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1. Introduction 
 

Let us consider a general optimization problem of the following form : 

Problem – I 

Minimize {g(x) = g(x1 , x2, … , xn )}                                                          

                                                                                                                           (1.1) 

                             {xi , i = 1, 2, … n } 

Subject to the constraints dj (x) ≤ 0 , j = 1, 2, … , m (1.2) 

 

     Where x denotes vector of real, continuous-valued variables xi(i = 1, 2, …, n) 
and the constraint functions dj(j =1, 2, …, m) represent constraint vector d. Problems 
of type – I with non-linear functions g have far reaching applications and there are 
plenty of techniques of solving this type of problems [11, 14]. The numerical 
solutions of this type of problem are of great importance for engineering design, 
synthesis and analysis [4]. Numerical solution of this type of problems on the basis of 
Jaynes maximum-entropy principle [9] is first due to Templeman and Li [17]. The 
method was modified by Das, Mazumder and De [2] on the basis of kullback 
minimum cross-entropy principle [10]. Later on Das and Chakrabarti [3] has 
formulated a modified maximum-entropy principle, which removes some flaws and 
demerits of the paper of Templeman and Li [17] and that of Das, Mazumder and De 
[2]. This method enables a powerful algorithm of tackling numerical optimization 
problems, which are very often of great need in engineering science. 

 

     The object of the paper is to show how this modified maximum-entropy 
algorithm technique can be successfully applied to the numerical solution of the linear 
and non-linear programming problems. We have attempted to establish our claims 
with four numerical examples pointing out the advantageous points of the technique. 
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2. Equivalent Surrogate Programming: Modified 

Maximum-Entropy Approach 
 

     For clear understanding of the mathematical background of the technique we 
describe it briefly as follows : The Problem I has an equivalent surrogate form [17]. 

Problem – II 

    Minimize {g (x) =  ( x1 , x2 , … , xn ) } 
    { xi , i = 1, 2, …, n } 
      
___________________ 

Subject to the single constraint ∑
=

m

j 1
 µj di (x) = 0     (2.1)

  
 

     Where  µj (j = 1, 2, …, m) are non-negative multipliers known as surrogate 
multipliers. The surrogate multipliers µ may be assumed to be normalized without 
loss of generality, i.e. 

                            ∑
=

m

j 1
  µj = 1        (2.2) 

 
     The solution process is set in a probabilistic context by considering the 

Problem I as posed initially and estimating what level of certainty (probability) 
should be assigned to the event that each constraint is active at the problem solution. 
Denoting these probability by µj ( j = 1, 2, …, m) it is known that at least one of the 
constraints must be active so that (2.2) must hold. The desired solution x* of the 
Problem I will here be sought indirectly through a sequence of solutions of the 
Problem II. This approach assumes therefore, that Problems I and II are equivalent at 
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the solution point specially that a set of multipliers µ* exists and can be found such 
that x* which solves Problem II with µ* also solves Problem I. 

 
The Lagrangian of problem II has the form 
 

LII (x, µ, a) = g(x) + β  ∑
=

m

j 1
 µj  dj (x)       (2.3) 

 
     Where β is the Lagrange multiplier associated with the constraint (2.1) in 

problem II. An essential condition to be satisfied is that (x*, µ*, a*) should be a saddle 
point of the lagrangian LII of the Problem II 

 

LII (x, µ*, β*)  ≥  LII (x*, µ*, a*)  ≥  LII (x*, µ, β)                (2.4) 

 

     The saddle point condition (2.4)  may be satisfied, however by iterative means 
using problem II itself with alternative iterations in x – space and µ space. A typical 
scheme is as follows : 

     An initial set of multipliers µ0 is chosen and problem II is solved to yield 
corresponding values of x0. The multipliers are then updated to µ1 and problem II is 
solved again to give x1. The process is repeated until the sequence (µ0, x0), (µ1, x1) … 
(µk, xk), converges to the solution of problem II and hence also of problem I, at (x*, 
µ*). The interation process should satisfy the inequality [17]  

 
     >  µj 

k if dj (x
k)   >  0 

      µj 
k+1             =  µj 

k if dj (x
k)   =  0     (2.5)

  

     <  µj 
k  if dj (x

k)   <  0 
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     The new multipliers µ 
k+1 must satisfy the normality conditions and the 

surrogate constraints of problem II. Thus 

 

