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Abstract

The purpose of the present article is to investigate several new sub-
classes of analytic functions defined by using Dziok-Srivastava operator
and investigate linebreak various inclusion relationships for these sub-
classes. Some interesting corollaries and consequences of the results
presented here are also discussed.
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1. Introduction

Let A denote the class of functions f(z) of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)
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which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

If f(z) ∈ A satisfies the following inequality:∣∣∣∣arg

(
zf ′(z)

f(z)
− α

)∣∣∣∣ < π

2
β (z ∈ U; 0 5 α < 1; 0 < β 5 1), (1.2)

then the function f(z) is said to be strongly starlike of order β and type α in
U. We denote this subclass of A by S∗s (α, β). If, on the other hand, f(z) ∈ A
satisfies the following inequality:∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)
− α

)∣∣∣∣ < π

2
β (z ∈ U; 0 5 α < 1; 0 < β 5 1), (1.3)

then the function f(z) is said to be strongly convex of order β and type α in
U. We denote this subclass of A by Kc(α, β). It is obvious that

f(z) ∈ Kc(α, β) ⇐⇒ zf ′(z) ∈ S∗s (α, β).

If f ∈ A and g ∈ A given by g(z) = z +
∑∞

n=2 bnz
n, then the Hadamard

product (or convolution) f ∗ g of f and g is defined by

(f ∗ g)(z) := z +
∞∑
n=2

anbnz
n (1.5)

Making use of the Hadamard product (or convolution) given by (1.5) Dziok
and Srivastava [4](see also [5]) introduced a linear operator

H(α1, ..., αq; β1, ..., βs) : A −→ A,

which is defined by

H(α1, ..., αq; β1, ..., βs)f(z) = z qFs(α1, ..., αq; β1, ..., βs; z)∗f(z) (z ∈ U; f ∈ A),
(1.6)

where qFs denote the familiar generalized hypergeometric function given by

qFs(z) ≡ qFs(α1, ..., αq; β1, ..., βs; z)
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=:
∞∑
n=0

(α1)n ... (αq)n
(β1)n ... (βs)n

.
zn

n!

(z ∈ U; αj ∈ C(j = 1, ..., q), βj ∈ C\{0,−1,−2, ...}(j = 1, ..., s), q ≤ s+1; q, s ∈ N0),

where (x)k is the Pochhammer symbol, defined by

(x)0 = 1, (x)k = x(x+ 1)...(x+ k − 1); k ∈ N.

Note the Dziok-Srivastava linear operator defined by (1.6) above, contains
such well known operators as the Hohlov linear operator [7], the Carlson-
Shaffer linear operator [2], the Ruscheweyh derivative operator [15], the Bernardi-
Libera-Livingston operator [1], and the Srivastava-Owa fractional derivative
operator [16].

Very recently Kwon and Cho [9] introduced the following family of linear
operator Hλ(α1, ..., αq; β1, ..., βs) analogous to H(α1, ..., αq; β1, ..., βs) :

Hλ(α1, ..., αq; β1, ..., βs) : A −→ A,

defined by

Hλ(α1, ..., αq; β1, ..., βs)f(z) = Fλ(α1, ..., αq; β1, ..., βs; z) ∗ f(z) (1.7)

(αi, βj ∈ C\{0,−1,−2, ...}(i = 1, ..., q; j = 1, ..., s); λ > −1; z ∈ U; f ∈ A),

where Fλ(α1, ..., αq; β1, ..., βs; z) is the function defined by

z qFs(α1, ..., αq; β1, ..., βs; z)∗Fλ(α1, ..., αq; β1, ..., βs; z) =
z

(1− z)λ
(λ > −1).

(1.8)
For convenience, we write

Hλ,q,s(α1) = Hλ(α1, ..., αq; β1, ..., βs),

Note that

H0,1,0(1)f(z) = f(z), H1,1,0(1)f(z) = zf ′(z) and H2,1,0(1)f(z) =
1

2
z2f ′′(z)+zf ′(z).

It is easily verified from the above definition of the operator Hλ,q,s(α1)f that

z(Hλ,q,s(α1 + 1)f(z))′ = α1 Hλ,q,s(α1)f(z)− (α1− 1)Hλ,q,s(α1 + 1)f(z), (1.9)
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and

z(Hλ,q,s(α1)f(z))′ = λ Hλ+1,q,s(α1)f(z)− (λ− 1)Hλ,q,s(α1)f(z). (1.10)

The definition of the linear operator Hλ,q,s(α1) is motivated essentially by
the Choi-Saigo-Srivastava operator [3] for analytic functions, which includes a
simpler integral operator studied earlier by Noor [11] (see also [12]).

