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Abstract

This article concentrates on the study of persistence using an epi-
demic model of Chagas Disease.Threshold conditions of disease persis-
tence have been derived.Results are developed by using the differential
inequality theorem.
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1. Introduction

Chagas disease is a major disease in South America,it is a disease of the poor [9]
bibitemAber1980.It is very frustrating that in one of the most authoritative
books on the subject of transmission of infectious diseases published, Try-
panosoma cruzi is not mentioned [3].Chagas disease is one of the major helth
problems in the South American continent which is caused by the protozoan
parasite Trypanosoma cruzi.The population in danger reached around 64 mil-
lion in 1981 (Zeledon and Rabinovich [18]) with around 24 million of infected
individuals.Carlos Chagas [9] first identified this vertically transmitted disease
in human.The parasite Trypanosoma cruzi also affects a large number of mam-
malian species.The life cycle involves transmission by blood-sucking reduviid
insects that carry infective (metacyclic trypomasgate) forms of Trypanosoma
cruzi in their fecal fluids and deposit them on the stein at the time of procuring
a blood meal.After entering the body through skin lessions or mucosal surfaces,
the parasite may penetrate a variety of host cells in whose cytoplasm it trans-
form into the amastigote form, capable of intracellular replication.Eventually
further intracellular transformation gives rise to a trymomatigote form com-
monly found in tissue fluids and in the blood, through which it can be dis-
seminated to other cells and tissues or from where it could be ingested by an
insect vector.

In endemic areas, individuals are usually infected during childhood.In cases
in which the acute disease can develop in a few weeks and present with
high fever.Mortality among acute patients is not common and is usually due
to central nervous tissue or cardiac involvement.The chronic progresses rela-
tively slowly,leading to death in a period of time ranging from a few years
to decades.Cardiovascular disease develops in a majority of the patients and
death from this condition is probably the most frequent cause of cardiovascular
mortality in the South American continent.Some patients prevent serious gas-
trointestinal pathology, including massive enlargement of the esophagus and
/or colon (megaviscera).

The disease has several forms, the two main ones living a long-term low-
level chronic form and a clinical one (see Salazar et.al.[11]).In its clinical form,
the disease is often fatal, usually, because of serious cardiac, lung and digestive
tract autonomic degeneration (Billencourt et.al.[5],Billencourt[6]).The chronic
form of the diseases eventually leads to similar complications and consequences
as the clinical form, but it can last in a subclinical state for many years.
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For detailed information on the epidemiology of the Chagas disease we
refer to [7,8,12,16,17].There is no therapy to treat this chronic disease.Some
medicines have been used in the treatment of this disease with little success but
there is no established cure.Therefore it will be a great problem due to vertical
and horizontal transmission by immigrants from endemic region to unaffected
regions (Thesis et.al.[13]).So study of appropriate mathematical models is nec-
essary for the encoming danger of this infection.Busenberg and Vargas [8] and
Velasco-Hernandez [16,17] have analyzed such models. Busenberg and Vargas
[8] have obtained partial analytical results on stability.They showed that there
are exponentially stable solutions and no oscillatory phenomena are possible
when approaching the endemic equilibrium.They consider the case where the
initial population consists of only susceptible individuals and some chronically
infected ones.Since g is very small they assumed it to be zero.They showed
that if the horizontal transmission is strong enough, even when the vector
transmission is absent, the disease would reach an endemic level if silent in-
fectives are introduced in an otherwise healthy population.Velasco-Hernandez
[16] studied the infection under the assumption of a constant host population
introducing vector population dynamics.In another paper [17] he analyzed the
basic population dynamics and transmission mechanisms.He also investigated
plausible density dependent mechanisms of fluctuations in bug populations.