 ∑
=

m

j 1
µj 

k+1   =   1        (2.6) 

 

 ∑
=

m

j 1
µj 

k+1   dj (x k+1)  =  0                     (2.7) 

 
     For the conditions (2.7) to be satisfied we require values for dj (x k+1), j = 1, 

2, …, m which are not known as yet. Therefore, the best current estimates for dj (x 
k+1) are the values dj (x k) which are available and must be used in their place. 
Consequently (2.7) is modified to 

 

           ∑
=

m

j 1
µj 

k+1   dj (x k)  = ∈                (2.8) 

 
     Where ∈ represents the unknown error introduced by using dj (x k)  in place 

of dj (x k+1), j = 1, 2, …, m.  Furthermore, we would expect ∈ to approach zero as 
the sequence of iterations xk ,  x k+1, … approaches to x*. 

 

Now let us write  yj k+1   =  (µj k+1 -  µj k) dj (x k) ,  j  =  1, 2, … , m. (2.9) 

 

 In view of (2.1) and (2.8) we have then 

 

  ∑
=

m

j 1
 yj 

k+1   =  ∑
=

m

j 1

(µj 
k+1 -  µj 

k) dj (x k)  =   ε                           
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Which tends to zero as k  →  ∞ 
 

Since  ∑
=

m

j 1
 µj 

k dj (x k)  = 0   we thus have then 

 

    ∑
=

m

j 1
 yj 

k+1    = ε                                                                                 (2.10) 

∑
=

m

j 1
 

)(

1

xd
y

k
j

k
j

+

  =0                                                                               (2.11) 

 
and         µj 

k+1  ≥ 0,   j = 1, 2, …, m.                                                                        (2.12) 
 
To determine yj 

k+1  we pose the following problem : 
 
 
Problem – III 
 

Maximize  s  =   - ∑
=

m

j 1
  yj 

k+1   ln yj 
k+1                                                     (2.13) 

Subject to the constraints    ∑
=

m

j 1
 yj 

k+1  =  ∈             (2.14) 

                       ∑
=

m

j 1 )(

1

xd
y

k
j

k
j

+

  = 0                                     (2.15) 

and       µj 
k+1   ≥  0,   j = 1, 2, …, m.               (2.16) 

 
The solution of problem III gives : 

In yj 
k+1  =  (α - 1) +  

)(xd k
j

η  ,   j = 1, 2, …, m.      
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Or    yj 
k+1  = Beη/dj(xk)              (2.17) 

 

Where η is determined from the equation 
 

               ∑
=

m

j 1
 

)(

)(/

xd

x
k

dj

j

k

eη

 = 0            (2.18) 

 
Let the value of  η be η* then from (2.17), we have 

yj 
k+1  =  Beη*/dj(xk) 

So,            ∑
=

m

j 1
  yj 

k+1  =  ∑
=

m

j 1

 Beη*/dj(xk)  =  ε 

Implying    B   ∑
=

m

j 1

 Beη*/dj(xk)  =  ε         (2.19) 

     Since we expect ∈ gradually approaches to zero as the iteration proceeds (i.e 
∈ → 0 as K → ∞ ) therefore, equation (2.19) states that B is a non-negative quantity 
which infact gradually approaches to zero as the iteration increases. 

 

By virtue of (2.9) the solution of the problem III gives the following assignment 
of  µj 

k+1  : 

 

µj 
k+1   =  µj 

k  + 
)(

)(/

xd

x
k

dj

j

k

Beη

,   j = 1, 2, …, m                                                    (2.20)                                     

 
µj 

k+1   ≥  0    we have 

      B  ≤    
e x

xdj
k

k

j

dj

k

)(/

)(
η

µ−  ,   j = 1, 2, …, m     (2.21) 
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     In view of this it should be possible to prescribe procedures for selecting sequence 
{B} of positive numbers that converges to zero. The above method satisfies the 
conditions (2.5) absolutely confirming the convergence of µ [3]. 
 
 
 

3. Application to Programs 
 

     Here we are going to deliberate an interesting application of the above 
modified maximum-entropy method in the solution of linear and non-linear 
programming problems. Bregman-Romanovsky [1] and Erlander [5] studied entropy 
constrained linear programs.  Bregman-Romanovsky [1] add an entropy term to the 
objective function with the purpose of introducing an element of smoothing into the 
solutions of linear programs.  Erlander [5] adds an entropy constraint to the classical 
linear programs in order to achieve a desired level of accessibility in the solutions.  

