simplification. We showed that P_n is D-graceful for some D. And we conjecture that P_n is t-graceful except n = 2t = 2 or 4.

2. *D*-Graceful labeling of P_n

A [k, l]-D-graceful labeling of P_n is a D-graceful labeling of P_n in which the end vertices of P_n are labeled by k and l. P_n is [k, l]-D-graceful if it has a [k, l]-D-graceful labeling.

Lemma 5. Let $1 \le t \le n-2$. If P_n is [0, l]-Z(n; 1, t)-graceful, then P_{n+2t+1} is [0, n+3t-l]-Z(n+2t+1; 1, t)-graceful.

Proof. Let g be a [0, l]-Z(n; 1, t)-graceful labeling of $P_n : v_1, v_2, \cdots, v_n$. We define a labeling f of $P_{n+2t+1} : x_1, x_2, \cdots, x_{n+2t+1}$ such that

$$f(x_i) = \begin{cases} 0, & i = 1; \\ 2t + 1 - k, & i = 2k + 1, \ 1 \le k \le t; \\ n + 2t - 1 + k, & i = 2k, \ 1 \le k \le t; \\ n + 3t - g(v_{i-2t-1}), & 2t + 2 \le i \le n + 2t + 1. \end{cases}$$

Then it is easy to check that f is a bijection from the vertex set of P_{n+2t+1} to the set Z(n+2t+1;1,t). And we have

$$|f(x_i) - f(x_{i+1})| = \begin{cases} n+2t, & i=1;\\ n+i-2, & 2 \le i \le 2t+1;\\ |g(v_{i-2t-1}) - g(v_{i-2t})|, & 2t+2 \le i \le n+2t. \end{cases}$$

Thus, f is a[0, n+3t-l]-Z(n+2t+1; 1, t)-graceful labeling of P_{n+2t+1} . \Box

Theorem 6. P_n is Z(n; 1, 1)-graceful if and only if $n \neq 2$.

Proof. By Lemma 5, we have P_{n+3} is [0, n+3-l]-Z(n+3; 1, 1)-graceful when P_n is [0, l]-Z(n; 1, 1)-graceful. Therefore, the theorem holds under the following labelings.

$$P_3: 0, 2, 3, P_4: 0, 3, 4, 2, P_5: 0, 4, 3, 5, 2,$$

Theorem 7. P_n is Z(n; 1, 2)-graceful if and only if $n \neq 2, 3$.

Proof. It is trivial that P_n is not Z(n; 1, 2)-graceful for n = 2, 3. By Lemma 5, we have P_{n+5} is [0, n+6-l]-Z(n+5; 1, 2)-graceful when P_n is [0, l]-Z(n; 1, 2)-graceful. Therefore, the theorem holds under the following labelings.

 $\begin{array}{l} P_4:0,3,5,4,\\ P_5:0,4,5,3,6,\\ P_6:0,5,6,4,7,3,\\ P_7:0,6,4,5,8,2,7,\\ P_8:0,7,4,5,9,3,8,6. \end{array}$

Lemma 8. Let a, b be two integers and $a \le b \le 2a-2$. If P_n is [0, l]-Z(n; a, b)-graceful and n > a, then P_{n+2a-1} is [0, n-a+2b+1-l]-Z(n+2a-1; a, b)-graceful.

Proof. Let g be a [0, l]-Z(n; a, b)-graceful labeling of $P_n : v_1, v_2, \cdots, v_n$. We define a labeling f of $P_{n+2a-1} : x_1, x_2, \cdots, x_{n+2a-1}$ such that

$$f(x_i) = \begin{cases} k, & i = 2k+1, \ 0 \le k \le a-1; \\ n+2(b-a)+2-k, & i = 2k, \ 1 \le k \le b-a+1; \\ n+2b+1-k, & i = 2k, \ b-a+2 \le k \le a-1; \\ n-a+2b+1-g(v_{i-2a+1}), & 2a \le i \le n+2a-1. \end{cases}$$

