A New Note on the Increasing Sequences*

Hüseyin Bor ${ }^{\dagger}$
Department of Mathematics, Erciyes University, 38039 Kayseri,Turkey

Received February 19, 2008, Accepted January 13, 2009.

Abstract

In the present paper a general theorem on $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors of infinite series, which generalizes some well known results, has been proved. Also we have obtained a new result dealing with $|C, 1 ; \delta|_{k}$ summability factors.

Keywords and Phrases: Absolute summability, Summability factors, Increasing sequences.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} and t_{n}^{α} the n-th Cesàro means of order α, with $\alpha>-1$, of the sequence $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, i.e.,

$$
\begin{align*}
u_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v}, \tag{1}\\
t_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \tag{2}
\end{align*}
$$

[^0]where
\[

$$
\begin{equation*}
A_{n}^{\alpha}=O\left(n^{\alpha}\right), \quad \alpha>-1, \quad A_{0}^{\alpha}=1 \quad \text { and } \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 \tag{3}
\end{equation*}
$$

\]

A series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [7], [10])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{\left|t_{n}^{\alpha}\right|^{k}}{n}<\infty \tag{4}
\end{equation*}
$$

and it is said to be summable $|C, \alpha ; \delta|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{6}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{7}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [9]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2], [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{8}
\end{equation*}
$$

and it is said to be summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{\delta k+k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 \tag{10}
\end{equation*}
$$

In the special case $p_{n}=1$ for all values of $\mathrm{n}($ resp. $\delta=0)\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability is the same as $|C, 1 ; \delta|_{k}$ (resp. $\left|\bar{N}, p_{n}\right|_{k}$) summability. Also if we take $\delta=0$ and $k=1$, then we get $\left|\bar{N}, p_{n}\right|$ summability.

2. Known Results

Bor [4] has proved the following theorem for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors.
Theorem A. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and suppose that there exists sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{11}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{12}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{13}\\
\quad\left|\lambda_{n}\right| X_{n}=O(1) . \tag{14}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left|s_{v}\right|^{k}}{v}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{15}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right) \tag{16}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right) \tag{17}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
If we take $k=1$ in Theorem A, then we get a theorem due to Mishra and Srivastava [12] concerning the $\left|\bar{N}, p_{n}\right|$ summability factors.
Recently Bor [6] generalized Theorem A for $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability in the following form.

Theorem B. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ are such that conditions (11)-(17) of Theorem A are satisfied with the condition (15) replaced by:

$$
\begin{equation*}
\sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}}=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{1}{P_{v}}\right) \quad \text { as } \quad m \rightarrow \infty \tag{19}
\end{equation*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
Remark. It should be noted that if we take $\delta=0$, then we get Theorem A. In this case condition (18) reduces to condition (15) and condition (19) reduces to

$$
\begin{equation*}
\sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}=\sum_{n=v+1}^{m+1}\left(\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right)=O\left(\frac{1}{P_{v}}\right) \quad \text { as } \quad m \rightarrow \infty \tag{20}
\end{equation*}
$$

which always holds. Also it may be noticed that, under the conditions on the sequence $\left(\lambda_{n}\right)$ we have that $\left(\lambda_{n}\right)$ is bounded and $\Delta \lambda_{n}=O(1 / n)$ (see [4]).

3. Main Result

The aim of this paper is to prove Theorem B under weaker conditions. For this we need the concept of almost increasing sequence. A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Obviously every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking the example, say $b_{n}=n e^{(-1)^{n}}$. Now, we shall prove the following theorem.

Theorem. Let $\left(X_{n}\right)$ be an almost increasing sequence. If the conditions (11)(14) and (16)-(19) are satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
We require the following lemma for the proof of the theorem.
Lemma 1 ([11]). If (X_{n}) be an almost increasing sequence, then under the conditions (12)-(13) we have that

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \tag{21}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{22}
\end{align*}
$$

Lemma 2 ([12]). If the conditions (16) and (17) are satisfied, then

$$
\begin{equation*}
\Delta\left(\frac{P_{n}}{n p_{n}}\right)=O\left(\frac{1}{n}\right) \tag{23}
\end{equation*}
$$

4. Proof of the Theorem

Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}} .
$$

Then

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}}, \quad n \geq 1, \quad\left(P_{-1}=0\right) .
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1}= & \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} s_{v} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v p_{v}}\right)+\frac{\lambda_{n} s_{n}}{n} \\
= & \frac{s_{n} \lambda_{n}}{n}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \frac{P_{v+1} P_{v} \Delta \lambda_{v}}{(v+1) p_{v+1}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v} \Delta\left(\frac{P_{v}}{v p_{v}}\right)-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} P_{v} \lambda_{v} \frac{1}{v} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \quad \text { say. }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}\right|^{k} \leq 4^{k}\left(\left|T_{n, 1}\right|^{k}+\left|T_{n, 2}\right|^{k}+\left|T_{n, 3}\right|^{k}+\left|T_{n, 4}\right|^{k}\right)
$$

to complete the proof of the Theorem, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{24}
\end{equation*}
$$

