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Abstract

We introduce several new subclasses of functions analytic with re-
spect to symmetric conjugate points, which are defined by using sub-
ordination for analytic functions φ and ψ on the unit disk. The object
of this paper is to investigate some structural formulas and various
interesting properties of Hadamard product in these subclasses. Fur-
thermore, the upper bounds on the coefficient functional |a3 − µa2

2| for
functions f(z) = z + a2z

2 + a3z
3 + · · · in these subclasses are also

obtained.

Keywords and Phrases: Starlike functions, Close-to-convex functions, Sub-
ordination, Hadamard product (or convolution), Linear operators.

∗2000 Mathematics Subject Classification. Primary 30C45, 30C50.
†E-mail: choijh@dnue.ac.kr



378 Jae Ho Choi

1. Introduction and Definitions

Let A denote the class of functions f(z) normalized by

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

Also let S, C, S∗(γ) and K(γ) denote, respectively, the subclasses of A con-
sisting of functions which are univalent, close-to-convex, starlike of order γ,
and convex of order γ in U (see, e.g., [9]). In particular, the classes

S∗(0) = S∗ and K(0) = K

are the familiar classes of starlike and convex functions in U, respectively.
Given two functions f and g, which are analytic in U with f(0) = g(0),

the function f is said to be subordinate to g in U if there exists a function w,
analytic in U such that

w(0) = 0, |w(z)| < 1 (z ∈ U) and f(z) = g(w(z)) (z ∈ U).

We denote this subordination by

f(z) ≺ g(z) in U.

We also observe that
f(z) ≺ g(z) in U

if and only if
f(0) = g(0) and f(U) ⊂ g(U)

whenever g is univalent in U.

LetM be the class of analytic functions φ(z) in U normalized by φ(0) = 1,
and let N be the subclass of M consisting of those functions φ which are
univalent in U and for which φ(U) is convex and Re φ(z) > 0 (z ∈ U).
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Making use of the principle of subordination between analytic functions,
Ma and Minda [6] and Kim et al. [5] investigate the subclasses S∗(φ), K(φ),
and C(φ, ψ) of the class A for φ, ψ ∈ N , which are defined by

S∗(φ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ φ(z) in U

}
,

K(φ) :=

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ φ(z) in U

}
,

and

C(φ, ψ) :=

{
f ∈ A : ∃ g ∈ K(φ) s.t.

f ′(z)

g′(z)
≺ ψ(z) in U

}
.

Obviously, for special choices for the functions φ and ψ involved in these
definitions, we have the following relationships:

S∗
(

1 + z

1− z

)
= S∗, K

(
1 + z

1− z

)
= K,

C

(
1 + z

1− z
,

1 + z

1− z

)
⊂ C, (1.2)

and

S∗
(

1 + (1− 2γ)z

1− z

)
= S∗(γ) (0 5 γ < 1).

Since
f(z) ∈ K(φ)⇐⇒ zf ′ ∈ S∗(φ),

we also have

f ∈ C(φ, ψ)⇐⇒ ∃ h ∈ S∗(φ) s.t
zf ′(z)

h(z)
≺ ψ(z) in U. (1.3)

For the functions f and g given by

f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n,
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the Hadamard product (or convolution) f ∗ g is defined, as usual, by

(f ∗ g)(z) :=
∞∑
n=0

anbnz
n = f(z) ∗ g(z).

We now introduce two operators D and T as follows [2] (see also [10]):

(1) The Operator T . For f ∈ A, let

T f(z) =
1

2

{
f(z)− f(−z)

}
= z +

∞∑
n=2

1

2
[an − (−1)nan] zn. (1.4)

(2) The operator D. For f ∈ A and n ∈ N := {1, 2, 3, · · · }, let

D0f(z) = f(z), Df(z) = zf ′(z),

Dn+1f(z) = D(Dnf(z)) (n ∈ N).

It is easily verified that the operators T and D are well defined on A and have
the following properties:

(I) T and D are linear operators on A.
(II) DT = T D.

(III) T T = T .
Next, by using the operators T and D, we introduce the following new

classes of analytic functions for α = 0 and φ, ψ ∈ N :

S∗sc(α, φ) :=

{
f ∈ A :

DDαf(z)

DαT f(z)
≺ φ(z) in U

}
, (1.5)

and

Csc(α, φ, ψ) =

{
f ∈ A : ∃ h ∈ S∗sc(α, φ) s.t.

