
Tamsui Oxford Journal of Mathematical Sciences 25(4) (2009) 333-349
Aletheia University

Entropy Optimization in Mathematical

Programming

R. Kar*
Dept. of Mathematics Bidhan Chandra College,
 Rishra, Hooghly, 712248, West Bengal, India

and

S. K. Mazumder†

Dept. of Mathematics Bengal Engineering
 and Science University, Shibpur, Howrah,

 711103, West Bengal, India

Received February 20, 2008, Accepted September 25, 2008

Abstract
The Paper concentrates upon a modified maximum-entropy method of

solution of linear and non-linear programming problem transforming it by
an equivalent surrogate program.

Keywords and Phrases: Entropy, Optimization, Surrogate, Lagrangian.

* E-mail: kar.ramesh@yahoo.com
† E-mail: majumder_sk@yahoo.co.in

R. Kar and S. K. Mazumder

334

1. Introduction

Let us consider a general optimization problem of the following form :

Problem – I

Minimize {g(x) = g(x1 , x2, … , xn)}

 (1.1)

 {xi , i = 1, 2, … n }

Subject to the constraints dj (x) ≤ 0 , j = 1, 2, … , m (1.2)

 Where x denotes vector of real, continuous-valued variables xi(i = 1, 2, …, n)
and the constraint functions dj(j =1, 2, …, m) represent constraint vector d. Problems
of type – I with non-linear functions g have far reaching applications and there are
plenty of techniques of solving this type of problems [11, 14]. The numerical
solutions of this type of problem are of great importance for engineering design,
synthesis and analysis [4]. Numerical solution of this type of problems on the basis of
Jaynes maximum-entropy principle [9] is first due to Templeman and Li [17]. The
method was modified by Das, Mazumder and De [2] on the basis of kullback
minimum cross-entropy principle [10]. Later on Das and Chakrabarti [3] has
formulated a modified maximum-entropy principle, which removes some flaws and
demerits of the paper of Templeman and Li [17] and that of Das, Mazumder and De
[2]. This method enables a powerful algorithm of tackling numerical optimization
problems, which are very often of great need in engineering science.

 The object of the paper is to show how this modified maximum-entropy
algorithm technique can be successfully applied to the numerical solution of the linear
and non-linear programming problems. We have attempted to establish our claims
with four numerical examples pointing out the advantageous points of the technique.

Entropy Optimization in Mathematical Programming

335

2. Equivalent Surrogate Programming: Modified

Maximum-Entropy Approach

 For clear understanding of the mathematical background of the technique we
describe it briefly as follows : The Problem I has an equivalent surrogate form [17].

Problem – II

 Minimize {g (x) = (x1 , x2 , … , xn) }
 { xi , i = 1, 2, …, n }

Subject to the single constraint ∑
=

m

j 1
 µj di (x) = 0 (2.1)

 Where µj (j = 1, 2, …, m) are non-negative multipliers known as surrogate
multipliers. The surrogate multipliers µ may be assumed to be normalized without
loss of generality, i.e.

 ∑
=

m

j 1
 µj = 1 (2.2)

 The solution process is set in a probabilistic context by considering the

Problem I as posed initially and estimating what level of certainty (probability)
should be assigned to the event that each constraint is active at the problem solution.
Denoting these probability by µj (j = 1, 2, …, m) it is known that at least one of the
constraints must be active so that (2.2) must hold. The desired solution x* of the
Problem I will here be sought indirectly through a sequence of solutions of the
Problem II. This approach assumes therefore, that Problems I and II are equivalent at

R. Kar and S. K. Mazumder

336

the solution point specially that a set of multipliers µ* exists and can be found such
that x* which solves Problem II with µ* also solves Problem I.