 

     In the present section we are going to deal with the technique of section 2 in 
the solution of linear and non-linear programming problems. This technique has been 
shown to be very successful in generating an iterative procedure in the numerical 
solution of linear and non-linear programs. The different steps in the iterative 
procedure are as follows : 

a) The first step is to reduce the original program into a surrogate and reduce the 
number of constraints into a single constraint 

b) The next step is to add an entropy term to the new objective function so that 
the new objective function becomes a non-linear function (in case of linear 
program) of its arguments in consistent with the formalism of the section 2. 

c) Next is to write down the lagrangian for the surrogate problem introducing a 
Lagrangian parameter β (say). 
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d) Maximization of the Lagrangian with respect to the new surrogate variables y 
(say)leads to the set of equations which determine the lagrangian parameter β. 

e) We start with the computation scheme by setting surrogate multipliers µ equal 
so that their total sum be unity. This is consistent with Laplaces principle of 
insufficient knowledge-a particular case of Jaynens’maximum-entropy 
principle [9]. 

f) By starting with the initial values µj 
o, we upgrade their values step by step and 

find the corresponding values of the surrogate variables yi and hence original 
variables xi (i = 1, 2, …, n). The whole iterative process can be arranged in a 
tabular form for a better representation of the solution. The procedure has been 
explained more explicitly by four numerical examples presented below. 

 
Numerical Example 1 : 
 

     A firm can produce three types of cloth, say A, B and C. Three kinds of wool 
are required for it, say, red wool, green wool and blue wool. One unit length of type A 
cloth needs 2 yards of red wool and 3 yards of blue wool; one unit length of type B 
cloth needs 3 yards of red wool, 2 yards of green wool and 2 yards of blue wool and 
one unit of type C cloth needs 5 yards of green wool and 4 yards of blue wool. The 
firm has only a stock of 8 yards of red wool, 10 yards of green wool and 15 yards of 
blue wool. It is assumed that the income obtained form the one unit length of type A 
cloth is Rs. 3.00, of type B cloth is Rs. 5.00 and of type C cloth is Rs. 4.00. 

The L.P. model is written as : 

Maximize  Z = 3x1 + 5x2 + 4x3 
Subject to constraints : 
d1 ≡  2x1 + 3x2 - 8   ≤ 0 
d2 ≡  2x2 + 5x3 - 10 ≤ 0        (1.a) 
d3 ≡  3x1 + 2x2 + 4x3  - 15   ≤ 0 
 
and  x1,  x2 ,  x3  ≥ 0 
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The surrogate form of (1.a) is given by  
 
MaximizeZ = 3x1 + 5x2 +  4x3 – x1lnx1 – x

2
lnx2 – x3lnx3 

Subject to 
µ1 (2x1 + 3x2 – 8) +  µ2 (2x2 + 5x3 – 10) + µ3 (3x1 + 2x2 + 4x3  - 15) = 0 
Or          a1x1 + a2x2 +a3x3 – a4 = 0          (1.b) 
 
Where      a1  =  (2µ1 + 3µ3) 
                a2  =  (3µ1 + 2µ2 + 2µ3) 
                a3  =  (5µ2 + 4µ3) 
                a4  =  (8µ1 + 10µ2 + 15µ3)       (1.c) 
 
Now the lagrangian for the above surrogate problem is 
 
L(X, β) = (3x1 + 5x2 +  4x3 – x1lnx1 – x

2
lnx2 – x3lnx3) + β (a1x1 + a2x2 +a3x3 – a4)     

(1.d) 
 
Now, the maximization requires 

1x
L
∂
∂  = 0  ⇒ x1 = e (2+a

1
β)       (1.e) 

 

           
2x

L
∂
∂  = 0  ⇒ x2 = e (4+a

2
β)                                                                                                                           (1.f) 

 

           
3x

L
∂
∂  = 0  ⇒ x3 = e (3+a

3
β)                                                                                                                           (1.g) 

 
Putting  x1, x2,  x3, in (1.b) we have 
 
a1e (2+a

1
β)  +  a2e (4+a

2
β)  +  a3e (3+a

3
β)   – a4 = 0                                                              (1.h) 
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     Which gives the value of β for known a1, a2, a3, a4 (determined from (1.c) for given 

µ1, µ2, µ3). We start the process by setting µ1 = µ2 = µ3 =  3
1  . Infact Jaynes maximum-

entropy principle’ generates this starting set for µ1, µ2, µ3 because in the absence of 
any others extra information about the problem the least baised assumption that we 
can make is that all the constraints are equally weighted. Table 1 give the iterative 
result and is as exact as the three decimal place accuracy. 