Using the linear operator Hλ,q,s(α1), we now introduce the following sub-
classes of A:

S∗λ,α1
(q, s, α, β)

:=

{
f : f(z) ∈ A, Hλ,q,s(α1)f(z) ∈ S∗s (α, β) and

z
(
Hλ,q,s(α1)f(z)

)′
Hλ,q,s(α1)f(z)

6= α (z ∈ U)

}
(1.11)

and

Kλ,α1(q, s, α, β)

:=

f : f(z) ∈ A, Hλ,q,s(α1)f(z) ∈ Kc(α, β) and

(
z
(
Hλ,q,s(α1)f(z)

)′)′(
Hλ,q,s(α1)f(z)

)′ 6= α (z ∈ U)

 .

(1.12)

It is obvious from the definitions (1.11) and (1.12) that

f(z) ∈ Kλ,α1(q, s, α, β) ⇐⇒ zf ′(z) ∈ S∗λ,α1
(q, s, α, β).

In this paper we establish some inclusion relationships for the above-mentioned
function classes involving the linear operator Hλ,q,s(α1) defined by (1.7) above.
Some corollaries and consequences of our main inclusion relationships are also
mentioned.

2. Main Inclusion Relationships

In order to derive our main inclusion relationships, we recall here the following
lemma.
Lemma 1. (see [13]). Let a function p(z) be analytic in U with

p(0) = 1 and p(z) 6= 0 (z ∈ U).
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If there exists a point z0 ∈ U such that

| arg
(
p(z)

)
| < π

2
β (|z| < |z0|) and | arg

(
p(z0)

)
| = π

2
β (0 < β 5 1),

(2.1)
then

z0p
′(z0)

p(z0)
= ikβ, (2.2)

where

k =
1

2

(
a+

1

a

)
when arg

(
p(z0)

)
=
π

2
β, (2.3)

k 5 −1

2

(
a+

1

a

)
when arg

(
p(z0)

)
= −π

2
β, (2.4)

and (
p(z0)

) 1
β = ± ia (a > 0).

Theorem 1 below gives our first main inclusion relationship.

Theorem 1. Let f ∈ A. Suppose also that

α + λ > 1, α + α1 > 1, 0 5 α < 1 and 0 < β 5 1.

Then
S∗λ+1,α1

(q, s, α, β) ⊂ S∗λ,α1
(q, s, α, β) ⊂ S∗λ,α1+1(q, s, α, β).

Proof. First of all we show that

S∗λ+1,α1
(q, s, α, β) ⊂ S∗λ,α1

(q, s, α, β).

Let f ∈ S∗λ+1,α1
(q, s, α, β) and set

p(z) =
1

1− α

(
z
(
Hλ,q,s(α1)f(z)

)′
Hλ,q,s(α1)f(z)

− α

)
(z ∈ U), (2.5)

where the function p(z) is analytic in U, with p(0) = 1 and p(z) 6= 0 for z ∈ U.
Now using the identity (1.10) in (2.5), and differentiating with respect to z,
we get

z
(
Hλ+1,q,s(α1)f(z)

)′
Hλ+1,q,s(α1)f(z)

− α = (1− α)p(z) +
(1− α)zp′(z)

α + λ− 1 + (1− α)p(z)
.
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Suppose now that there exists a point z0 ∈ U such that the conditions (2.1)
to (2.4) of Lemma 1 are satisfied. Thus, if

arg
(
p(z0)

)
=
π

2
β (z0 ∈ U),

then

z0

(
Hλ+1,q,s(α1)f(z0)

)′
Hλ+1,q,s(α1)f(z0)

− α = (1− α)p(z0)

1 +

(
z0p
′(z0)

p(z0)

)
α + λ− 1 + (1− α)p(z0)


= (1− α) aβe

iπβ
2

(
1 +

ikβ

α + λ− 1 + (1− α)aβe
iπβ
2

)
.

This implies that

arg

(
z0
(
Hλ+1,q,s(α1)f(z0)

)′
Hλ+1,q,s(α1)f(z0)

− α

)
=
πβ

2
+arg

(
1 +

ikβ

α+ λ− 1 + (1− α)aβe
iπβ
2

)

= tan−1

 kβ
(
α+ λ− 1 + (1− α)aβ cos πβ2

)
(α+ λ− 1)2 + (1− α)2a2β + 2(α+ λ− 1)(1− α)aβ cos πβ2 + kβ(1− α)aβ sin πβ

2


= 0,

(
since k =

1

2

(
a+

1

a

)
= 1, and z0 ∈ U.