The Lagrangian of problem II has the form

LII (x, µ, a) = g(x) + β ∑
=

m

j 1
 µj dj (x) (2.3)

 Where β is the Lagrange multiplier associated with the constraint (2.1) in

problem II. An essential condition to be satisfied is that (x*, µ*, a*) should be a saddle
point of the lagrangian LII of the Problem II

LII (x, µ*, β*) ≥ LII (x*, µ*, a*) ≥ LII (x*, µ, β) (2.4)

 The saddle point condition (2.4) may be satisfied, however by iterative means
using problem II itself with alternative iterations in x – space and µ space. A typical
scheme is as follows :

 An initial set of multipliers µ0 is chosen and problem II is solved to yield
corresponding values of x0. The multipliers are then updated to µ1 and problem II is
solved again to give x1. The process is repeated until the sequence (µ0, x0), (µ1, x1) …
(µk, xk), converges to the solution of problem II and hence also of problem I, at (x*,
µ*). The interation process should satisfy the inequality [17]

 > µj

k if dj (x
k) > 0

 µj
k+1 = µj

k if dj (x
k) = 0 (2.5)

 < µj
k if dj (x

k) < 0

Entropy Optimization in Mathematical Programming

337

 The new multipliers µ
k+1 must satisfy the normality conditions and the

surrogate constraints of problem II. Thus

 ∑
=

m

j 1
µj

k+1 = 1 (2.6)

 ∑
=

m

j 1
µj

k+1 dj (x k+1) = 0 (2.7)

 For the conditions (2.7) to be satisfied we require values for dj (x k+1), j = 1,

2, …, m which are not known as yet. Therefore, the best current estimates for dj (x
k+1) are the values dj (x k) which are available and must be used in their place.
Consequently (2.7) is modified to

 ∑
=

m

j 1
µj

k+1 dj (x k) = ∈ (2.8)

 Where ∈ represents the unknown error introduced by using dj (x k) in place

of dj (x k+1), j = 1, 2, …, m. Furthermore, we would expect ∈ to approach zero as
the sequence of iterations xk , x k+1, … approaches to x*.

Now let us write yj k+1 = (µj k+1 - µj k) dj (x k) , j = 1, 2, … , m. (2.9)

 In view of (2.1) and (2.8) we have then

 ∑
=

m

j 1
 yj

k+1 = ∑
=

m

j 1

(µj
k+1 - µj

k) dj (x k) = ε

R. Kar and S. K. Mazumder

338

Which tends to zero as k → ∞

Since ∑
=

m

j 1
 µj

k dj (x k) = 0 we thus have then

 ∑
=

m

j 1
 yj

k+1 = ε (2.10)

∑
=

m

j 1

)(

1

xd
y

k
j

k
j

+

 =0 (2.11)

and µj

k+1 ≥ 0, j = 1, 2, …, m. (2.12)

To determine yj

k+1 we pose the following problem :

Problem – III

Maximize s = - ∑
=

m

j 1
 yj

k+1 ln yj
k+1 (2.13)

Subject to the constraints ∑
=

m

j 1
 yj

k+1 = ∈ (2.14)

 ∑
=

m

j 1)(

1

xd
y

k
j

k
j

+

 = 0 (2.15)

and µj
k+1 ≥ 0, j = 1, 2, …, m. (2.16)

The solution of problem III gives :

In yj
k+1 = (α - 1) +

)(xd k
j

η , j = 1, 2, …, m.

Entropy Optimization in Mathematical Programming

339

Or yj
k+1 = Beη/dj(xk) (2.17)

Where η is determined from the equation

 ∑
=

m

j 1

)(

)(/

xd

x
k

dj

j

k

eη

 = 0 (2.18)

Let the value of η be η* then from (2.17), we have

yj
k+1 = Beη*/dj(xk)

So, ∑
=

m

j 1
 yj

k+1 = ∑
=

m

j 1

 Beη*/dj(xk) = ε

Implying B ∑
=

m

j 1

 Beη*/dj(xk) = ε (2.19)

 Since we expect ∈ gradually approaches to zero as the iteration proceeds (i.e
∈ → 0 as K → ∞) therefore, equation (2.19) states that B is a non-negative quantity
which infact gradually approaches to zero as the iteration increases.