TABLE – 1 
 

K B µ1 µ2 µ3 β x1 x2 x3 d1 d2 d3 η 
0 – 

3
1  

3
1  

3
1  

 
-

1.20233

 
.99611

 
3.32083

 
.54498

 
3.84653

 
-

 .67092 

 
-

3.22755 

 
1.44349

1 .008 .33630 .33194 .33174 -
1.20287

.99379 3.28613 .55285 3.84521 -
.66347 

-
3.23494 

1.42105

2 .0004 .33645 .33187 .33166 -
1.20290

.99367 3.28532 .55325 3.84333 -
.66307 

-
3.23530 

1.41990

3 .0001 .33649 .33185 .33164 -
1.20291

.99364 3.28512 .55335 3.84266 -
.66297 

-
3.23539 

1.419620

4 00007 .33651 .33184 .33163 -
1.20291

.99362 3.28501 .55339 3.84210 -
.66290 

-
3.23546 

1.419418

 
Numerical Example 2 : 
 
     Let us consider the following optimization problem, which is of significant 
importance in engineering design [11]. A firm manufactures two types of products of 
x1 and x2 units. The profit function is given by 
f (x1,  x2 ) =  x1  + 3x2 

 
The problem here to maximize the linear function  
Maximize  f (x1,  x2 ) =  x1  + 3x2       (2.a) 
 
Subject to constraints : 
 
3x1 + 6x2  ≤  8 
5x1 + 2x2  ≤  10,        x1,  x2   ≥  0        (2.b) 
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     Now first rewrite the L.P.P by introducing a transformation of variables defined by 

      
2

1
1

xy =  and 
5

2
2

xy =  

     We use this transformation in order to make one of the constraints of (2.b) in its 
normality from which infact is consistent with the method developed in this paper. 
Then the equation (2.a) and (2.b) transformed to  
Maximize  f (y1,  y2 ) =  2y1  + 15y2  
Subject to          d1   ≡  3y1  + 15y2  – 4  ≤ 0     (2.c) 
                      d2   ≡   y1   +    y2  – 1  ≤ 0 
                                    y1,     y2   ≥ 0 
The surrogate form of (2.c) is given by  
 
Maximize  f  (y1,  y2)   =  2y1 + 15y2 –  y1lny1 – y

2
lny2  

Subject to   µ1 (3y1  + 15y2  – 4)  +  µ2 (y1  +  y2  – 1) = 0 
Or        a1y1  + a2 y2  – a3 = 0        (2.d) 
Where        
             a1 = (3µ1  + µ2) 
             a2 = (15µ1  + µ2)        (2.e) 
             a3 = (4µ1  + µ2) 
      
Following the same argument as in Numerical Example 1, Table 2 give the iterative 
results and is as exact as the three decimal place accuracy.  

 
 
 

TABLE – 2 
 
K B µ1 µ2 β y1 y2 d1 d2 η 
0 – 

2
1  

2
1  

 
-1.90160

 
.606149E-01

 
.29734

 
.64230

 
-.64203 

 
-0.173194E-13
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1 0.009 0.51401 0.48598 -1.85721 .628821E-01 .29458 .60748 -.64252 -0.175132E-01

2 0.0005 0.51481 0.48518 -1.85474 .630307E-01 .29443 .60556 -.64255 -0.185831E-01

3 0.0001 0.51497 .48502 -1.85424 .630365E-01 .29440 .60501 -.064255 -0.186771E-01

 
 
Numerical Example 3 : 
 
In this example we study with the non-linear programming problem. 
Minimize     f (x1,  x2 ) =  – 4x1 + x1

2 – 2x1x2
 + 2x2

2 
 
Subject to the constraints : 
                                            d1   ≡  2x1  + x2  – 6  ≤ 0 
                                 d2   ≡   x1  –  4x2   ≤ 0  ,      x1,     x2   ≥ 0              (3.a) 
 