)
Thus, in view of (1.2) and (1.11), this last inequality would contradict our
assumption. On the other hand, if we set

arg
(
p(z0)

)
= −π

2
β,

then it can similarly be shown that

arg

(
z
(
Hλ+1,q,s(α1)f(z)

)′
Hλ+1,q,s(α1)f(z)

− α

)
≤ −π

2
β

(
sincek 5 −1

2

(
a+

1
a

)
5 −1 and z0 ∈ U

)
,

which again contradicts the assumption. Hence the function p(z) defined by
(2.5) satisfies the following inequality:

| arg
(
p(z)

)
| < π

2
β (z ∈ U),
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which implies that f ∈ S∗λ,α1
(q, s, α, β).

To prove second part, let f ∈ S∗λ,α1
(q, s, α, β) and put

q(z) =
1

1− α

(
z
(
Hλ,q,s(α1 + 1)f(z)

)′
Hλ,q,s(α1 + 1)f(z)

− α

)
(z ∈ U),

where q(z) is analytic function in U with q(0) = 1 and q(z) 6= 0 for z ∈ U. Then
by using the argument similar to those detailed above with (1.9) it follows that

| arg
(
q(z)

)
| < π

2
β (z ∈ U),

which implies that f ∈ S∗λ,α1+1(q, s, α, β). This completes the proof of Theorem
1.

We next prove the following inclusion relationships.

Theorem 2. Let f ∈ A. Then under the parametric constraints stated with
Theorem 1, we have

Kλ+1,α1(q, s, α, β) ⊂ Kλ,α1(q, s, α, β) ⊂ Kλ,α1+1(q, s, α, β).

Proof. We observe from Theorem 1 that

f(z) ∈ Kλ+1,α1(q, s, α, β) ⇐⇒ zf ′(z) ∈ S∗λ+1,α1
(q, s, α, β)

=⇒ zf ′(z) ∈ S∗λ,α1
(q, s, α, β)

⇐⇒ f(z) ∈ Kλ,α1(q, s, α, β),

f(z) ∈ Kλ,α1(q, s, α, β) ⇐⇒ zf ′(z) ∈ S∗λ,α1
(q, s, α, β)

⇐⇒ zf ′(z) ∈ S∗λ,α1+1(q, s, α, β)

⇐⇒ f(z) ∈ Kλ,α1+1(q, s, α, β).

which establishes Theorem 2.

Theorem 3. Let f ∈ A and Ic be the integral operator defined by

Icf(z) =
c+ 1

zc

∫ z

0

tc−1f(t) dt (c > −1; f ∈ A). (2.6)

Suppose also

c > −α, 0 5 α < 1, 0 < β 5 1 and
z
(
Hλ,q,s(α1) Icf(z)

)′
Hλ,q,s(α1) Icf(z)

6= α (z ∈ U).
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Then

f(z) ∈ S∗λ,α1
(q, s, α, β) =⇒ Icf(z) ∈ S∗λ,α1

(q, s, α, β). (2.7)

Proof. We begin by assuming that f(z) ∈ S∗λ,α1
(q, s, α, β) and defining a

function r(z) by

r(z) =
1

1− α

(
z
(
Hλ,q,s(α1) Icf(z)

)′
Hλ,q,s(α1) Icf(z)

− α

)
(z ∈ U), (2.8)

where r(z) is analytic in U, with r(0) = 1 and r(z) 6= 0 for z ∈ U. It can
easily be verified from (1.9) and (2.6) that

z
(
Hλ,q,s(α1) Icf(z)

)′
= (c+ 1)Hλ,q,s(α1)f(z)− c Hλ,q,s(α1) Icf(z). (2.9)

Thus, by using (2.9) in (2.8), we find that

z
(
Hλ,q,s(α1)f(z)

)′
Hλ,q,s(α1)f(z)

− α = (1− α)r(z) +
(1− α)zr′(z)

c+ α + (1− α)r(z)
.

The remaining part of the proof of the Theorem 3 is much akin to that of
Theorem 1. Therefore, we choose to omit the analogous details involved.

From Theorem 3, we easily see the following result.

Theorem 4. Under the parametric constraints stated with Theorem 3, let

f(z) ∈ A and

(
z
(
Hλ,q,s(α1) Icf(z)

)′)′(
Hλ,q,s(α1) Icf(z)

)′ 6= α (z ∈ U).