By virtue of (2.9) the solution of the problem III gives the following assignment
of µj

k+1 :

µj
k+1 = µj

k +
)(

)(/

xd

x
k

dj

j

k

Beη

, j = 1, 2, …, m (2.20)

µj

k+1 ≥ 0 we have

 B ≤
e x

xdj
k

k

j

dj

k

)(/

)(
η

µ− , j = 1, 2, …, m (2.21)

R. Kar and S. K. Mazumder

340

 In view of this it should be possible to prescribe procedures for selecting sequence
{B} of positive numbers that converges to zero. The above method satisfies the
conditions (2.5) absolutely confirming the convergence of µ [3].

3. Application to Programs

 Here we are going to deliberate an interesting application of the above
modified maximum-entropy method in the solution of linear and non-linear
programming problems. Bregman-Romanovsky [1] and Erlander [5] studied entropy
constrained linear programs. Bregman-Romanovsky [1] add an entropy term to the
objective function with the purpose of introducing an element of smoothing into the
solutions of linear programs. Erlander [5] adds an entropy constraint to the classical
linear programs in order to achieve a desired level of accessibility in the solutions.

 In the present section we are going to deal with the technique of section 2 in
the solution of linear and non-linear programming problems. This technique has been
shown to be very successful in generating an iterative procedure in the numerical
solution of linear and non-linear programs. The different steps in the iterative
procedure are as follows :

a) The first step is to reduce the original program into a surrogate and reduce the
number of constraints into a single constraint

b) The next step is to add an entropy term to the new objective function so that
the new objective function becomes a non-linear function (in case of linear
program) of its arguments in consistent with the formalism of the section 2.

c) Next is to write down the lagrangian for the surrogate problem introducing a
Lagrangian parameter β (say).

Entropy Optimization in Mathematical Programming

341

d) Maximization of the Lagrangian with respect to the new surrogate variables y
(say)leads to the set of equations which determine the lagrangian parameter β.

e) We start with the computation scheme by setting surrogate multipliers µ equal
so that their total sum be unity. This is consistent with Laplaces principle of
insufficient knowledge-a particular case of Jaynens’maximum-entropy
principle [9].

f) By starting with the initial values µj
o, we upgrade their values step by step and

find the corresponding values of the surrogate variables yi and hence original
variables xi (i = 1, 2, …, n). The whole iterative process can be arranged in a
tabular form for a better representation of the solution. The procedure has been
explained more explicitly by four numerical examples presented below.

Numerical Example 1 :

 A firm can produce three types of cloth, say A, B and C. Three kinds of wool
are required for it, say, red wool, green wool and blue wool. One unit length of type A
cloth needs 2 yards of red wool and 3 yards of blue wool; one unit length of type B
cloth needs 3 yards of red wool, 2 yards of green wool and 2 yards of blue wool and
one unit of type C cloth needs 5 yards of green wool and 4 yards of blue wool. The
firm has only a stock of 8 yards of red wool, 10 yards of green wool and 15 yards of
blue wool. It is assumed that the income obtained form the one unit length of type A
cloth is Rs. 3.00, of type B cloth is Rs. 5.00 and of type C cloth is Rs. 4.00.

The L.P. model is written as :

Maximize Z = 3x1 + 5x2 + 4x3
Subject to constraints :
d1 ≡ 2x1 + 3x2 - 8 ≤ 0
d2 ≡ 2x2 + 5x3 - 10 ≤ 0 (1.a)
d3 ≡ 3x1 + 2x2 + 4x3 - 15 ≤ 0

and x1, x2 , x3 ≥ 0

R. Kar and S. K. Mazumder

342

The surrogate form of (1.a) is given by

MaximizeZ = 3x1 + 5x2 + 4x3 – x1lnx1 – x

2
lnx2 – x3lnx3

Subject to
µ1 (2x1 + 3x2 – 8) + µ2 (2x2 + 5x3 – 10) + µ3 (3x1 + 2x2 + 4x3 - 15) = 0
Or a1x1 + a2x2 +a3x3 – a4 = 0 (1.b)