The surrogate form of (3.a) is given by  
Minimize f  (x1,  x2)   =  – 4x1 + x1

2 – 2x1x2
 + 2x2

2   + x1lnx1 + x
2
lnx2 

Subject to    µ1 (2x1  + x2  – 6)  +  µ2 (x1  – 4x2 ) = 0 
 Or,              a1x1  + a2x2  – a3 = 0       (3.b) 
Where        
             a1 = (2µ1  + µ2) 
             a2 = (µ1  – 4µ2)        (3.c) 
             a3 =   –  6µ1    
 
Now the Lagrangian for the above surrogate problem is  
           L(X, β) =  – 4x1 + x1

2 – 2x1x2
 + 2x2

2   + x1lnx1 + x
2
lnx2  + β (a1x1  + a2x2  – a3) 

Now the maximization requires 
 

  
1x

L
∂
∂  = 0  ⇒ 2x1 – 2x2  + lnx1 + βa1 – 3 = 0     (3.d) 

 
2x

L
∂
∂  = 0  ⇒ – 2x1 + 4x2  + lnx2 + βa2 + 1 = 0     (3.e) 
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     Now we follow the same argument as in Numerical Example 1, Table 3 give the 
iterative results and is as exact as the three decimal place accuracy.  

 
TABLE – 3 

 
K B µ1 µ2 β x1 x2 d1 d2 η 
0 – 

2
1  

2
1  

0 2.86934 1.14978 .88847 1.00005 0 

1 .007 .50787 .50700 0 2.86846 1.14942 .88635 1.00008 0 
2 .001 .52601 .50900 0 2.86834 1.14931 .88605 1.00009 0 
3 .0005 .50957 .50850 0 2.86830 1.14922 .88590 1.00010 0 

 
Numerical Example 4 : 

 
     Here also we study with the non-linear programming problem and its constraints 
also non-linear. 
 
 
 
Minimize  f  (x1,  x2)   = (x1 – 1)2 +  (x2– 5)2 
 
Subject to the constraints : 
                                            d1   ≡  –  x1

2  + x2  – 4  ≤ 0 
                                 d2   ≡   – (x1

2  – 2)2 +  x2  – 3  ≤ 0  ,    x1,   x2   ≥ 0  (4.a) 
 
 

The surrogate form of (4.a) is given by  
 
Minimize f  (x1,  x2)   =  (x1 – 1)2 +  (x2 – 5)2  + x1lnx1 + x

2
lnx2   

Subject to    µ1 ( –  x1
2  + x2  – 4)  + µ2 { – (x1 – 2)2  +  x2 – 3 } = 0   (4.b) 

Now the Lagrangian for the above surrogate problem is 
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L(X, β)=(x1 – 1)2+(x2 – 5)2  + x1lnx1+ x
2
lnx2 + β[µ1( – x1

2 + x2 – 4) + µ2{ –(x1 – 2)2 + 

x2 – 3}] 
Now the maximization requires 

 
1x

L
∂
∂

  = 0  ⇒ 2(1 – βµ1 – βµ2) x1 + 4βµ2 + lnx1 – 1 = 0    (4.c) 

 
2x

L
∂
∂  = 0  ⇒ 2x2  + lnx2  + β(µ1 + µ2) – 9 = 0      (4.d) 

      
     Now we follow the same argument as in Numerical Example 1, Table 4 give the 
iterative results and is as exact as the three decimal place.  

 
TABLE – 4 

 
K B µ1 µ2 β x1 x2 d1 d2 η
0 – 

2
1  

2
1  

2.23897 1.59097 2.85585 1.38703 1.00000 0 

1 .0009 .500648 .500899 2.23894 1.59096 2.85584 1.38700 1.00000 0 
2 .0003 .500865 .501199 2.23652 1.59089 2.85539 1.38635 1.00010 0 
 
 

4. Conclusion 
  In this paper we have analysed the applicability of the modified maximum-

entropy principle in the numerical solution of linear and non-linear programming 
problems. Infact, it may be justified to conclude the paper by saying that this 
metamorphosis to the surrogate mode has diminished the number of hindrances into a 
single one and, furthermore, this has lessened the manifold numerical complications 
of the problem undoubtedly to a large measure. 
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