Then

f(z) ∈ Kλ,α1(q, s, α, β) =⇒ Icf(z) ∈ Kλ,α1(q, s, α, β). (2.10)

Remark. On setting

q = 2, s = 1, λ = 1, α1 = 2−ν, α2 = 2+µ+η and β1 = 2−ν+η (2.11)

in (1.7), and restricting the parameters as

µ > 0 and min{µ+ η,−ν + η,−ν} > −2,
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the linear operator Hλ,q,s(α1) reduces to the following fractional integral oper-
ator Jµ,ν,η0,z due to Srivastava et al. [16](see also [14]):

Jµ,ν,η0,z f(z) = z+
∞∑
n=2

(2)n−1 (2− ν + η)n−1

(2− ν)n−1 (2 + µ+ η)n−1

an z
n.

=
Γ(2− ν) Γ(2 + µ+ η) z−µ

Γ(2− ν + η) Γ(µ)

∫ z

0
(z−t)µ−1

2F1

(
µ+ ν,−η; µ; 1− t

z

)
f(t) dt

(z ∈ U; f ∈ A). (2.12)

Therefore for the parametric substitution given by (2.11), Theorems 1 to 4
would yield the corresponding known results due to Prajapat et al. [14].

On the other hand if we set

q = 2, s = 1, λ = 0, α1 = 1, α2 = ν + µ+ 1 and β1 = ν + 1 (2.13)

in (1.7), and restricting the parameters as µ > 0 and ν > −1, we obtain the
multiplier transformation operator Ωµ

ν , which was introduced and studied by
Jung et al. [8], as follows

Ωµ
ν = z+

Γ(µ+ ν + 1)

Γ(ν + 1)

∞∑
n=2

Γ(n+ ν)

Γ(n+ µ+ ν)
anz

n

=

(
µ+ ν

ν

)
µ

zν

∫ z

0

tν−1

(
1− t

z

)µ−1

f(t) dt (µ > 0; ν > −1; f ∈ A).

(2.14)
Therefore setting the parametric substitution given by (2.13) in Theorems
1 to 4, we get results obtained by Liu [10]. Furthermore taking parametric
substitution given by (2.13) alongwith β = 1 in first part of Theorem 1 and 2,
we get results given by Gao et al. [6, p. 1790, Theorem 1; p. 1791, Theorem
2].

3. Corollaries and Consequences

In this concluding section, we consider some corollaries and consequences of
our main results (Theorems 1 to 4) established in Section 2.
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First of all, on setting

q = 1, s = 0, α1 = 1 and λ = 0,

Theorem 1 would yield the following result.

Corollary 1. If

f(z) ∈ A and f(z) 6= α I0[f ](z) (z ∈ U; 0 ≤ α < 1),

then

{f : f(z) ∈ Kc(α, β)} ⊂ {f : f(z) ∈ S∗s (α, β)} ⊂ {f : I0[f ](z) ∈ S∗s (α, β)} .
(3.1)

Next if we set

q = 1, s = 0, α1 = 1 and λ = 1

in Theorem 1 we get Corollary 2 below.

Corollary 2. If

f(z) ∈ A, (1− α)zf ′(z) + z2f ′′(z) 6= 0 (z ∈ U; 0 ≤ α < 1),

and

(1− α)zf ′(z) +
(

2− α

2

)
z2f ′′(z) +

1

2
z3f ′′′(z) 6= 0 (z ∈ U; 0 ≤ α < 1),

then{
f :

1

2
(z2f ′(z))′ ∈ S∗s (α, β)

}
⊂ {f : f(z) ∈ Kc(α, β)} ⊂ {f : f(z) ∈ S∗s (α, β)} .

(3.2)

By, setting
q = 1, s = 0, α1 = 1 and λ = 0,

in Theorem 2, we arrive at Corollary 3 below.

Corollary 3. If

f(z) ∈ A, f(z) 6= α I0[f ](z) (z ∈ U; 0 ≤ α < 1),
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and

(1− α)f ′(z) + (3− α) zf ′′(z) + z2f ′′′(z) 6= 0 (z ∈ U; 0 ≤ α < 1),

then

{f : zf ′(z) ∈ Kc(α, β)} ⊂ {f : f(z) ∈ Kc(α, β)} ⊂ {f : I0[f ](z) ∈ Kc(α, β)} .
(3.3)

Upon setting

q = 1, s = 0, α1 = 2 and λ = 0,

Theorem 3 would yield the following result.

Corollary 4. If

f(z) ∈ A and z
(
I0
(
I0[f ](z)

))′
6= α I0

(
I0[f ](z)

)
(z ∈ U), (3.4)

then
I0[f ](z) ∈ S∗s (α, β) =⇒ I0

(
I0[f ](z)

)
∈ S∗s (α, β). (3.5)

Numerous other applications and consequences of our main results (Theo-
rem 1 to 4) can indeed be derived similarly.
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