Then f is a bijection from the vertex set of P_{n+2a-1} to the set Z(n+2a-1; a, b). Noted that, $f(a_{2a-2}) = n + 2b - a + 2 < n - a + 2b + 1 = f(x_{2a})$ if b < 2a - 2and $f(a_{2a-2}) = n + b - a + 1 < n - a + 2b + 1 = f(x_{2a})$ if b = 2a - 2. Since

$$|f(x_i) - f(x_{i+1})| = \begin{cases} n+2(b-a)+2-i, & 1 \le i \le 2(b-a)+2; \\ n+2b+1-i, & 2(b-a)+3 \le i \le 2a-1; \\ |g(v_{i-2a+1}) - g(v_{i-2a+2})|, & 2a \le i \le n+2a-2, \end{cases}$$

we have $0 \leq |f(x_i) - f(x_{i+1})| \leq n+2a-2$ and $|f(x_i) - f(x_{i+1})| \neq |f(x_j) - f(x_{j+1})|$ if $i \neq j$. Thus, f is a [0, n-a+2b+1-l]-Z(n+2a-1; a, b)-graceful labeling of P_{n+2a-1} .

Corollary 9. Let $2 \le t \le n-1$. If P_n is [0, l]-Z(n; t, t)-graceful, then P_{n+2t-1} is [0, n+t+1-l]-Z(n+2t-1; t, t)-graceful.

Corollary 10. Let $3 \le t \le n-1$. If P_n is [0, l]-Z(n; t, t+1)-graceful, then P_{n+2t-1} is [0, n+t+3-l]-Z(n+2t-1; t, t+1)-graceful.

Theorem 11. P_n is Z(n; 2, 2)-graceful if and only if $n \neq 4$. Moreover, P_n is $[0, \frac{n}{2}]$ -Z(n; 2, 2)-graceful if n is even and $n \neq 4$. And P_n is $[0, \frac{n+3}{2}]$ -Z(n; 2, 2)-graceful if n is odd and $n \geq 2$.

Proof. By Corollary 9, we have P_{n+3} , $n \ge 3$, is [0, n+3-l]-Z(n+3; 2, 2)-graceful when P_n is [0, l]-Z(n; 2, 2)-graceful. Consider the followings labelings of P_2, P_3, P_5 , and P_7 , we have P_n is $[0, \frac{n}{2}]$ -Z(n; 2, 2)-graceful if n is even and $n \ne 4$ and P_n is $[0, \frac{n+3}{2}]$ -Z(n; 2, 2)-graceful if n is odd and $n \ge 2$.

 $\begin{array}{l} P_2: 0,1\\ P_3: 0,1,3\\ P_5: 0,3,1,5,4\\ P_7: 0,3,7,1,6,4,5. \end{array}$

It could be checked that P_4 is not Z(n; 2, 2)-graceful and P_1 is Z(n; 2, 2)-graceful.

Theorem 12. P_n is Z(n; 3, 3)-graceful.

Proof. By Corollary 9, we have P_{n+5} is [0, n+5-l]-Z(n+5; 3, 3)-graceful when P_n is [0, l]-Z(n; 3, 3)-graceful. Therefore, the theorem holds under the following labelings.

 $\begin{array}{l} P_1:0;\\ P_2:0,1;\\ P_3:0,2,1;\\ P_4:0,2,1,4;\\ P_5:0,1,5,2,4;\\ P_6:0,5,6,2,4,1;\\ P_7:0,6,2,7,5,4,1;\\ P_8:0,7,2,8,6,5,1,4. \end{array}$

Lemma 13. If $n \ge 3$ and there is a Z(n; 2, 3)-graceful labeling g in P_n : $x_1, x_2, x_3, \ldots, x_n$ with $g(x_1) = 0$, then there is a Z(n+9; 2, 3)-graceful labeling f in $P_{n+9}: v_1, v_2, v_3, \ldots, v_{n+9}$ with $f(v_1) = 0$.