DDαf(z)

DαT h(z)
≺ ψ(z) in U

}
, (1.6)

where Dα = αD + (1− α)D0.
We note thatDαf = (1−α)f+αzf ′ ∈ A for f ∈ A and f ∈ S∗sc(α, φ) (Csc(α, φ, ψ))

is equivalent to Dαf ∈ S∗sc(0, φ) ≡ S∗sc(φ) (Csc(0, φ, ψ) ≡ Csc(φ, ψ)). In par-
ticular, by taking

α = 0 and φ(z) = ψ(z) =
1 + z

1− z
(z ∈ U)
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in (1.5) and (1.6), we have the relationships

S∗sc

(
α,

1 + z

1− z

)
= S∗sc(α) (1.7)

and

Csc

(
α,

1 + z

1− z
,

1 + z

1− z

)
= Csc(α),

which were studied by Chen et al. [2]. Furthermore, putting α = 0 in (1.7),
then S∗sc ((1 + z)/(1− z)) = S∗sc(0), which is the class of functions starlike
with respect to symmetric conjugate points due to El-Ashwah and Thomas [4]
(see also [2]).

In this paper, we investigate various convolution properties and some struc-
tural representations of functions in the classes S∗sc(α, φ) and Csc(α, φ, ψ).
Moreover, the coefficient bounds of these classes are also considered.

2. Some results of the classes S∗sc(α, φ) and Csc(α, φ, ψ)

We begin by recalling the following results.

Lemma 1. Let pi(z) ≺ φ(z) (φ ∈ N ; i = 1, 2) in U and α, β any positive real
numbers. Then

1

α + β
{αp1(z) + βp2(z)} ≺ φ(z) (z ∈ U).

Proof. This follows easily from the definition of N .

Lemma 2. (Ruscheweyh and Sheil-Small [8]). Suppose either g ∈ K, h ∈ S∗
or else g, h ∈ S∗(1/2). Then for any analytic function G in U, we have

(g ∗ hG)(z)

(g ∗ h)(z)
∈ coG(U) (z ∈ U),

where coG(U) is the closed convex hull of G(U).

Lemma 3. (Ma and Minda [6]). Let φ ∈ N . For g ∈ K and h ∈ S∗(φ), we
have g ∗ h ∈ S∗(φ).



382 Jae Ho Choi

Lemma 4. If f ∈ S∗sc(φ) for φ ∈ N , then T f ∈ S∗(φ).

Proof. Let f ∈ S∗sc(φ) for φ ∈ N . If we set

p(z) =
Df(z)

T f(z)
=

2zf ′(z)

f(z)− f(−z)
,

then p(z) ≺ φ(z) in U and

p(−z) =
D(−f(−z))

T f(z)
.

Since φ ∈ N , we also have p(−z) ≺ φ(z) in U. Applying the method of proof
of the aforementioned result of Chen et al. [2, Lemma 2] with Lemma 1, we
obtain

z (T f(z))′

T f(z)
=

1

2

(
p(z) + p(−z)

)
≺ φ(z) (z ∈ U),

and hence the proof is complete.

By virtue of (1.3) and Lemma 4, we observe that if f ∈ S∗sc(φ) for φ ∈ N ,
then f ∈ C(φ, φ). Furthermore, it follows from (1.2) that S∗sc((1+z)/(1−z)) ⊂
C.

First, by using Lemma 4, we prove

Theorem 1. Let α = 0 and φ ∈ N . If f ∈ S∗sc(α, φ), then DαT f ∈ S∗(φ)
and T f ∈ S∗sc(α, φ).

Proof. Since f(z) ∈ S∗sc(α, φ) if and only if Dαf(z) ∈ S∗sc(φ), by applying
T D = DT and Lemma 4, we have

DαT f(z) = T Dαf(z) ∈ S∗(φ) (φ ∈ N ; z ∈ U). (2.1)

Furthermore, from T T = T and (2.1) we obtain

D(Dα(T f(z)))

Dα(T (T f(z)))
=
D(Dα(T f(z)))

Dα(T f(z))
≺ φ(z) (φ ∈ N ; z ∈ U).

Hence T f(z) ∈ S∗sc(α, φ), which completes the proof of Theorem 1. 2

Remark 1. In its special case when

φ(z) =
1 + z

1− z
(z ∈ U),
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Theorem 1 would reduce immediately to a known result due to Chen et al. [2,
Theorem 1].