Where a1 = (2µ1 + 3µ3)
 a2 = (3µ1 + 2µ2 + 2µ3)
 a3 = (5µ2 + 4µ3)
 a4 = (8µ1 + 10µ2 + 15µ3) (1.c)

Now the lagrangian for the above surrogate problem is

L(X, β) = (3x1 + 5x2 + 4x3 – x1lnx1 – x

2
lnx2 – x3lnx3) + β (a1x1 + a2x2 +a3x3 – a4)

(1.d)

Now, the maximization requires

1x
L
∂
∂ = 0 ⇒ x1 = e (2+a

1
β) (1.e)

2x

L
∂
∂ = 0 ⇒ x2 = e (4+a

2
β) (1.f)

3x

L
∂
∂ = 0 ⇒ x3 = e (3+a

3
β) (1.g)

Putting x1, x2, x3, in (1.b) we have

a1e (2+a

1
β) + a2e (4+a

2
β) + a3e (3+a

3
β) – a4 = 0 (1.h)

Entropy Optimization in Mathematical Programming

343

 Which gives the value of β for known a1, a2, a3, a4 (determined from (1.c) for given

µ1, µ2, µ3). We start the process by setting µ1 = µ2 = µ3 = 3
1 . Infact Jaynes maximum-

entropy principle’ generates this starting set for µ1, µ2, µ3 because in the absence of
any others extra information about the problem the least baised assumption that we
can make is that all the constraints are equally weighted. Table 1 give the iterative
result and is as exact as the three decimal place accuracy.

TABLE – 1

K B µ1 µ2 µ3 β x1 x2 x3 d1 d2 d3 η
0 –

3
1

3
1

3
1

-

1.20233

.99611

3.32083

.54498

3.84653

-

 .67092

-

3.22755

1.44349

1 .008 .33630 .33194 .33174 -
1.20287

.99379 3.28613 .55285 3.84521 -
.66347

-
3.23494

1.42105

2 .0004 .33645 .33187 .33166 -
1.20290

.99367 3.28532 .55325 3.84333 -
.66307

-
3.23530

1.41990

3 .0001 .33649 .33185 .33164 -
1.20291

.99364 3.28512 .55335 3.84266 -
.66297

-
3.23539

1.419620

4 00007 .33651 .33184 .33163 -
1.20291

.99362 3.28501 .55339 3.84210 -
.66290

-
3.23546

1.419418

Numerical Example 2 :

 Let us consider the following optimization problem, which is of significant
importance in engineering design [11]. A firm manufactures two types of products of
x1 and x2 units. The profit function is given by
f (x1, x2) = x1 + 3x2

The problem here to maximize the linear function
Maximize f (x1, x2) = x1 + 3x2 (2.a)

Subject to constraints :

3x1 + 6x2 ≤ 8
5x1 + 2x2 ≤ 10, x1, x2 ≥ 0 (2.b)

R. Kar and S. K. Mazumder

344

 Now first rewrite the L.P.P by introducing a transformation of variables defined by

2

1
1

xy = and
5

2
2

xy =

 We use this transformation in order to make one of the constraints of (2.b) in its
normality from which infact is consistent with the method developed in this paper.
Then the equation (2.a) and (2.b) transformed to
Maximize f (y1, y2) = 2y1 + 15y2
Subject to d1 ≡ 3y1 + 15y2 – 4 ≤ 0 (2.c)
 d2 ≡ y1 + y2 – 1 ≤ 0
 y1, y2 ≥ 0
The surrogate form of (2.c) is given by

Maximize f (y1, y2) = 2y1 + 15y2 – y1lny1 – y

2
lny2

Subject to µ1 (3y1 + 15y2 – 4) + µ2 (y1 + y2 – 1) = 0
Or a1y1 + a2 y2 – a3 = 0 (2.d)
Where
 a1 = (3µ1 + µ2)
 a2 = (15µ1 + µ2) (2.e)
 a3 = (4µ1 + µ2)

Following the same argument as in Numerical Example 1, Table 2 give the iterative
results and is as exact as the three decimal place accuracy.