Persistence theory has so far focused rather on ecological than epidemi-
ological models.In the epidemiology of infectious disease persistence has two
faces: persistence (or endemicity) of the disease and survival of the host pop-
ulation.In this paper we established conditions for the disease and /or the
host population to persist, as well as for the disease to limit the growth of
the population.We are mainly interested to study the persistence of the dis-
ease.A component x(t) of a given ordinary differential equation system is said
to be persistent (uniformly strongly) if there exists a constant k > 0 such
that limt→∝minx(t) > k whenever x(0) > 0 , whereas persistence (uniformly
weak) means the existence of a constant m > 0 such that.A system is said to be
uniformly strongly persistent if each component is uniformly persistent.Many
results on persistence have been developed in ecological problems (see [10] and
the references therein).It indicates the long-term survival of certain (if not all)
components in ecological systems by suitably applying the results of dynamic
systems theory.In the models of microparasites and macroparasites Anderson
and May [1,2] have analyzed how the threshold phenomena for the persistence
of epidemics are modified when population size is variable.Thieme and Castillo-
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Chavez [15] studied uniform persistence for an HIV/AIDS model.Thieme [14]
obtained persistence under relaxed point dissipativity in an epidemic model
and derived conditions for both host and disease persistence and for host lim-
itation by the disease.

In this paper we are able to show the persistence of the disease of an
epidemic model analyzed previously in [8] by simply applying the theory of
differential inequality.

In the next section we present the model.Section 3 deals with sufficient
conditions for persistence. Finally we represent a brief discussion of our results
together with some possible implications.

2. Mathematical Model

We consider the model of Chagas disease due to Busenberg and Vargas [8].We
take a human host population of susceptible denoted by S(t).In this model the
infection has a chronic low level form and a clinical form, thus we obtain two
distinct epidemiological classes I1 and I2, denoting the chronically ill and the
clinically infected individuals respectely.

The dynamics obey the following equations:

dS

dt
= (b− r − v)S + (b

′

1p1 + c1)I1 + (b
′

2p2 + c2)I2 − S
k1I1 + k2I2

N

dI1
dt

= (b
′

1q1 − r
′

1 − c1)I1 + vS + S
k1I1 + k2I2

N
− gl1 (2.1)

dI2
dt

= (b
′

2q2 − r
′

2 − c2)I2 + gl1

Where
pi + qi = 1, i = 1, 2

N = S + I1 + I1

Therefore
dN

dt
= (b− r)S + (b

′

1 − r
′

1)I1 + (b
′

2 − r
′

2)I2

Here b, b
′
1, b

′
2, r, r

′
1 and r

′
2 denote the birth rates of susceptibles, the chronically

and clinically ill individuals and their death rates respectively. c1, c2, q1 and q2
denote the cure rates of the chronically and the clinically ill individuals and
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their probabilities of vertical transmission.v is the vector transmission rate, k1

and k2 represent the rates of transmission through blood transfusion by which
the chronically and clinically ill classes move to the clinically ill classes and
g is the rate by which the chronically ill move into the clinically ill class.For
Chagas disease, g would be very small since 1

g
is the mean period of stay in the

chronic classes which is estimated to be in the order of ten to fifteen years. So g
may be assumed to be zero.Also, in the case of Chagas disease, the chronically
ill individuals are normally not detected and if detected, their probability of
being cured is very low.All the parameters in system (2.1) are all constants.
We are interested in studying this model where the population N(t) is not
stationary.
Reformulation of the model:
To proceed with the analysis, we consider the proportions of individuals in the
epidemiological classes, namely

s =
S

N
, i1 =

I1
N
.i2 =

I2
N

(2.2)

The dynamical system (2.1) becomes

ds

dt
= (b−r−v)s+(b

′

1p1+c1)i1+(b
′

2p2+c2)i2−(b−r)s2−(k1+b
′

1−r
′

1)si1−(k2+b
′

2−r
′

2)si2

di1
dt

= (b
′

1q1−r
′

1−c1−g)i1+vs+(k1−b+r)si1+k2si2−(b
′

1−r
′

1)i
1
2−(b

′

2−r
′

2)i1i2

(2.3)
di2
dt

= (b
′

2q2 − r
′

2 − c2)i2 + gi1 − (b− r)si2 − (b
′

1 − r
′

1)i1i2 − (b
′

2 − r
′

2)i
2
2

dN

dt
= [(b− r)s+ (b

′

1 − r
′

1)i1 + (b
′

2 − r
′

2)i2]N

Equations (2.2) imply
s+ i1 + i2 = 1

The feasibility region is {B = (s, i1, i1) : s ≥ 0, i1 ≥ 0, i2 ≥ 0, s+ i1 + i2 = 1}