Firstly, by Abel transformation, we have

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 1}\right|^{k} \\
= & \sum_{n=1}^{m}\left(\frac{P_{n}}{n p_{n}}\right)^{k-1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| \frac{\left|s_{n}\right|^{k}}{n} \\
= & O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n}\left|\lambda_{n}\right| \\
= & O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
& +O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} \frac{\left|s_{n}\right|^{k}}{n} \\
= & O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1), a s m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the Theorem and Lemma 1.
Now, using the fact that $P_{v+1}=O\left((v+1) p_{v+1}\right)$ by (16), and applying Hölder's
inequality we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 2}\right|^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}\right|^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}\left|s_{v}\right| p_{v}\left|\Delta \lambda_{v}\right|\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left|\Delta \lambda_{v}\right|^{k} \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left|\Delta \lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n}} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}\left|\Delta \lambda_{v}\right|}{p_{v}}\right)^{k-1}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|s_{v}\right|^{k}\left|\Delta \lambda_{v}\right| \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|s_{v}\right|^{k}\left|\Delta \lambda_{v}\right|\left(\frac{P_{v}}{v p_{v}}\right)^{k-1} \\
= & O(1) \sum_{v=1}^{m} v \beta_{v}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|s_{r}\right|^{k}}{r}+O(1) m \beta_{m} \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \underline{\left|s_{v}\right|^{k}} \frac{v}{m-1} \\
= & O(1) \sum_{v=1}^{m}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
= & O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v}\left|\beta_{v}\right|+O(1) m \beta_{m} X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by the hypotheses of the Theorem and Lemma 1. Again, as in $T_{n, 1}$, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 3}\right|^{k} \\
= & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v} \Delta\left(\frac{P_{v}}{v p_{v}}\right)\right|^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|s_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right) p_{v}\left|s_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
= & \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1}(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{1}{P_{v}} \cdot \frac{v}{v} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) X_{m}\left|\lambda_{m}\right|=O(1), \quad a s \quad m \rightarrow \infty,
\end{aligned}
$$

by the hypotheses of the Theorem, Lemma 1 and Lemma 2.
Finally, using Hölder's inequality, as in $T_{n, 3}$, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, 4}\right|^{k} \\
= & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v} \lambda_{v}\right|^{k} \\
= & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v p_{v}} p_{v} \lambda_{v}\right|^{k} \\
\leq & \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|\lambda_{v}\right|^{k} \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \frac{1}{P_{v}} \cdot \frac{v}{v} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|s_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) X_{m}\left|\lambda_{m}\right|=O(1), \quad \text { as } \quad m \rightarrow \infty .
\end{aligned}
$$

Therefore we get that

$$
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|T_{n, r}\right|^{k}=O(1), \quad \text { for } \quad r=1,2,3,4
$$

This completes the proof of the Theorem.
Finally if we take $p_{n}=1$ for all values of n in the Theorem, then we get a new result concerning the $|C, 1 ; \delta|_{k}$ summability factors.

References

[1] S. Aljancic and D. Arandelovic, O-regularly varying functions, Publ. Inst. Math., 22(1977), 5-22.
[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc., 97(1985), 147-149.
[3] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc., 98(1986), 81-84.
[4] H. Bor, A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Indian J. Pure Appl. Math., 18(1987), 330-336.
[5] H. Bor, On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl., 179(1993), 646-649.
[6] H. Bor, A study on absolute Riesz summability factors, Rend. Circ. Mat.Palermo (2), 56(2007) , 358-368.
[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141.
[8] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc., 8(1958), 357-387.
[9] G. H. Hardy, Divergent Series, Oxford Univ. Press., Oxford, (1949).
[10] E. Kogbetliantz, Sur lés series absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math., 49(1925), 234-256.
[11] S. M.Mazhar, A note on absolute summability factors, Bull. Inst. Math. Acad. Sinica, 25(1997), 233-242.
[12] K. N. Mishra and R. S. L. Srivastava, On $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series, Indian J. Pure Appl. Math., 15(1984), 651-656.

[^0]: *2000AMS Subject Classification. 40D15, 40F05, 40G99.
 ${ }^{\dagger}$ E-mail: bor@erciyes.edu.tr, hbor33@gmail.com