TABLE – 2

K B µ1 µ2 β y1 y2 d1 d2 η
0 –

2
1

2
1

-1.90160

.606149E-01

.29734

.64230

-.64203

-0.173194E-13

Entropy Optimization in Mathematical Programming

345

1 0.009 0.51401 0.48598 -1.85721 .628821E-01 .29458 .60748 -.64252 -0.175132E-01

2 0.0005 0.51481 0.48518 -1.85474 .630307E-01 .29443 .60556 -.64255 -0.185831E-01

3 0.0001 0.51497 .48502 -1.85424 .630365E-01 .29440 .60501 -.064255 -0.186771E-01

Numerical Example 3 :

In this example we study with the non-linear programming problem.
Minimize f (x1, x2) = – 4x1 + x1

2 – 2x1x2
 + 2x2

2

Subject to the constraints :
 d1 ≡ 2x1 + x2 – 6 ≤ 0
 d2 ≡ x1 – 4x2 ≤ 0 , x1, x2 ≥ 0 (3.a)

The surrogate form of (3.a) is given by
Minimize f (x1, x2) = – 4x1 + x1

2 – 2x1x2
 + 2x2

2 + x1lnx1 + x
2
lnx2

Subject to µ1 (2x1 + x2 – 6) + µ2 (x1 – 4x2) = 0
 Or, a1x1 + a2x2 – a3 = 0 (3.b)
Where
 a1 = (2µ1 + µ2)
 a2 = (µ1 – 4µ2) (3.c)
 a3 = – 6µ1

Now the Lagrangian for the above surrogate problem is
 L(X, β) = – 4x1 + x1

2 – 2x1x2
 + 2x2

2 + x1lnx1 + x
2
lnx2 + β (a1x1 + a2x2 – a3)

Now the maximization requires

1x

L
∂
∂ = 0 ⇒ 2x1 – 2x2 + lnx1 + βa1 – 3 = 0 (3.d)

2x

L
∂
∂ = 0 ⇒ – 2x1 + 4x2 + lnx2 + βa2 + 1 = 0 (3.e)

R. Kar and S. K. Mazumder

346

 Now we follow the same argument as in Numerical Example 1, Table 3 give the
iterative results and is as exact as the three decimal place accuracy.

TABLE – 3

K B µ1 µ2 β x1 x2 d1 d2 η
0 –

2
1

2
1

0 2.86934 1.14978 .88847 1.00005 0

1 .007 .50787 .50700 0 2.86846 1.14942 .88635 1.00008 0
2 .001 .52601 .50900 0 2.86834 1.14931 .88605 1.00009 0
3 .0005 .50957 .50850 0 2.86830 1.14922 .88590 1.00010 0

Numerical Example 4 :

 Here also we study with the non-linear programming problem and its constraints
also non-linear.

Minimize f (x1, x2) = (x1 – 1)2 + (x2– 5)2

Subject to the constraints :
 d1 ≡ – x1

2 + x2 – 4 ≤ 0
 d2 ≡ – (x1

2 – 2)2 + x2 – 3 ≤ 0 , x1, x2 ≥ 0 (4.a)

The surrogate form of (4.a) is given by

Minimize f (x1, x2) = (x1 – 1)2 + (x2 – 5)2 + x1lnx1 + x

2
lnx2

Subject to µ1 (– x1
2 + x2 – 4) + µ2 { – (x1 – 2)2 + x2 – 3 } = 0 (4.b)