3. Persistence of Disease

In this section we shall show the disease persistence in the chronically and
clinically ill classes under certain conditions.Also we shall derive the threshold
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condition on limitation of these classes by the disease. There are different
ways in which disease persistence can be interpreted in our model.We have
chosen to call the disease to be persistent or endemic in the population, if the
fraction of ill or infective individuals i1 or i2 is bounded away from zero.If the
population dies out and the fraction of infectives remains bounded away from
zero, we still say that the disease is persistent in the population. Through this
section, for a real-valued function h on [t0,∝) we define

h∝ = limt→∝infh(t), h∝ = limt→∝suph(t)

Theorem 3.1. Let q1 >
r
′
1+c1+g

b
′
1

, b < k1 + r and b
′
2 < r

′
2. Then the disease

is uniformly weakly persistent in so far as i∝1 = limt→∝supi1(t) ≥ ε where
constant ε > 0 being independent of the initial data, provided that i1(0) > 0.
Proof. Consider the i1 equation in (2.3)

di1
dt

= (b
′

1−r
′

1−c1−g)i1 +vs+(k1−b+r)si1 +k2si2− (b
′

1−r
′

1)i
2
1− (b

′

2−r
′

2)i1i2

Since b < k1 + r, b
′
2 < r

′
2

di1
dt
≥ (b

′

1q1 − r
′

1 − c1 − g)i1 − (b
′

1 − r
′

1)i
2
1

which implies
di1
dt

i1
≥ (b

′

1q1 − r
′

1 − c1 − g)i1 − (b
′

1 − r
′

1)i1

Hence

limt→∝inf
di1
dt

i1
≥ (b

′

1 − r
′

1 − c1 − g)− (b
′

1 − r
′

1)i
∝
1

If possible, let

i∝1 <
(b

′
1q1 − r

′
1 − c1 − g)

(b
′
1 − r

′
1)

We have limt→∝inf
di1
dt

i1
> 0 which implies that i1(t) →∝, t →∝ in contradic-

tion to the fact that i2 is bounded by one.Therefore we must have

i∝1 ≥
(b

′
1q1 − r

′
1 − c1 − g)

(b
′
1 − r

′
1)
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Theorem 3.2 Let the assumptions of Theorem 3.1 hold. Then the disease
is uniformly strongly persistent in so far as i1∝ = limt→∝infi1(t) ≥ ε with
a constant ε being independent of the initial data, provided that i1(0) > 0.
Proof. Clearly di1

dt
≥ i1[b

′
1q1− r

′
1− c1− g− (b

′
1− r

′
1)i1] as t ≥ t0 becomes large

enough.
Note that b

′
1q1 − r

′
1 − c1 − g > 0 and b

′
1 > r

′
1.

From the comparison theorem we have

limt→∝i1(t) >
(b

′
1q1 − r

′
1 − c1 − g)

(b
′
1 − r

′
1)

For any i1(t) with i1(0) > 0.

Theorem 3.3 Let q2 >
(r

′
2+c2)

b
′
2

, b < r and b
′
1 < r

′
1. Then the disease is uniformly

weakly persistent in so far as i∝2 = limt→∝supi2(t) ≥ C where constant C > 0
being independent of the initial data provided that i2(0) > 0.
Proof. The proof of Theorem 3.3 is similar to that of Theorem 3.1 and is
therefore omitted.

Theorem 3.4 Let the assumptions of Theorem 3.3 hold.Then the disease is
uniformly strongly persistent in so far as i2∝ = limt→∝infi2(t) ≥ C with con-
stant C > 0 being independent of the initial data, provided that i2(0) > 0.
Proof. The proof of Theorem 3.4 is similar to that of Theorem 3.2 and is
omitted.