Proof. Let $f(v_1) = 0$, $f(v_2) = n + 5$, $f(v_3) = 5$, $f(v_4) = n + 6$, $f(v_5) = 4$, $f(v_6) = n + 10$, $f(v_7) = 6$, $f(v_8) = n + 9$, $f(v_9) = 1$, and $f(v_k) = n + 8 - g(x_{k-9})$ for $k \ge 10$. Then we have $\{|f(x_i) - f(x_{i+1})| \mid 1 \le i \le 9\} = \{n, n+1, \dots, n+8\}$ and $\{|f(x_i) - f(x_{i+1})| \mid 10 \le i \le n+8\} = \{|g(x_{j+1}) - g(x_j)||1 \le j \le n-1\} = \{1, 2, \dots, n-1\}$. Hence, f is Z(n+9; 2, 3)-graceful labeling. \Box

Theorem 14. P_n is Z(n; 2, 3)-graceful except n=3, 4, 5.

Proof. It could be checked that P_n is not Z(n; 2, 3)-graceful if n = 3, 4, 5. By Lemma 13, theorem holds under the following labelings.

 $\begin{array}{l} P_1:0,\\ P_2:0,1,\\ P_6:0,5,1,4,6,7,\\ P_7:0,6,1,4,8,7,5,\\ P_8:0,7,1,4,9,5,6,8,\\ P_9:0,8,1,4,10,5,9,7,6,\\ P_{12}:0,11,1,10,4,5,13,6,9,7,12,8,\\ P_{13}:0,12,1,7,9,4,14,5,13,6,10,11,8,\\ P_{14}:0,13,1,8,9,4,15,5,14,6,12,10,7,11.\\ \end{array}$

Theorem 15. P_n is Z(n; t, t)-graceful if $4t - 1 \le n \le 4t + 3$.

Proof. Let $P_n : x_1, x_2, \dots, x_n$. For the case of n = 4t - 1, the labeling of P_{4t-1} is as following.

$$f(x_i) = \begin{cases} k, & i = 2k+1, \ 0 \le k \le t-1, \\ k+1, & i = 2k+1, \ t \le k \le 2t-2, \\ n-k, & i = 2k, \ 1 \le k \le 2t-1, \\ n, & i = 4t-1. \end{cases}$$

For the case of n = 4t, the labeling of P_{4t} is as following.

$$f(x_i) = \begin{cases} k, & i = 2k+1, \ 0 \le k \le t-1, \\ k+1, & i = 2k+1, \ t \le k \le 2t-1, \\ n-k, & i = 2k, \ 1 \le k \le 2t-1, \\ n, & i = 4t. \end{cases}$$

For the case of n = 4t + 1, the labeling of P_{4t+1} is as following.

$$f(x_i) = \begin{cases} k, & i = 2k+1, \ 0 \le k \le t-1, \\ n-k, & i = 2k, \ 1 \le k \le t, \\ n-k-1, & i = 2k+1, \ t \le k \le 2t, \\ k, & i = 2k, \ t+1 \le k \le 2t-1, \\ n, & i = 4t. \end{cases}$$

For the case of n = 4t + 2, the labeling of P_{4t+2} is as following.

420

$$f(x_i) = \begin{cases} k - 1, & i = 2k, \ 1 \le k \le t, \\ k, & i = 2k, \ t + 1 \le k \le 2t, \\ n - k - 1, & i = 2k + 1, \ 0 \le k \le 2t, \\ n, & i = 4t + 2. \end{cases}$$

For the case of n = 4t + 3, the labeling of P_{4t+3} is as following.

$$f(x_i) = \begin{cases} k - 1, & i = 2k, \ 1 \le k \le t, \\ k, & i = 2k, \ t + 1 \le k \le 2t + 1, \\ n - k - 1, & i = 2k + 1, \ 0 \le k \le 2t, \\ n, & i = 4t + 3. \end{cases}$$

We can check that these labelings are Z(n; t, t)-graceful. So, P_n is Z(n; t, t)-graceful if $4t - 1 \le n \le 4t + 3$.