Now the Lagrangian for the above surrogate problem is

Entropy Optimization in Mathematical Programming

347

L(X, β)=(x1 – 1)2+(x2 – 5)2 + x1lnx1+ x
2
lnx2 + β[µ1(– x1

2 + x2 – 4) + µ2{ –(x1 – 2)2 +

x2 – 3}]
Now the maximization requires

1x

L
∂
∂

 = 0 ⇒ 2(1 – βµ1 – βµ2) x1 + 4βµ2 + lnx1 – 1 = 0 (4.c)

2x

L
∂
∂ = 0 ⇒ 2x2 + lnx2 + β(µ1 + µ2) – 9 = 0 (4.d)

 Now we follow the same argument as in Numerical Example 1, Table 4 give the
iterative results and is as exact as the three decimal place.

TABLE – 4

K B µ1 µ2 β x1 x2 d1 d2 η
0 –

2
1

2
1

2.23897 1.59097 2.85585 1.38703 1.00000 0

1 .0009 .500648 .500899 2.23894 1.59096 2.85584 1.38700 1.00000 0
2 .0003 .500865 .501199 2.23652 1.59089 2.85539 1.38635 1.00010 0

4. Conclusion
 In this paper we have analysed the applicability of the modified maximum-

entropy principle in the numerical solution of linear and non-linear programming
problems. Infact, it may be justified to conclude the paper by saying that this
metamorphosis to the surrogate mode has diminished the number of hindrances into a
single one and, furthermore, this has lessened the manifold numerical complications
of the problem undoubtedly to a large measure.

R. Kar and S. K. Mazumder

348

References

[1] I. M. Bregman and JV. Romanovsky, Raverstka I optimizatsija V Zadatjach
Raspredelenija, University of Leningrao; USSR, 1975.

[2] DAS. N. C., S. K. Mazumder, and Kajal DE, Constrained non-linear
programming, Minimum cross-entropy algorithm, Eng. Optimization (in press),
1988.

[3] DAS. N. C.and Chakrabarti. C. G., Non-linear constrained optimization :
Information-Theoretic algorithm, SAMS (In press) , 1988.

[4] DEB. K. , Optimization for engineering design Algorithms and examples,
Prentice Hall of India, New Delhi. , 1995.

[5] S. Erlander, Entropy in Linear programs, mathematical programming, 1979, pp.
137-150.

[6] F. Glover, Surrogate constraints, Operations Research, Vol. 16, 1986 pp. 741-
749.

[7] F. J. Gould, Extensions of Lagrange multipliers in non-linear programing, SIAM
Journal of Applied Mathematics, Vol. 13, No. 6(1969) pp. 1280-1297.

[8] H. J. Greenberg and W. P. Pierskalla, Surrogate Mathematical programming,
Operations Research, Vol. 18(1970) 924-939.

[9] E. T. Jaynes, Information theory and statistical mechancis, The Physical Review,
Vol. 106 (1957) pp. 620-630.

[10] S. Kullback, Information theory and Statistical, John Wiley, New York, 1959.

[11] N. S. Kambo, Mathematical Programming Techniques, Affiliated East-West
Press, 1991.

Entropy Optimization in Mathematical Programming

349

[12] J. M. Ortega and W. C. Reheinboldt, Iterative solution of non-linear equations in
several variables, Academic Press, New York, 1970.

[13] C. E. Shannon, A mathematical theory of communication, Bell System Technical
Jr. 27 (1949) pp.379-423.

[14] Swarup Kanti, P. K. Gupta, and Man mahan, Operations Research, Sultan
Chand & Sons, New Delhi, 1980.

[15] S. Rao Singiresu, Engineering Optimization. Theory and Practical, 1988.

[16] M. Tribus, Rational description and designs, Pergamon Press, New York, 1969.

[17] A. B. Templeman and Xingsi. LI, A maximum-entropy approach to constrained
non-linear programming, Engg. Optimization. Vol. 112, No. 2(1987) pp. 191-
205.

[18] J. N. Kapur, Maximum Entropy Model in Science and Engineering, Wiley
Eastern, New Delhi, 1990.