Theorem 3.5 Let b < r, r
′
1 > b

′
1 + k1 and r

′
2 < b

′
2 <

(r
′
2+c2)

q2
. Then i1∝ =

limt→∝infi1(t) ≤ η with constant η > 0 not depending on the initial data
provided that i1(0) > 0.
Proof. Since s, i1, i2 <≤ 1 we have

di1
dt
≤ g + r − b+ r

′

1 − b
′

1 − (r
′

2 + c2 − b
′

2q2)i2

From which it follows by a standard differential inequality argument [4] that

i2(t) ≤
g + r − b+ r

′
1 − b

′
1

r
′
2 + c2 − b

′
2q2

+ [i2(0)− g + r − b+ r
′
1 − b

′
1

r
′
2 + c2 − b

′
2q2

]e−(r
′
2+c2−b

′
2q2)t

Thus

limt→∝supi2(t) <
g + r − b+ r

′
1 − b

′
1

r
′
2 + c2 − b

′
2q2

= m
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Again as b < r, we have

ds

dt
≥ (b− r − v)s− (k1 + b

′

1 − r
′

1)si1 − (k2 + b
′

2 − r
′

2)si2

Hence

limt→∝inf
ds
dt

s
≥ (b− r − v) + (r

′

1 − b
′

1 − k1)i1∝ − (b
′

2 − r
′

2 + k2)m

If possible, let i1∝ >
r+v−b+(b

′
2−r

′
2+k2)m

r
′
1−b

′
1−k1

We have limt→∝inf
ds
dt

s
> 0 which implies that s(t) →∝, t →∝ in contra-

diction to the fact that s is bounded by one.
Therefore we must have

i1∝ ≤
r + v − b+ (b

′
2 − r

′
2 + k2)m

r
′
1 − b

′
1 − k1

Theorem 3.6 Let b < r, r
′
1 < b

′
1 <

r
′
1+c1+g

q1
and k2 + b

′
2 < r

′
2.Then i2∝ =

limt→∝infi2(t) ≤ η with constant η > 0 not depending on the initial data
provided i2(0) > 0.
Proof. The proof of Theorem 3.6 is similar to that of Theorem 3.5 and is
therefore omitted.

Theorem 3.7 Let 0 < b − r < v and r
′
i > ki + b

′
i, i = 1, 2. Then ijα =

limt→∝infij(t) ≤ εj, j = 1, 2 with constants εj, j = 1, 2 not depending on
the initial data provided that ij(0) > 0, j = 1, 2.
Proof. Proof is obvious.

4. Discussion

Charles Chagas identified triatominae insects as carriers of the parasite around
1909 in the state of Minas Gerai’s, Brazil. In this paper we have studied the
basic population dynamics and transmission mechanisms.We observed that
the disease persistent for chronically ill individuals depend on the magnitude
of birth rate of susecptable and clinically ill individuals and these are in prob-
ability of vertical transmission of the chronically ill individuals.It is to be
noted that uniform weak persistence implies persistence in our system.Under
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the stated conditions in Theorem 3.1, the infected population does not go to
extinction.

Again it is observed that when the probability of vertical transmission of
the clinically ill individuals exceeds a certain lower threshold value and the
birth rates of susceptible and chronically ill individuals are less than their cor-
responding death rates then the disease is persistent in clinically ill individu-
als.Lastly we have obtained the threshold conditions on the disease persistence
in the two distinct infective classes, which are mainly dependent on a certain
range of the parameters namely the birth rates of susceptibles, the chronically
and the clinically ill individuals, respectively.

We mention some of the factors important in disease transmission that have
not been considered here. Perhaps the most important one is the neglation
of host age-structure. Also vector transmission is assumed to be constant in
the model system although it depends on so many factors like biting rate,
probability of producing an infection in the host, the ratio of vector members
of host numbers and the total vector population.It would be interesting to
know the persistence behaviour for a constant vector transmission and also
age/stage structure of the vector population.
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