By Corollary 9 and Theorem 15, we have the following corollary.

Corollary 16. P_n is Z(n; t, t)-graceful if $2mt - m + 1 \le n \le 2mt - m + 5$ for $k \ge 2$.

After summarizing the results discussed in this section, we have the following two conjectures.

Conjecture 17. For each positive integer t, P_n is Z(n;t,t)-graceful except $n = 2t \neq 2, 4$.

Conjecture 18. For given integer $1 \le a \le b$, there exist integer N such that P_n is Z(n; a, b)-graceful if $n \ge N$.

3. Gacefulness of $P_{2,n} \cup P_m$

In this section, we showed some graphs are graceful with the support of "D-gracefulness".

Let u and v be two vertices. We connect u and v by means of "b" internally disjoint paths of length "a" each. The resulting graph is denoted by $P_{a,b}$. Kathiresan[5] has shown that $P_{a,b}$ is graceful for a is even and b is odd and he conjectured $P_{a,b}$ is graceful except when a = 2r + 1 and b = 4s + 2.

Figure 1: $P_{2,n}$

Lemma 19. $P_{2,n}$ is graceful.

Proof. $P_{2,n}$ is shown in Figure 1. Define the labeling f in $P_{2,n}$ with f(u) = 0, f(v) = n, and $f(x_i) = 2n - i + 1$. Then we have f is a graceful labeling. \Box

Theorem 20. $P_{2,n} \cup P_m$ is graceful except m = n = 2 or n = 1.

Proof. Define the labeling f in $P_{2,n} \cup P_m$ as follow.

1. For the vertices in the part of $P_{2,n}$, let f(u) = 0, f(v) = n and $f(x_i) = m + 2n - i$, $1 \le i \le n$.

2. For the vertices in the part of P_m , if m = 2, then $n \ge 3$. We label the two vertices of P_2 by 1 and 2. Assume $m \ne 2$. By Theorem 6, we have a Z(m; 1, 1)-graceful g of P_m . Let f(w) = g(w) + n - 1 for each vertex w in the part of P_m .

Then f is a graceful labeling of $P_{2,n} \cup P_m$.

References

- [1] C. Barrientos, Thegracefulness of unions of cycles and complete bipartite graphs, J. Combin. Math. Combin. Comput., 52 (2005), 69-78.
- [2] C. N. Chang and J. H. Yan, Graceful labeling of the union of a path and a cycle, submitted.
- [3] S. A. Choudum and S. Pitchai Muthu Kishore, Graceful labeling of the union of paths and cycles, *Discrete Mathematics* **206** (1999), 105-117.

- [4] U. N. Deshmukh, Ph.D. Thesis, University of Bombay, 1995.
- [5] R. W. Frucht, L. C. salinas, Graceful numbering of snakes with constraints on the first label, Ars. Combin. 20 (1985), 143-157.
- [6] J. A. Gallian, A survey: recent results, conjectures, and open problems in labeling graphs, J. Graph Theory 13 (4) (1989), 491-504.
- S. W. Golomb, How to number a graph, Graph Theory and Computing, R. C. Read, ed., Academic Press, New York (1972),23-37.
- [8] K. M. Kathiresan, Two Classes of Graceful Graphs, Ars. Combinatoria, 55(2000),129-132.
- [9] G. Ringel, Problem 25, in Theory of Graphs and its Applications, *Proc.* Symposium Smolenice, (1964),162.
- [10] A. Rosa, On certain valuations of the vertices of a graph, *Theory of Graphs(International Symposium, Rome, July 1966)*. Gordon and Breach, New York and Dunod Paris (1967), 349-355.