Theorem 2. Let α = 0.
(a) Let φ ∈ N . If f ∈ S∗sc(α, φ) and g ∈ K with real coefficients, then

g ∗ f ∈ S∗sc(α, φ).
(b) Let φ ∈ N and Re φ(z) > 1/2 (z ∈ U). If f ∈ S∗sc(α, φ) and g ∈

S∗(1/2) with real coefficients, then g ∗ f ∈ S∗sc(α, φ).

Proof. First, we prove (a). Let f(z) ∈ S∗sc(α, φ) and set

G(z) =
DDαf(z)

DαT f(z)
(α = 0; z ∈ U). (2.2)

Then G(z) ≺ φ(z) in U. Since g(z) ∈ K with real coefficients, we can easily
verify that

DαT (g ∗ f)(z) = g(z) ∗ DαT f(z)

DDα(g ∗ f)(z) = g(z) ∗ DDαf(z). (2.3)

Making use of (2.2) and (2.3), we get

DDα(g ∗ f)(z)

DαT (g ∗ f)(z)
=
g(z) ∗ DDαf(z)

g(z) ∗ DαT f(z)
=
g(z) ∗G(z)(DαT f(z))

g(z) ∗ DαT f(z)
. (2.4)

By using φ(z) ∈ N and Theorem 1, we observe that φ(U) is convex with
Re φ(z) > 0 (z ∈ U) and DαT f(z) ∈ S∗. Therefore, using (2.4) and Lemma
2, we obtain

DDα(g ∗ f)(z)

DαT (g ∗ f)(z)
∈ coG(U) ⊂ φ(U).

Since DDα(g ∗ f)(z)/DαT (g ∗ f)(z) is analytic in U, we have

DDα(g ∗ f)(z)

DαT (g ∗ f)(z)
∈ φ(U),

which yields that

DDα(g ∗ f)(z)

DαT (g ∗ f)(z)
≺ φ(z) (z ∈ U).

Hence, (g ∗ f)(z) ∈ S∗sc(α, φ). Assertion (b) can be shown similarly. 2



384 Jae Ho Choi

Corollary 1. Let 0 < α 5 1 and φ ∈ N . Then

S∗sc(α, φ) ⊂ S∗sc(0, φ) = S∗sc(φ).

Proof. Let f(z) ∈ S∗sc(α, φ), and let

Kα(z) = z +
∞∑
n=2

zn

1 + (n− 1)α
=
γ + 1

zγ

∫ z

0

tγ

1− t
dt (z ∈ U), (2.5)

where γ = 1/α− 1 = 0. Then, by virtue of φ(z) ∈ N and Theorem 1, we have
DαT f(z) ∈ S∗, and it is well known that Kα(z) ∈ K with real coefficients (see
[1]). Since Dα(Kα ∗ f)(z) = f(z) and

Df(z)

T f(z)
=
Kα(z) ∗ (DDαf(z)/DαT f(z))(DαT f(z))

Kα(z) ∗ DαT f(z)
,

by applying Lemma 2, we obtain

Df(z)

T f(z)
≺ φ(z) (z ∈ U).

Hence f(z) ∈ S∗sc(φ), which evidently proves Corollary 1. 2

Theorem 3. Let α = 0 and φ ∈ N . A function f ∈ S∗sc(α, φ) if and only if
there exist a function p(z) ≺ φ(z) in U and a function F ∈ S∗(φ) with real
coefficients satisfying

zF ′(z)

F (z)
=

1

2

(
p(iz) + p(iz)

)
(z ∈ U)

such that

f ′(z) =


i
p(z)F (−iz)

z
(α = 0)

i
γ + 1

zγ+1

∫ z

0

p(t)F (−it)tγ−1dt (α > 0),

where γ = 1/α− 1 > −1.

Proof. By using Lemmas 3, 4 and Theorem 1, the proof of Theorem 3 is
similar to the corresponding results obtained by Chen et al. [2]. The details
may be omitted. 2
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Next, by using arguments similar to those above with (1.6), we can prove
the following results for the class Csc(α, φ, ψ).

Theorem 4. Let φ, ψ ∈ N .
(a) If f ∈ Csc(φ, ψ), then T f ∈ C(φ, ψ).
(b) If f ∈ Csc(α, φ, ψ) for α = 0, then DαT f ∈ C(φ, ψ) and T f ∈

Csc(α, φ, ψ).

Remark 2. If we take

φ(z) = ψ(z) =
1 + z

1− z
(z ∈ U)

in Theorem 4 (b), we infer the result due to Chen et al. [2, Theorem 7].

Theorem 5. Let α = 0.
(a) Let φ, ψ ∈ N . If f ∈ Csc(α, φ, ψ) and g ∈ K with real coefficients, then

g ∗ f ∈ Csc(α, φ, ψ).
(b) Let φ, ψ ∈ N and Re φ(z) > 1/2 (z ∈ U). If f ∈ Csc(α, φ, ψ) and

g ∈ S∗(1/2) with real coefficients, then g ∗ f ∈ Csc(α, φ, ψ).

Corollary 2. Let 0 < α 5 1 and φ, ψ ∈ N . Then Csc(α, φ, ψ) ⊂ Csc(φ, ψ).

Theorem 6. Let α = 0 and φ, ψ ∈ N . A function f ∈ Csc(α, φ, ψ) if and
only if there exist a function p(z) ≺ ψ(z) in U and a function F ∈ S∗(φ) with
real coefficients such that

f ′(z) =


i
p(z)F (−iz)

z
(α = 0)

i
γ + 1

zγ+1

∫ z

0

p(t)F (−it)tγ−1dt (α > 0),

where γ = 1/α− 1 > −1.

3. Coefficient bounds for the classes S∗sc(α, φ)

and Csc(α, φ, ψ)

In order to prove the coefficient bounds for the classes S∗sc(α, φ) and Csc(α, φ, ψ),
we now recall the following lemma due to Kim et al. [5].
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Lemma 5. Assume that η(z) = e1 +e2z+ · · · is analytic in U with |η(z)| 5 1.
Then |e1|2 + |e2| ≤ 1.

Lemma 6. Let λ ∈ R and φ(z) = 1 + A1z + A2z
2 + · · · ∈ N with φ′(0) > 0.

If f(z) = z+ a2z
2 + a3z

3 + · · · ∈ S∗(φ), then |a3−λa2
2| 5 K(λ,A1, A2), where

K(λ,A1, A2) =


(A2 − 2λA2

1 + A2
1)/2 if 2λA2

1 5 A2 + A2
1 − A1

A1/2 if A2 + A2
1 − A1 5 2λA2

1 5 A2 + A2
1 + A1

(2λA2
1 − A2

1 − A2)/2 if A2 + A2
1 + A1 5 2λA2

1.

Proof. Set

p(z) =
zf ′(z)

f(z)
(z ∈ U).

Then, by using same argument of [6, Theorem 3], we can easily verify Lemma
6, and so we omit it. 2

By applying Lemmas 5 and 6, we derive

Theorem 7. Let α = 0 and µ ∈ R. Suppose that φ(z) = 1+A1z+A2z
2+· · · ∈

N and φ′(0) > 0. If f(z) = z + a2z
2 + a3z

3 + · · · ∈ S∗sc(α, φ), then

|a3 − µa2
2| 5 M(α, µ,A1, A2) +N(α, µ,A1, A2),

where

M(α, µ,A1, A2) =



1

6(1 + 2α)

(
A2 −

3(1 + 2α)

2(1 + α)2
µA2

1 + A2
1

)
if 3(1 + 2α)µA2

1 5 2(1 + α)2(A2 + A2
1 − A1)

A1

6(1 + 2α)

if A2 + A2
1 − A1 5

3(1 + 2α)

2(1 + α)2
µA2

1 5 A2 + A2
1 + A1

1

6(1 + 2α)

(
3(1 + 2α)

2(1 + α)2
µA2

1 − A2 − A2
1

)
if 2(1 + α)2(A2 + A2

1 + A1) 5 3(1 + 2α)µA2
1

(3.1)

and
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N(α, µ,A1, A2)

=



1

3(1 + 2α)

{∣∣∣∣A2 −
3(1 + 2α)µ

4(1 + α)2
A2

1

∣∣∣∣+ A2
1

∣∣∣∣1− 3(1 + 2α)µ

2(1 + α)2

∣∣∣∣}

if A2
1

∣∣∣∣1− 3(1 + 2α)µ

2(1 + α)2

∣∣∣∣ = 2

(
A1 −

∣∣∣∣A2 −
3(1 + 2α)µ

4(1 + α)2
A2

1

∣∣∣∣)

A1

3(1 + 2α)

1 +
A3

1

(
1− 3(1+2α)µ

2(1+α)

)2

4
(
A1 −

∣∣∣A2 − 3(1+2α)µ
4(1+α)2

A2
1

∣∣∣)
 otherwise.

(3.2)

Proof. Let f(z) ∈ S∗sc(α, φ), and set

p(z) =
DDαf(z)

DαT f(z)
= 1 + c1z + c2z

2 + · · · (z ∈ U). (3.3)

Then, from (1.5) we see that

p(z) = φ(w(z)) (z ∈ U), (3.4)

where w is an analytic in U such that w(0) = 0 and |w(z)| 5 |z| for z ∈ U.
Since Dαf(z) = z +

∑∞
n=2(1 + (n − 1)α)anz

n, by virtue of (1.4) and (3.3),
DDαf(z) = p(z)DαT f(z) and simple calculations show that

a2 =
c1

2(1 + α)
+

1

4
(a2 − a2)

and

a3 =
c2

3(1 + 2α)
+
c1(1 + α)(a2 − a2)

6(1 + 2α)
+

1

6
(a3 + a3).

Therefore, we obtain

a3 − µa2
2 =

1

6
(a3 + a3)−

µ

16
(a2 − a2)

2 +
1

3(1 + 2α)

(
c2 −

3(1 + 2α)µ

4(1 + α)2
c21

)
+

(
1 + α

6(1 + 2α)
− µ

4(1 + α)

)
c1(a2 − a2). (3.5)
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By applying Theorem 1 and Lemma 6 with λ = 3(1 + 2α)µ/4(1 + α)2, it is
easily observed that DαT f(z) ∈ S∗(φ), which yields∣∣∣∣16(a3 + a3)−

µ

16
(a2 − a2)

2

∣∣∣∣ 5 M(α, µ,A1, A2). (3.6)

In view of (3.3) and (3.4), if we write w(z) = e1z + e2z
2 + · · · , then c1 = A1e1

and c2 = A1e2 + A2e
2
1. Since

DDαT f(z)

DαT f(z)
≺ φ(z) (z ∈ U)

by Theorem 1, Rogosinski’s result [7] (see also [3] (p.192)) implies |a2 − a2| 5
2A1/(1 + α). Thus we have∣∣∣∣ 1

3(1 + 2α)

(
c2 −

3(1 + 2α)µ

4(1 + α)2
c21

)
+

(
1 + α

6(1 + 2α)
− µ

4(1 + α)

)
c1(a2 − a2)

∣∣∣∣
5

1

3(1 + 2α)

{
A1|e2|+

∣∣∣∣A2 −
3(1 + 2α)µ

4(1 + α)2
A2

1

∣∣∣∣ |e1|2}
+

∣∣∣∣ 1 + α

6(1 + 2α)
− µ

4(1 + α)

∣∣∣∣ |A1e1||a2 − a2|

5
1

3(1 + 2α)

{
A1|e2|+

∣∣∣∣A2 −
3(1 + 2α)µ

4(1 + α)2
A2

1

∣∣∣∣ |e1|2}
+

∣∣∣∣ 1

3(1 + 2α)
− µ

2(1 + α)2

∣∣∣∣A2
1 |e1|.

Then, the same techniques as in the proof of [4, Theorem 3.1] show that∣∣∣∣ 1

3(1 + 2α)

(
c2 −

3(1 + 2α)µ

4(1 + α)2
c21

)
+

(
1 + α

6(1 + 2α)
− µ

4(1 + α)

)
c1(a2 − a2)

∣∣∣∣
5 N(α, µ,A1, A2). (3.7)

Hence, making use of (3.6) and (3.7) in equality (3.5), we obtain

|a3 − µa2
2| 5 M(α, µ,A1, A2) +N(α, µ,A1, A2),

which proves Theorem 7. 2
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Corollary 3. Let α = 0, 0 5 γ < 1/2 and µ ∈ R. If

f(z) = z + a2z
2 + a3z

3 + · · · ∈ S∗sc

(
α,

1 + (1− 2γ)z

1− z

)
(z ∈ U),

then

|a3 − µa2
2| 5



(1− γ)

(
3− 2γ

1 + 2α
− 4(1− γ)µ

(1 + α)2

)
if µ 5

(1 + α)2

3(1 + 2α)

(1− γ)2

3(1 + 2α)

(
4(1 + α)2(1− γ)

3(1 + 2α)µ
+

1 + 2γ

1− γ
− 4α +

3α(1 + 2α)(2 + α)µ

(1 + α)2

)

if
(1 + α)2

3(1 + 2α)
5 µ 5

2(1 + α)2

3(1 + 2α)

(1− γ)2

3(1 + 2α)

(
4γ − 1

1− γ
− 4α +

4(1 + α)2

3(1 + 2α)µ
+ 3(1 + 2α)µ

)

if
2(1 + α)2

3(1 + 2α)
5 µ 5

2(1 + α)2

3(1 + 2α)(1− γ)

1− γ
1 + 2α

(
1 +

(1− γ)2 [2(1 + α)− 3(1 + 2α)µ]2

12(1 + α)2 − 9(1 + 2α)(1− γ)µ

)

if
2(1 + α)2

3(1 + 2α)(1− γ)
5 µ 5

(1 + α)2(3− 2γ)

3(1 + 2α)(1− γ)

1− γ
3(1 + 2α)

(
4γ − 5 +

9(1 + 2α)(1− γ)µ

(1 + α)2

)

if
(1 + α)2(3− 2γ)

3(1 + 2α)(1− γ)
5 µ 5

2(1 + α)2(2− γ)

3(1 + 2α)(1− γ)

1− γ
1 + 2α

(
2γ − 3 +

4(1 + 2α)(1− γ)µ

(1 + α)2

)
if

2(1 + α)2(2− γ)

3(1 + 2α)(1− γ)
5 µ.

Proof. Setting

φ(z) =
1 + (1− 2γ)z

1− z
= 1 + 2(1− γ)

(
z + z2 + · · ·

)
(0 5 γ < 1; z ∈ U)
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in Theorem 7, we have Corollary 3. 2

Remark 3. In view of (1.2), (1.3) and Lemma 4, we see that S∗sc((1+z)/(1−
z)) ⊂ C. Hence, taking α = γ = 0 in Corollary 3, we obtain a result due to
Kim et al. [5, Corollary 3.2].

Finally, we prove

Theorem 8. Let α = 0 and µ ∈ R. Suppose that φ(z) = 1 + A1z + A2z
2 +

· · · ∈ N with φ′(0) > 0 and ψ(z) = 1 + B1z + B2z
2 + · · · ∈ N . If f(z) =

z + a2z
2 + a3z

3 + · · · ∈ Csc(α, φ, ψ), then∣∣a3 − µa2
2

∣∣ 5 M (α, µ,A1, A2) +N (α, µ,B1, B2) ,

where M(α, µ,A1, A2) and N(α, µ,B1, B2) are given in (3.1) and (3.2).

Proof. Let f(z) ∈ Csc(α, φ, ψ). In view of (1.6), there exists a function
h(z) ∈ S∗sc(α, φ) such that

DDαf(z)

DαT h(z)
≺ ψ(z) (z ∈ U).

We set h(z) = z + d2z
2 + d3z

3 + · · · and

p(z) =
DDαf(z)

DαT h(z)
= 1 + c1z + c2z

2 + · · · = ψ(w(z)),

where w is analytic in U such that |w(z)| 5 |z| for z ∈ U. Then, by simple
calculations, we obtain

c1 = (1 + α)

(
2a2 −

1

2
(d2 − d2)

)
and

c2 = (1 + 2α)

(
3a3 −

1

2
(d3 + d3)

)
− (1 + α)2

2
(d2 − d2)

(
2a2 −

1

2
(d2 − d2)

)
,

so that a2 = c1/2(1 + α) + (d2 − d2)/4 and

a3 =
c2

3(1 + 2α)
+

(1 + α)c1
6(1 + 2α)

(d2 − d2) +
1

6
(d3 + d3).
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Thus we have

a3 − µa2
2 =

1

6
(d3 + d3)−

µ

16
(d2 − d2)

2 +
c2

3(1 + 2α)
− µ

4(1 + α)2
c21

+c1(d2 − d2)

(
1 + α

6(1 + 2α)
− µ

4(1 + α)

)
.

Since h(z) ∈ S∗sc(α, φ), by applying Theorem 1, we observe that DαT h(z) ∈
S∗(φ), which implies∣∣∣∣16(d3 + d3)−

µ

16
(d2 − d2)

2

∣∣∣∣ 5 M (α, µ,A1, A2) , (3.8)

where M(α, µ,A1, A2) is given by (3.1). Furthermore, by using similarly way
of the proof of Theorem 7, we obtain∣∣∣∣ c2

3(1 + 2α)
− µ

4(1 + α)2
c21 + c1(d2 − d2)

(
1 + α

6(1 + 2α)
− µ

4(1 + α)

)∣∣∣∣
5 N(α, µ,B1, B2), (3.9)

where N(α, µ,B1, B2) is given by (3.2). Hence, from (3.8) and (3.9) we have
the desired result. 2
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